System, apparatus, and method for conveying a plurality of containers

Information

  • Patent Grant
  • 8627944
  • Patent Number
    8,627,944
  • Date Filed
    Wednesday, July 23, 2008
    17 years ago
  • Date Issued
    Tuesday, January 14, 2014
    11 years ago
Abstract
A system, apparatus, and method for conveying a plurality of deformable containers. The system can include a conveyor apparatus, an in-feed apparatus, and a rotary apparatus. The in-feed apparatus can be configured to receive the containers from the conveyor apparatus, and may include a first feed screw and a second feed screw. The rotary apparatus can be configured to receive the plurality of filled and sealed containers after the in-feed apparatus. The in-feed apparatus also may be configured to space adjacent filled and sealed containers, with the first and second feed screws acting on the containers to create the spacing. The space created between adjacent containers may be for receipt by said rotary apparatus. The first feed screw may be configured to be positioned substantially directly above the containers, and the second feed screw may be positioned so as to act on the sidewall of the plurality of sealed and filled containers.
Description
NAMES OF PARTIES TO JOINT RESEARCH AGREEMENT

The invention herein was made under a joint research agreement involving Palmer Associates Inc. and Owens Brockway Plastic Products Inc. (predecessor to Graham Packaging Company, L.P.).


The present invention relates to a system, an apparatus, and a method for conveying a plurality of containers. In particular, the system, apparatus, and method according to various embodiments of the present invention can be directed to conveying, for rotary equipment, a plurality of deformable containers.


BRIEF SUMMARY OF THE INVENTION

As used herein, the phrase “various embodiments” is intended to mean an embodiment, at least one embodiment, some embodiments, and/or all embodiments without limitation.


Various embodiments of the present invention can include (i.e., comprise) an apparatus having first conveying means for conveying a plurality of containers in a first direction, second conveying means for conveying the plurality of containers in the first direction, and third conveying means for conveying the plurality of containers in the first direction. The first conveying means for conveying can be configured to move so as to act against a first portion of the plurality of containers to convey the plurality of containers in the first direction. The second conveying means for conveying can be configured to move so as to act against a second portion of the plurality of containers to convey the plurality of containers in the first direction. The third conveying means for conveying can be configured to convey the plurality of containers in the first direction by a third portion of the plurality of containers. The first, second, and third conveying means can be configured to convey the plurality of containers at the same time. The first, second, and third portions of the plurality of containers may be different from each of the other portions, and the first portion can be at a position on the container higher than the second portion.


Various embodiments can also include a system for conveying a plurality of filled and sealed containers, where each of the filled and sealed containers can include a sidewall having a substantially deformable portion. The system can comprise a conveyor apparatus to convey the plurality of filled and sealed containers, an in-feed apparatus which can receive the filled and sealed containers from the conveyor apparatus, and a rotary apparatus that can receive the plurality of filled and sealed containers after the in-feed apparatus. The in-feed apparatus can include a first feed screw and a second feed screw. Further, the in-feed apparatus can be configured to create space between adjacent ones of the filled and sealed containers, where the first feed screw and the second feed screw can act on the plurality of sealed and filled containers to create the respective spaces. The space created between adjacent ones of the filled and sealed containers may be for receipt by the rotary apparatus. The first feed screw may be configured so that it can be positioned substantially directly above the plurality of sealed and filled containers, and the second feed screw may be positioned so as to act on the sidewall of the plurality of sealed and filled containers.


Various embodiments also include a method for conveying a plurality of filled and sealed plastic containers, where each of the filled and sealed plastic containers can include a deformable side portion and a bottom portion which may have a standing portion and a vacuum panel. The method can comprise conveying the plurality of filled and sealed plastic containers single file, where each of the filled and sealed plastic containers may have respective side portions that are deformed and vacuum panels that are un-activated and arranged so as not to extend below the standing portion; creating a substantially uniform distance between adjacent ones of the filled and sealed plastic containers which may have respective deformed side portions and vacuum panels that are un-activated and arranged so as not to extend below the standing surface; and after the creating a substantially uniform distance, sequentially feeding the plurality of filled and sealed plastic containers. The creating of a substantially uniform distance may be based on said sequentially feeding and can include providing two positive control points for each of the filled and sealed plastic containers. One of the positive control points may be at a top portion of the filled and sealed plastic container, and the other of the positive control points may be at the bottom portion of the filled and sealed plastic container.





BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention. The invention will be best understood by reading the ensuing specification in conjunction with the drawing figures, in which like elements are designated by like reference numerals, and wherein:



FIG. 1 is a block diagram representation of a system according to various embodiments of the present invention;



FIG. 2 is an overhead view representing a portion of a system and an apparatus according to various embodiments of the present invention;



FIG. 3 is a rear view representation of a portion of a system and an apparatus according to various embodiments of the present invention;



FIG. 4 is a flow chart representation of a method according to various embodiments of the present invention; and



FIG. 5 is a side view representation of an exemplary container that can be used by the system, apparatus, and method according to various embodiments of the present invention.





DETAILED DESCRIPTION

Various embodiments of the present invention are directed generally to a system, an apparatus, and a method for conveying a plurality of containers, wherein the containers may have at least one portion that is deformable, flimsy, and/or pliable. For example, embodiments of the present invention can include a twin screw feeding apparatus to separate and feed containers for a rotary apparatus prior to manipulating a base portion to make the deformable, flimsy, and/or pliable portion into a desired configuration and/or constitution, such as, but not limited to, substantially smooth, sturdier, rounded, etc.


Containers for conveying by the system, apparatus, and method according to various embodiments of the present invention can be filled with any suitable product, including, but not limited to, carbonated beverages, non-carbonated beverages, water, tea, sports drinks, dry products, etc. The product can be filled into the container at any suitable temperature, including, but not limited to, a hot-fill, a warm-fill, a room temperature-fill, a cold fill, etc. The product can be hot-filled into the container at any suitable temperature. For example, the temperature of a hot product filled in container can be at a temperature of about 185 degrees Fahrenheit.


Containers to be conveyed by the system, apparatus, and method according to various embodiments of the present invention can be formed in any suitable manner, such as, but not limited to, blow molding. Additionally, containers to be conveyed by the system, apparatus, and method according to various embodiments of the present invention can be of any suitable size, of any suitable material, and the containers can be either sealed or unsealed. For example, the containers can have any suitable internal volume, such as, but not limited to, an internal volume of 16 oz., or an internal volume to accommodate being filled with 16 oz. of a product. The containers also can have any suitable height, such as, but not limited to, a height from about five inches to about eleven inches, and any suitable diameter, such as a diameter from about 1.75 inches to about 4.25 inches, for example. Regarding material, the containers can be made of any suitable material. In various embodiments, the containers can be made of any suitable pliable material, such as, but not limited to, plastic, rubber, etc., or combination thereof.


Additionally, containers for conveying by the system, apparatus, and method according to various embodiments of the present invention can be of any suitable configuration or shape. For example, the containers can have at least one portion that is deformable, flimsy, and/or pliable. In various embodiments, the containers can have at least a sidewall portion and/or a base portion that is/are deformable, flimsy, and/or pliable. For example, a vacuum panel can be provided in a bottom end portion of the base portion of each of the containers. A deformable sidewall portion can include a vacuum panel or panels and/or any other portion that is or can be caused to deform. In addition, in various embodiments, containers for conveying by the system, apparatus, and method according to various embodiments of the present invention may not be configured or formed with a deformable, flimsy, and/or pliable portion or portions, such as a vacuum panel, at a bottom end portion thereof.


Note, that containers for conveying by the system, apparatus, and method according to various embodiments of the present invention also may be blow molded and formed originally in an organic, ambiguous shape, such that a central portion, located at a bottom end thereof, for example, is freeform and substantially asymmetrical. Additionally, containers formed or configured with the deformable, flimsy, and/or pliable portion, such as a vacuum panel, formed in a bottom end portion thereof can be conveyed with the deformable, flimsy, and/or pliable portion at the bottom end thereof in any suitable position, arrangement, or status. For example, containers having a vacuum panel at the bottom end can be conveyed with the vacuum panel either activated or un-activated.


Turning to FIG. 5, this figure shows a side view representation of an exemplary container 1 that can be used with the system, apparatus, and method according to various embodiments of the present invention. The container 1 shown in FIG. 5 can include a base portion 2, a sidewall 7, and a neck portion 6, where the base portion 2 forms a closed end of the container and is coupled to sidewall 7, which is coupled to neck portion 6, thereby forming an opening 4 and an internal volume 12.


In various embodiments, container 1 can be sealed by a cap or lid 5 after being filled with a product (not shown). The container can be sealed by any suitable means. For example, cap or lid 5 can be sealed to neck portion 6 by threads, snap fit, etc.


Sidewall 7 can be of any suitable configuration and/or shape. In various embodiments, sidewall 7 can include a sidewall portion 8 that is deformable, flimsy, and/or pliable. As such, the containers may not have a fixed dimension in the sidewall portion 8. Sidewall portion 8 can be any suitable deformable portion, such as a vacuum panel, a portion that is not a vacuum panel, or combination thereof. In various embodiment, sidewall portion 8 may be substantially more deformable, flimsy, and/or pliable than base portion 2 and/or neck portion 6, for example. Sidewall portion 8 can move or can be deformed in any suitable manner, in any suitable direction, for any suitable purpose, and/or to take any suitable shape. For example, sidewall portion 8 can move outward, as shown by 8a, inward, as shown by 8b, or a combination thereof.


Sidewall portion 8 can be deformed or caused to move by any suitable means. Additionally, deformable sidewall portion 8 may not be permanently deformed. For example, deformable sidewall portion 8 can be deformed or moved to a first position (e.g., 8b), and, afterward, can be moved to a second position (e.g., back to 8). In various embodiments, sidewall portion 8 can be deformed or moved in response to internal forces created inside the container after the container has been either filled with a product or filled with a product and sealed. For example, internal forces of the container can be created by the following: heating a product inside container 1 after being filled and sealed, by hot-filling a product and sealing the container 1, or by hot-filling, sealing, and subsequently cooling of a product. For hot-filling and sealing, the sidewall portion may be deformed outward, such as shown by the dashed lines 8a. For hot-filling, sealing, and subsequently cooling, a vacuum can be created in the container 1, thereby deforming sidewall portion inward, such as shown by the dashed lines 8b.


Base portion 2 can be coupled to sidewall 7, and can be of any suitable shape and configuration. In various embodiments, base portion 7 can be formed to include an end portion 3 and a support surface 9, such as, but not limited to, a standing ring. The standing ring can be continuous or non-continuous. In various embodiments, base portion 7 can include a vacuum panel 10 created at end portion 3.


Vacuum panel 10 can be of any suitable configuration. In various embodiments, vacuum panel 10 can be coupled to support surface 9, and can be formed so that the vacuum panel 10 either does not extend below a horizontal plane of the support surface 9 for supporting the container 1 or does not extend to a horizontal plane of the support surface 9, at least when it is to be conveyed or undergoes various ones of the operations of the system, apparatus, and method according to various embodiments of the present invention. In various embodiments, the vacuum panel 10 may have been blow molded or positioned below support surface 9, however, as noted above, when the containers undergo various operations of the system, apparatus, and method according to various embodiments, the vacuum panels 10 may not extend below the horizontal plane of the support surface 9, or may not extend to the horizontal plane of the support surface 9.


The support surface 9 of the container 1 can be of any suitable configuration and can be used to assist in conveying the container 1 by providing a horizontal support surface on which the container can be supported and/or conveyed. Moreover, if the vacuum panel 10 has a portion that extends to the horizontal plane of the support surface 9, that portion of vacuum panel 10 may also assist in supporting and/or conveying (i.e., supporting) the container 1.


The vacuum panel 10, or any suitable portion thereof, may be moveable. In various embodiments, the vacuum panel 10 may be moveable from a first position 10a to a second position 10b, by any suitable means 14 (shown diagrammatically), after the container has been filled and sealed, to thereby activate the vacuum panel 10. Activating the vacuum panel 10 may either reduce a vacuum created in the filled and sealed container, negate the vacuum created in the filled and sealed container, or create an overpressure in the container. The means 14 for moving the vacuum panel 10 from the first position 10a to the second position 10b can be a rod that acts on a portion of the vacuum panel 10 and/or can be formed to take the shape of at least a portion of the vacuum panel 10 to force the vacuum panel 10 from a first position 10a to a second position 10b, for example.


A system and an apparatus according various embodiments of the invention will now be described with respect to FIGS. 1-3.


Generally, in various embodiments of the present invention a conveyor apparatus can feed the containers to two feed screws (e.g., worms) of an in-feed apparatus. The feed screws can space the containers to a desired or correct spacing for a rotary apparatus to carry and feed the containers to another rotary apparatus. Once the containers are on the another rotary apparatus, an actuator associated with each container can act to activate or move the vacuum panel 10 of the container 1. After the vacuum panel has been moved or activated, the container can then be transferred from the other rotary apparatus to yet another rotary apparatus and on to other apparatuses and/or operations.



FIG. 1 is a block diagram representation of a system 100 according to various embodiments of the present invention. More specifically, FIG. 1 shows a block diagram representation of a system 100 for conveying a plurality of containers. In FIG. 1, the boxes labeled 200-900 may represent apparatuses configured to perform respective operation(s) on the plurality of containers, and the arrows connecting adjacent apparatuses represent a general “flow” that the plurality of containers may undergo. Note that although the flow of the containers in FIG. 1 is shown as being generally linear, FIG. 1 also is intended to represent that the containers can undergo operations at one or more of the apparatuses at the same time.


Apparatuses 200-900 can be any suitable apparatuses for performing desired operations on the containers. For example, apparatus 200 can be any suitable apparatus configured to perform an operation or operations on the containers; apparatus 300 can be a conveyor apparatus; apparatus 400 can be an in-feed apparatus; apparatuses 500-700 can be various rotary apparatuses; apparatus 800 can be a conveyor apparatus; and apparatus 900 can be any suitable apparatus, such as, but not limited to, a container inspection apparatus, configured to receive from, or perform operation(s) on, the containers after or while the containers are subjected to the conveyor apparatus 800.


As noted above, apparatus 200 can be any suitable apparatus configured to perform an operation or operations on the containers. In various embodiments, the operation may be transferring or conveying the containers to conveyor apparatus 300. Apparatus 200 can be configured as any suitable means for transferring or conveying the containers to conveyor apparatus 300. For example, apparatus 200 may be configured as a rail to transport or convey the containers by a neck portion to conveyor apparatus 300, or apparatus 200 may be configured as a robotic arm to transfer or convey the containers to conveyor apparatus 300. In various embodiments, apparatus 200 can transfer or convey the containers after the containers have been filled with a product; after the containers have been filled with a product and sealed; after the containers have been filled, sealed, and cooled; or after the containers have been hot-filled, sealed, and cooled. The cooling of a product in the filled and sealed container may be performed by any suitable means, such as, but not limited to, a cooler, sprinklers, misters, etc.


Filling the containers with a product at an elevated temperature (e.g., hot-filling) and subsequently sealing the containers may create internal forces within the filled and sealed container. Internal forces created by filling the container with a product at an elevated temperature may cause at least portion of the container to become deformed with respect to a previous state (e.g., a blow molded state or a state immediately prior to being filled). In various embodiments, the portion of the container that may be deformed can be a sidewall portion 8, and the sidewall portion 8 may be deformed substantially outward, away from a central longitudinal axis of the container.


Likewise, cooling a product in the filled and sealed container, such as a product a hot-filled product, also may create internal forces within the filled and sealed container. In various embodiments, cooling a product in the filled and sealed containers, such as a hot-filled product, may create a vacuum in the container. The vacuum may cause at least portion of the container to become deformed with respect to a previous state (e.g., a blow molded state, a state immediately prior to being filled, or a state after being filled and sealed). In various embodiments, the portion of the container that can be deformed may be sidewall portion 8, and the sidewall portion 8 may be deformed substantially inward, toward a central longitudinal axis 12 of the container 1.


Conveyor apparatus 300 can be any suitable apparatus to convey a plurality of containers in any suitable configuration (e.g., arrangement), of any suitable shape, and of any suitable size. For example, conveyor apparatus 300 may be a conveyor belt, an air conveyor system, etc. In various embodiments, conveyor apparatus 300 can convey the containers single file. Moreover, conveyor apparatus 300 can convey the containers either while the containers are in contact with adjacent containers (i.e., no space between adjacent containers) or while the containers are at a distance or spaced from adjacent containers. Though FIG. 2 shows the containers on conveyor apparatus 300 touching, S1 may represent either of the foregoing situations (i.e., no space between adjacent containers or space between the containers). Furthermore, conveyor apparatus 300 can be controlled by any suitable means, such as, but not limited to, a motor, and can convey the containers at any suitable speed, including, but not limited to, at about eleven hundred containers per minute.


In various embodiments, conveyor apparatus 300 can be configured to receive containers from apparatus 200, substantially as described above. FIGS. 2 and 3, for example, show that conveyor apparatus 300 may be a conveyor belt that conveys the containers to in-feed apparatus 400. As can be seen from FIG. 2, conveyor apparatus 300 can convey the containers 1 in a first direction (indicated by the right-going arrow) toward in-feed apparatus 400. In various embodiments, and as can be seen from FIGS. 2 and 3, conveyor apparatus 300 can work in conjunction with the in-feed apparatus 400. Thus, as is apparent, conveyor apparatus 300 can convey the same containers as the in-feed apparatus 400, at the same time, as does the in-feed apparatus 400. Though not shown, in various alternative embodiments, conveyor apparatus 300 may not convey the same container or containers at the same time as does the in-feed apparatus 400, and, instead, may only feed the containers to in-feed apparatus 400.


As noted above, conveyor apparatus 300 can convey the containers in single file to in-feed apparatus 400. Furthermore, conveyor apparatus 300 may convey the containers in single file, with the containers either touching adjacent containers, or with adjacent containers being at a first distance S1 from each other. In various embodiments, the first distance S1 can be substantially uniform. Conveyor apparatus 300 also may convey the containers with the containers being at unequal distances from adjacent containers. Note that the indicia S1 shown in FIG. 2 may represent touching containers, a substantially uniform distance, or unequal distances. Moreover, the distance represented by S1 can be any suitable distance, and may be based on an outer diameter of the containers or a central longitudinal axis of the containers, for example.


Conveyor apparatus 300 can convey the containers by a standing or support surface 9 of the container 1. As can be seen in FIG. 3, conveyor apparatus 300 can be positioned below the containers, so that the standing or support surfaces 9 of the containers can rest on conveyor apparatus 300. In various embodiments, only a portion of the standing or support surfaces of the container rests on a portion of the conveyor apparatus 300. Additionally, containers to be conveyed by conveyor apparatus 300, according to various embodiments of the invention, each may be configured with a vacuum panel at a base portion, such as at a bottom end portion of the base portion of the container. When the containers having respective vacuum panels at the bottom end portion are conveyed by conveyor apparatus 300, the vacuum panels may be arranged such that no portion extends below the standing or support surfaces. The vacuum panels also can be arranged so that no portion thereof extends to the standing or support surfaces.


In-feed apparatus 400 can be any suitable apparatus to perform an operation or operations on the containers, and can operate at any suitable speed. For example, in-feed apparatus 400 can operate so as to perform an operation or operations at eleven hundred containers per minute. In various embodiments, in-feed apparatus can ramp up to running speed to feed the containers, and can ramp down in speed upon cessation of operations.


As can be seen from FIG. 2, for example, the containers 1 can be fed to in-feed apparatus 400 single file. In various embodiments, the operation or operations of in-feed apparatus can include, but are not limited to, feeding the plurality of containers to rotary apparatus 500, providing support and stability to the containers for feeding to the rotary apparatus 500, and/or creating a distance (including a new, second distance) S2 between adjacent ones of the containers for feeding to rotary apparatus 500.


Distance S2 can be any suitable distance. In various embodiments, distance S2 can be substantially uniform and may be based on either an outer diameter of the containers or a central longitudinal axis of the containers. Additionally, the distance S2 may be based on a distance for feeding the container to an apparatus, such as rotary apparatus 500. Distance S2 also may be based on a distance for reliably feeding the containers to an apparatus, such as rotary apparatus 500.


In-feed apparatus 400 can provide two positive control or touch points for each of the containers. In various embodiments, one of the positive control points may be at a top portion of the containers, and the other of the positive control points may be at a side portion of the containers. As can be seen from in FIG. 3, one of the positive control points may be located substantially above the containers, at a central longitudinal axis of the containers, and the other positive control point may be at a side portion of the container 1.


According to various embodiments, in-feed apparatus 400 can include a first conveying means 402 for conveying a plurality of containers; a second conveying means for conveying the plurality of containers 404; a third conveying means for conveying the plurality of containers 300; a first supporting means for supporting the plurality of containers 406; a second supporting means for supporting the plurality of containers 407; and a third supporting means for supporting the plurality of containers 408.


First conveying means 402 and second conveying means 404 can be any suitable means for conveying the containers. As shown in FIGS. 2 and 3, for example, first conveying means 402 and second conveying means 404 can be feed screws (hereinafter first feed screw 402 and second feed screw 404, respectively). Feed screws 402, 404 can be caused to rotate by any suitable means, including, but not limited to, a motor. Moreover, first feed screw 402 and second feed screw 404 can be arranged to act on any suitable position of the containers to move or convey the containers. In various embodiments, first feed screw 402 can be positioned substantially directly above the containers, so as to act on the containers at an upper end portion. The upper end portion may be at a cap or lid of the container, for example. Second feed screw 404 can be positioned to act on a sidewall of the container. For example, second feed screw can be positioned to act on a sidewall portion of a base portion. First feed screw 402 and second feed screw 404 may be configured to act on the containers at the same time.


First feed screw 402 may rotate in any suitable direction based on the configuration and orientation of the threads of the screw to act on the containers so as to move or convey the containers toward rotary apparatus 500. For example, FIG. 3 shows first feed screw 402 rotating counterclockwise. The portion of the container at which first feed screw 402 acts may be called a positive control point. Additionally, first feed screw 402 may rotate substantially synchronously with second feed screw 404 to act on the containers so as to move or convey the containers toward rotary apparatus 500.


First feed screw 402 can be of any suitable configuration (e.g., diameter, configuration of threads, such as pitch, spacing, thickness of threads, etc.). In various embodiments, the first feed screw 402 may be configured based on the configuration and size of the containers, and/or based on the configuration and size of the apparatus to which it feeds the containers. Moreover, the first feed screw 402 may be configured based on a desired distance to be created between adjacent containers. In various embodiments, the first feed screw 402 may be replaceable for another first feed screw, based on the configuration and size of the containers, and/or based on a desired distance to be created between adjacent containers.


First feed screw 402 may be moveable in any suitable direction. In various embodiments, first feed screw 402 may be moveable by an apparatus 403. Apparatus 403 can be any suitable apparatus to move first feed screw 402, such as, but not limited to, an actuator mechanism. In various embodiments, apparatus 403 can be configured to move first feed screw 402 upward, downward, inward, outward (as shown by the arrows above the first feed screw 402), or in a rotational direction parallel to a direction of conveyance. In various embodiments, apparatus 403 may move the first feed screw based on the size and configuration of the containers. For example, apparatus 403 may move first feed screw 402 upward or downward based on a height of the containers. Apparatus 403 also may be configured to move first feed screw 402 based on a malfunction of the system or apparatus, such as a jam.


As discussed above for the second conveying means 404, second feed screw may be arranged to act on any suitable position of the containers. In various embodiments, the second feed screw 404 may be configured so as to act on a sidewall of the container 7. For example, the second feed screw 404 may act on a portion of sidewall 7 that does not substantially deform (e.g., sidewall of base portion 2), or is not substantially pliable or flimsy. That is to say, in various embodiments, second feed screw 404 may be positioned to act against a portion of the sidewall of the container that is below or above the portion of the sidewall that may be substantially deformed, pliable, and/or flimsy 8. The deformed/pliable/flimsy portion may not maintain its shape when a force, such as a positive control force, is applied. Second feed screw 404 also may be positioned to act on a portion of the sidewall that is “stiffer” or less pliable than the deformed/pliable/flimsy portion of the sidewall. For example, a center of the second feed screw 404 may be positioned at ¼″ above the container support or standing surface 9. Second feed screw 404 also may be positioned to act on the container based on a center of gravity of the container.


Second feed screw 404 may rotate, based on the configuration of the threads of the screw in any suitable direction to act on the containers so as to move or convey the containers toward rotary apparatus 500. In various embodiments, second feed screw 404 can rotate in the same direction, or in an opposite direction, as does first feed screw 402. Additionally, second feed screw 404 may rotate substantially synchronously with first feed screw 402 to act on the containers so as to move or convey the containers toward rotary apparatus 500. The portion of the container at which second feed screw 404 acts may be called a positive control point.


Second feed screw 404 can be any of any suitable configuration (e.g., diameter, configuration of threads, such as pitch, spacing, thickness of threads, etc.). In various embodiments, the second feed screw 404 may be configured based on the configuration and size of the containers, or based on the configuration and size of the apparatus to which it feeds the containers. Moreover, the second feed screw 404 may be configured based on a desired distance to be created between adjacent containers. In various embodiments, second feed screw 404 can be configured to work in conjunction with first feed screw 402 to create a desired distance or space S2 between adjacent containers.


Second feed screw 404 may be replaceable for another second feed screw based on the configuration and size of the containers, or on a desired distance to be created between adjacent containers. Second feed screw 404 also may be moveable in any suitable direction. In various embodiments, second feed screw 404 may be moveable by an apparatus 405, which may be configured to move second feed screw 404 upward, downward, inward, outward (as shown by the arrows below the second feed screw 404), or in a rotational direction parallel to a direction of conveyance. Apparatus 405 can be any suitable apparatus to move second feed screw 404, such as, but not limited to, an actuator mechanism. In various embodiments, apparatus 405 may move the second feed screw 404 based on the size and configuration of the containers. For example, apparatus 405 may move second feed screw 404 upward or downward based on a height of the containers, a center of gravity of the containers, a deformed portion of the containers, etc. The apparatus 405 may also be configured to move second feed screw 404 based on a malfunction of the system or apparatus, such as a jam.


In various embodiments, the third conveying means may be represented by a portion of conveyor apparatus 300 that assists in conveying the containers at the same time as the first and second conveying means 402, 404. As can be seen by the rightward-going arrow in FIG. 2, the first conveying means 402 and the second conveying means 404 can convey the containers in the same direction as indicated by the arrow.


First supporting means 406 can be any suitable means for supporting the containers. In various embodiments, first supporting means 406 can be a stationary guide that supports the containers as they are conveyed by the first conveying means 402 (e.g., first feed screw), the second conveying means 404 (e.g., second feed screw), and the conveyor apparatus 300. First supporting means 406 can be configured to prevent movement by the containers in a direction perpendicular to the direction in which the containers are being conveyed. For example, as shown in FIG. 3, first supporting means 406 may reduce or prevent the containers from moving outward (leftward in FIG. 3). In various embodiments, first supporting means 406 may reduce or prevent an upper or top portion of the container, such as, but not limited to a neck portion, from moving perpendicular to the direction in which the containers are being conveyed.


Second supporting means 407 can be any suitable means configured to support the containers. In various embodiments, second supporting means 407 can be a stationary guide that supports the containers as they are conveyed by the first conveying means 402 (e.g., first feed screw), the second conveying means 404 (e.g., first feed screw), and the conveyor apparatus 300. Second supporting means 407 can be configured to reduce or prevent movement by the containers in a direction perpendicular to the direction in which the containers are being conveyed. For example, as shown in FIG. 3, second supporting means 407 may reduce or prevent the containers from moving inward (rightward in FIG. 3). Second supporting means 407 may reduce or prevent movement by an upper or top portion of the container from moving perpendicular to the direction in which the containers are being conveyed. In various embodiments, second supporting means may be a stationary guide 407, as shown in FIG. 3. Stationary guide 407 can be configured to support the containers at any suitable position. In various embodiments, stationary guide 407 can be configured to support the containers at a neck portion of the containers. Moreover, second supporting means 407 may be configured to support the containers at a position opposite to the first supporting means 406.


Third supporting means 408 can be any suitable means configured to support the containers. In various embodiments, third supporting means 408 can be a stationary guide that supports the containers as they are conveyed by the first conveying means 402, the second conveying means 404, and the conveyor apparatus 300. Third supporting means 408 can be configured to reduce or prevent movement by the containers in a direction perpendicular to the direction in which the containers are being conveyed. In various embodiments, third supporting means 408 may reduce or prevent movement a lower or base portion of the container from moving perpendicular to the direction in which the containers are being conveyed. For example, as shown in FIG. 3, third supporting means 408 may reduce or prevent the containers from moving outward (leftward in FIG. 3). In various embodiments, third supporting means may be a stationary support 408 that is configured to support the containers at any suitable position on the container. Stationary support 408 can be positioned substantially opposite to, or on the other side of the container, with respect to a position at which second conveying means 404 acts on the containers.


Apparatus 500 can be any suitable apparatus configured to perform an operation or operations on the containers. In various embodiments, apparatus 500 can be a rotary apparatus, and the operation to be performed on the containers can be to receive the containers from in-feed apparatus 400 and transfer or convey the containers to apparatus 600. Rotary apparatus 500 can be of any suitable shape and size, and can be configured to hold any suitable number of containers for transfer or conveyance from in-feed apparatus 400 to apparatus 600. Moreover, rotary apparatus 500 can rotate at any suitable rate, and may rotate opposite to the direction of rotation of apparatus 600. For example, as shown in FIG. 2, rotary apparatus 500 can rotate counterclockwise and apparatus 600 can rotate clockwise. In FIG. 2, rotary apparatus 500 is shown sequentially receiving the containers from in-feed apparatus 400 at a first position, conveying or transporting the containers in a generally counterclockwise direction to a position where they are sequentially fed to apparatus 600.


In various embodiments, rotary apparatus 500 may be configured as a star wheel with a plurality of pockets to receive respective ones of the containers for transfer or conveyance to apparatus 600. The configuration of the plurality of pockets (e.g., the spacing) can be determined based on the space or distance created between the containers by in-feed apparatus 400. Alternatively, the space or distance to be created between adjacent containers by in-feed apparatus 400 may be based on the configuration of the pockets of rotary apparatus 500. For example, the in-feed apparatus 400 may be configured to create a space or distance between adjacent containers such that the containers can substantially reliably be transferred to the pockets of rotary apparatus 500. Additionally, the shape and/or size of the plurality of pockets can be based on the shape and/or size of the containers to be received.


Apparatus 600 can be any suitable apparatus configured to perform an operation or operations on the containers. In various embodiments, apparatus 600 can be a rotary apparatus, and the operation to be performed on the containers can be to receive the containers from rotary apparatus 500, to transfer or convey the containers to apparatus 700, and/or to activate or move vacuum panels of the containers. In various embodiments, the vacuum panels can be moved or activated sequentially, by any suitable apparatus, as they are rotated around the rotary apparatus 600.


Rotary apparatus 600 can be of any suitable shape and size, and can be configured to hold any suitable number of containers for transfer or conveyance from rotary apparatus 500 to apparatus 700. Moreover, rotary apparatus 600 can rotate at any suitable rate (e.g., for a speed of 1100 bottles per minute), and may rotate opposite to the direction of rotation of rotary apparatuses 500 and 700. For example, as shown in FIG. 2, rotary apparatuses 500 and 700 can rotate counterclockwise and apparatus 600 can rotate clockwise.


In various embodiments, rotary apparatus 600 can be a turret having a plurality of heads (not explicitly shown). Once the bottle is on a turret platen, a top hold down can be stroked down on top of the bottle. The vacuum panel of the container may then be moved, inverted, or activated, thereby doing one of reducing a vacuum created in the filled and sealed container, creating a “zero” pressure inside the filled and sealed container, or creating an overpressure in the filled and sealed container. Inverting or activating the vacuum panel also may cause a deformed, flimsy, or pliable sidewall portion to be transformed. In various embodiments, the deformed, flimsy, or pliable portion may be transformed so as to take a form substantially the same as blow molded, to take a form substantially as before being filled with a product, to take a form that is substantially smooth, and/or to take a form that is rounded. The vacuum panel can be moved, inverted, or activated by any suitable means 14 (shown diagrammatically in FIG. 5), such as, but not limited to, a single rod or an actuator that conforms to at least a portion of the shape of the vacuum panel or end portion of the base portion of the container.


Each head on the turret may include three units (not shown). An upper unit may be moved up and down by a cam which positions a top hold down tool over the top of the closure to hold the container down when the vacuum panel is moved, inverted, or activated. A bottom unit, which may be an activator cone assembly, can be activated by a cam to stroke the cone up and down. A middle unit can support the container on a platen and locate the container in a nest.


Rotary apparatus 700 can be any suitable apparatus configured to perform an operation or operations on the containers. In various embodiments, the operation may be to receive the containers from rotary apparatus 600 and to convey or transfer the containers to apparatus 800. Rotary apparatus 700 can be of any suitable shape and size, and can be configured to hold any suitable number of containers for transfer or conveyance from rotary apparatus 600 to apparatus 800. In various embodiments, rotary apparatus 700 can be configured substantially the same as rotary apparatus 500. For example, rotary apparatus 700 my be configured to hold or transport the same number of containers as rotary apparatus 500.


Rotary apparatus 700 can rotate at any suitable rate, and may rotate opposite to the direction of rotation of apparatus 600. For example, as shown in FIG. 2, rotary apparatus 700 can rotate counterclockwise and apparatus 600 can rotate clockwise. In FIG. 2, rotary apparatus 700 is shown sequentially receiving the containers from rotary apparatus 600 at a first position, conveying or transporting the containers in a generally counterclockwise direction to a position where they are sequentially fed to apparatus 800.


In various embodiments, rotary apparatus 700 may be configured as a star wheel with a plurality of pockets to receive respective ones of the containers for transfer or conveyance to apparatus 800. The configuration of the plurality of pockets (e.g., the spacing) can be determined based on the space or distance created between the containers by in-feed apparatus 400. The shape and/or size of the plurality of pockets can be based on the shape and/or size of the containers to be received and conveyed or transported.


Apparatus 800 can be any suitable apparatus configured to perform an operation or operations on the containers. In various embodiments, apparatus 800 may be a conveyor apparatus 800, such as, but not limited to a conveyor belt, which can be any suitable apparatus to convey a plurality of containers after operations by apparatuses 400, 500, 600, and 700. Moreover, conveyor apparatus 800 may be an extension of conveyor apparatus 300. That is to say, conveyor apparatus 300 may be continuous and provide the operations performed at an “out-feed” side as well as at an “in-feed” side for rotary apparatus 600. In various embodiments, conveyor apparatus 300 can receive the containers from rotary apparatus 700 and can convey the containers single file. In various embodiments, the containers can be conveyed at a distance S2 created by in-feed apparatus 400 and maintained by apparatuses 500, 600, and 700. Furthermore, conveyor apparatus 800 can convey the containers at any suitable speed, including, but not limited to, at about eleven hundred containers per minute.


Similar to conveyor apparatus 300, conveyor apparatus 800 can convey the containers by a standing or support surface 9 of the container 1. Additionally, containers to be conveyed by conveyor apparatus 800, according to various embodiments of the invention, each may be have had their respective vacuum panels activated.


Apparatus 900 can be any suitable apparatus configured to perform an operation or operations on the containers. In various embodiments, the operation may be to perform an inspection on the containers. For example, apparatus 900 can be configured to inspect a fill height of the containers after their respective vacuum panels have been moved, inverted, or activated. In various embodiments, apparatus 900 can also include a rejection system to reject and discard containers determined to have failed any suitable inspection.


A method 1000 according to various embodiments of the present invention will now be described with respect to FIG. 4.


The method can start at 1002 and may move to step 1004. At step 1004, any suitable operation or operations can be performed on the containers. In various embodiments, the containers can be conveyed by, for example, conveyor apparatus 300.


The containers being conveyed can be of any suitable configuration, as described above. The containers can be either sealed or unsealed. For example, the containers being conveyed can be filled and sealed with a product, substantially as described above. Additionally, the filled and sealed containers may have a vacuum created therein.


Containers being conveyed also may have at least one portion that is deformable, flimsy, and/or pliable. In various embodiments, the containers can have at least a sidewall portion and/or a base portion that is/are deformable, flimsy, and/or pliable. For example, a vacuum panel can be provided in a bottom end portion of the base portion of each of the containers. The vacuum panel may be unactivated and no portion of the vacuum panel may extend below the standing or support portion of the container. Furthermore, containers formed or configured with the deformable, flimsy, and/or pliable portion, such as a vacuum panel, formed in a bottom end portion thereof can be conveyed with the deformable, flimsy, and/or pliable portion at the bottom end thereof in any suitable position, arrangement, or status. For example, containers having a vacuum panel at the bottom end can be conveyed with the vacuum panel either activated or un-activated. Note that deformable sidewall portion can include a vacuum panel or panels and/or any other portion that is or can be caused to deform. Alternatively, in various embodiments, containers being conveyed according to various embodiments of the present invention may not be configured or formed with a deformable, flimsy, and/or pliable portion or portions at a bottom end portion thereof, or any portion thereof.


At step 1004, the containers can be conveyed in any suitable configuration (e.g., arrangement). For example, the containers can be conveyed single file. At step 1004, the containers can be conveyed to any suitable apparatus, for any suitable purpose. In various embodiments, the containers can be conveyed to in-feed apparatus 400.


At step 1006, a distance or spacing can be created between adjacent ones of containers. In various embodiments, the distance or spacing can be substantially uniform and can be created based on any suitable means or reason, including, but not limited to, a configuration of a rotary apparatus, such as rotary apparatus 500, to which the containers are to be fed, transferred, or loaded. The distance or spacing can be created by providing two positive control points. In various embodiments, the positive control points can create the distance or spacing between adjacent containers and convey the containers in a first direction. The positive control points can be positioned substantially as described above, and can be provided by, for example, first feed screw 402 and second feed screw 404, respectively.


At step 1008, the containers can be fed or loaded to any suitable apparatus. In various embodiments, in-feed apparatus 400 can feed or load the containers, sequentially, to a rotary apparatus. The rotary apparatus may be rotary apparatus 500 or rotary apparatus 600, for example. The containers also can be fed or loaded at the space or distance created in step 1006.


After step 1008, the containers can be loaded or fed to another rotary apparatus, such as rotary apparatus 600. At step 1010, vacuum panels in the containers can be activated or moved. The vacuum panels can be located at any suitable location on the container, including, but not limited to, at a bottom end portion of a base portion of the containers. In various embodiments, the vacuum panels can be activated or moved to modify an internal pressure of the container. For example, the vacuum panels can be moved or activated to either reduce a vacuum in the container, create a zero pressure in the container, or create an overpressure in the container. In various embodiments, the activation or movement may include forcing at least a portion of the vacuum panel upward and inward, toward the inner volume of the filled and sealed container. The activation or movement of the vacuum panel can be caused by any suitable means including, but not limited to, a single rod or an actuator that conforms to at least a portion of the shape of the vacuum panel or end portion of the base portion of the container.


The activation or moving of the vacuum panel also may modify a shape of the container. In various embodiments, the activation or moving of the vacuum panel may cause a deformed, pliable, or flimsy portion of the container to be transformed. For example, a container having a sidewall portion 8 that is deformed as shown by the dashed lines 8b show in FIG. 5 may be transformed to take a shape substantially as represented by line 8. The sidewall shape represented by line 8 may represent a sidewall shape and/or configuration substantially as blow molded or a shape prior to the container being filled.


At step 1012, the containers can be unloaded or fed to another apparatus. In various embodiments, the containers can be unloaded or fed to another apparatus after their respective vacuum panels have been moved or activated. Moreover, the containers can be unloaded or fed to any suitable apparatus. For example, the containers can be unloaded or fed from rotary apparatus 600 to rotary apparatus 700. After being unloaded or fed, the containers can be subjected to any suitable operation or operations by any suitable apparatus. Though not explicitly shown in FIG. 4, after being unloaded from rotary apparatus 600 to rotary apparatus 700, the containers can be sequentially unloaded to conveyor apparatus 800, for example, which can convey the containers to another apparatus, such as an inspection and/or discarding apparatus.


At step 1014, the method can end after any suitable number of operations have been performed on the containers.


The system, apparatus, and method according to various embodiments can be controlled and/or operated by any suitable means. For example the system, apparatus, and method can be controlled and/or operated by a computerized controlling means, such as a computer system. The computerized controlling means may allow for all or partial automation of the system, apparatus, and method according to various embodiments of the invention. One or more human operators or controllers may also assist in controlling and/or operating the system, apparatus, and method according to various embodiments of the present invention.


While the present invention has been described in conjunction with a number of embodiments, the invention is not to be limited to the description of the embodiments contained herein, but rather is defined by the claims appended hereto and their equivalents. It is further evident that many alternatives, modifications, and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, all such alternatives, modifications, equivalents, and variations that are within the spirit and scope of this invention.

Claims
  • 1. A method for conveying a plurality of filled and sealed plastic containers, each of the filled and sealed plastic containers including a deformable side portion and a bottom portion having a standing portion and a vacuum panel, the method comprising: conveying, by a conveyor apparatus, the plurality of filled and sealed plastic containers single file, each of the filled and sealed plastic containers having respective side portions that are deformed and vacuum panels that are un-activated and arranged so as not to extend below the standing portion, wherein a first side portion of the standing portion of each of the filled and sealed plastic containers rests on a portion of the conveyor apparatus;creating a substantially uniform distance between adjacent ones of the filled and sealed plastic containers having respective deformed side portions and vacuum panels that are un-activated and arranged so as not to extend below the standing surface, said creating a substantially uniform distance including providing two positive control points for each of the filled and sealed plastic containers; andafter said creating a substantially uniform distance, sequentially feeding the plurality of filled and sealed plastic containers,wherein the substantially uniform distance is based on said sequentially feeding,wherein one of the positive control points is at a top portion of the filled and sealed plastic container,wherein the other of the positive control points is at the bottom portion of the filled and sealed plastic container,wherein the one positive control point is at a central longitudinal axis of the filled and sealed plastic container, andwherein the other positive control point is at a second side portion of the bottom portion.
  • 2. The method of claim 1, wherein the substantially uniform distance is further based on a central longitudinal axis of the plurality of filled and sealed plastic containers.
  • 3. The method of claim 1, wherein each of the plurality of filled and sealed plastic containers has a vacuum created therein, andthe method further comprises, after said sequentially feeding, sequentially activating vacuum panels of the plurality of filled and sealed plastic containers to modify associated vacuums.
  • 4. The method of claim 3, wherein each activation of said sequentially activating vacuum panels includes forcing at least a portion of the vacuum panel upward and inward, toward the inner volume of the filled and sealed plastic container.
  • 5. The method of claim 3, wherein the modifying associated vacuums includes one of reducing a portion of the vacuum, reducing the entirety of the vacuum, and creating an overpressure in the filled and sealed plastic container.
  • 6. The method of claim 3, wherein each activation of said sequentially activating vacuum panels transforms the deformed side portion of the sealed and filled plastic container.
  • 7. The method of claim 6, wherein the deformed side portion is transformed to a form, substantially as blow molded.
  • 8. The method of claim 1, wherein the one positive control point is at a first substantially non-deformable portion of the container and the other positive control point is at a second substantially non-deformable portion of the container, the first and second substantially non-deformable portions being at apposite ends of the container.
  • 9. The method of claim 1, wherein said conveying includes supporting the first side portion of the standing portion of each of the filled and sealed containers by resting directly on a horizontal support.
  • 10. A system for conveying a plurality of filled and sealed plastic containers, each of the filled and sealed containers including a sidewall having a substantially deformable portion and a bottom portion having a standing portion, the system comprising: a conveyor apparatus to convey the plurality of filled and sealed containers, wherein a first side portion of the standing portion of each of the filled and sealed plastic containers rests on a portion of the conveyor apparatus;an in-feed apparatus, which includes a first feed screw and a second feed screw, and which receives the filled and sealed containers from said conveyor apparatus; anda rotary apparatus to receive the plurality of filled and sealed containers after said in-feed apparatus,wherein said in-feed apparatus is configured to create space between adjacent ones of the filled and sealed containers having respective substantially deformable portions in a deformed state, with said first feed screw and said second feed screw acting on the plurality of filled and sealed containers to create the respective spaces,wherein the space created between adjacent ones of the filled and sealed containers is for receipt by said rotary apparatus,wherein said first feed screw is configured to be positioned substantially directly above the plurality of filled and sealed containers, andwherein said second feed screw is positioned so as to act on a second side portion of the bottom portion of each of the plurality of sealed and filled containers the second side portion of the bottom portion being not substantially deformable.
  • 11. The system of claim 10, wherein said in-feed apparatus further includes: a first stationary guide to support the plurality of filled and sealed containers;a second stationary guide to support the plurality of filled and sealed containers; anda third stationary guide to support the plurality of filled and sealed containers, said third stationary guide being positioned at a portion of the sidewall substantially opposite to the second side portion of the bottom portion at which said second feed screw is positioned.
  • 12. The system of claim 10, wherein said first feed screw and said second feed screw are configured to act on the plurality of filled and sealed containers at the same time.
  • 13. The system of claim 10, wherein said in-feed apparatus further includes an in-feed wheel to receive the filled and sealed containers from said first and second feed screws and to feed the filled and sealed containers to said rotary apparatus.
  • 14. The system of claim 10, further comprising an in-feed wheel, wherein said in-feed apparatus is configured to feed the plurality of filled and sealed containers having spaces therebetween to said in-feed wheel, andwherein said in-feed wheel is configured to feed the filled and sealed containers having spaces therebetween to said rotary apparatus.
  • 15. The system of claim 10, wherein said rotary apparatus includes an actuator apparatus to move a vacuum panel positioned in the bottom portion of each the filled and sealed containers from a first position to a second position, andwherein the first position of the vacuum panel is at or entirely above the standing portion of the filled and sealed container, and the second position of the vacuum panel is above the first position.
  • 16. The system of claim 15, further comprising an out-feed wheel, wherein the out-feed wheel is configured to receive the plurality of filled and sealed containers having vacuum panels in the second position.
  • 17. The system of claim 10, further comprising the plurality of filled and sealed plastic containers, each of the filled and sealed plastic containers including a sidewall having a substantially deformable portion and the bottom portion having a vacuum panel.
  • 18. The system of claim 10, wherein said first feed screw has a uniform pitch and said second feed screw has a uniform pitch.
  • 19. An apparatus comprising: first conveying means for conveying a plurality of filled and sealed plastic containers in a first direction, each of the filled and sealed plastic containers having a deformable portion in a deformed state and a bottom portion having a standing portion;second conveying means for conveying the plurality of filled and sealed plastic containers in the first direction; andthird conveying means for conveying the plurality of filled and sealed plastic containers in the first direction,wherein said first conveying means for conveying is configured to move so as to act against a first portion of each of the plurality of filled and sealed plastic containers to convey the plurality of filled and sealed plastic containers in the first direction,wherein said second conveying means for conveying is configured to move so as to act against a second portion of each of the plurality of filled and sealed plastic containers to convey the plurality of filled and sealed plastic containers in the first direction,wherein said third conveying means for conveying is configured to convey the plurality of filled and sealed plastic containers in the first direction by a third portion of the standing portion of each of the plurality of filled and sealed plastic containers,wherein the first, second, and third conveying means are configured to convey the plurality of filled and sealed plastic containers at the same time, andwherein the first, second, and third portions of each of the plurality of filled and sealed plastic containers are different from each of the respective other portions, with the first portion being at a position on each of the plurality of filled and sealed plastic containers higher than the second portion and aligned with a central longitudinal axis of each of the plurality of filled and sealed plastic containers, with the second portion being at a second side portion of the bottom portion of each of the plurality of filled and sealed plastic containers, and with the third portion being a first side portion of the standing portion of each of the plurality of filled and sealed plastic containers.
  • 20. The apparatus of claim 19, further comprising: first supporting means for supporting the plurality of filled and sealed plastic containers;second supporting means for supporting the plurality of filled and sealed plastic containers; andthird supporting means for supporting the plurality of filled and sealed plastic containers, said third supporting means for supporting being configured to be positioned at a portion of the plurality of filled and sealed plastic containers opposite to the second portion,wherein each of the plurality of filled and sealed plastic containers includes a deformable side portion and the bottom portion has a vacuum panel,wherein said first, second, and third conveying means for conveying are configured to convey the plurality of filled and sealed plastic containers simultaneously, andwherein the first, second, and third conveying means for conveying are configured to convey the plurality of filled and sealed plastic containers with vacuum panels being un-activated and positioned entirely above the standing portion.
  • 21. The apparatus of claim 19, wherein said first conveying means for conveying and said second conveying means for conveying further are for spacing ones of the plurality of filled and sealed plastic containers from adjacent ones of the plurality of filled and sealed plastic containers.
  • 22. The apparatus of claim 21, further comprising: fourth conveying means for conveying the plurality of filled and sealed plastic containers having been spaced in a second direction, different from the first direction, said fourth conveying means for conveying being configured based on the spacing of the filled and sealed plastic containers; andactivating means for activating a vacuum panel in each of the plurality of filled and sealed plastic containers.
  • 23. The apparatus of claim 19, wherein the first portion is at an upper end portion of the plurality of filled and sealed plastic containers.
  • 24. The apparatus of claim 19, wherein said first conveying means includes a first feed screw having a uniform pitch and said second conveying means includes a second feed screw having a uniform pitch.
US Referenced Citations (374)
Number Name Date Kind
1499239 Malmquist Jun 1924 A
D110624 Mekeel, Jr. Jul 1938 S
2124959 Vogel Jul 1938 A
2142257 Saeta Jan 1939 A
2378324 Ray et al. Jun 1945 A
2880902 Owsen Apr 1959 A
2960248 Kuhlman Nov 1960 A
2971671 Shakman Feb 1961 A
2982440 Harrision May 1961 A
3004650 Pettee Oct 1961 A
3043461 Glassco Jul 1962 A
3081002 Tauschinski et al. Mar 1963 A
3090478 Stanley May 1963 A
3142371 Rice et al. Jul 1964 A
3174655 Hurschman Mar 1965 A
3198861 Marvel Aug 1965 A
3201111 Afton Aug 1965 A
3301293 Santelli Jan 1967 A
3325031 Singier Jun 1967 A
3397724 Bolen et al. Aug 1968 A
3409167 Blanchard Nov 1968 A
3417893 Lieberman Dec 1968 A
3426939 Young Feb 1969 A
3441982 Hiroshi et al. May 1969 A
3468443 Marcus Sep 1969 A
3483908 Donovan Dec 1969 A
3485355 Stewart Dec 1969 A
3693828 Kneusel et al. Sep 1972 A
3704140 Petit et al. Nov 1972 A
3727783 Carmichael Apr 1973 A
3791508 Osborne et al. Feb 1974 A
3819789 Parker Jun 1974 A
3904069 Toukmanian Sep 1975 A
3918920 Barber Nov 1975 A
3935955 Das Feb 1976 A
3941237 MacGregor Mar 1976 A
3942673 Lyu et al. Mar 1976 A
3949033 Uhlig Apr 1976 A
3956441 Uhlig May 1976 A
4035455 Rosenkranz et al. Jul 1977 A
4036926 Chang Jul 1977 A
4037752 Dulmaine et al. Jul 1977 A
4117062 Uhlig Sep 1978 A
4123217 Fischer et al. Oct 1978 A
4125632 Vosti et al. Nov 1978 A
4134510 Chang Jan 1979 A
4158624 Ford et al. Jun 1979 A
4170622 Uhlig Oct 1979 A
4174782 Obsomer Nov 1979 A
4177239 Gittner et al. Dec 1979 A
4219137 Hutchens Aug 1980 A
4231483 Dechenne et al. Nov 1980 A
4247012 Alberghini Jan 1981 A
4301933 Yoshino et al. Nov 1981 A
4318489 Snyder et al. Mar 1982 A
4318882 Agrawal et al. Mar 1982 A
4338765 Ohmori et al. Jul 1982 A
4355728 Ota et al. Oct 1982 A
4377191 Yamaguchi Mar 1983 A
4378328 Prytulla et al. Mar 1983 A
4381061 Cerny et al. Apr 1983 A
D269158 Gaunt et al. May 1983 S
4386701 Galer Jun 1983 A
4436216 Chang Mar 1984 A
4444308 MacEwen Apr 1984 A
4450878 Takada et al. May 1984 A
4465199 Aoki Aug 1984 A
4495974 Pohorski Jan 1985 A
4497621 Kudert et al. Feb 1985 A
4497855 Agrawal et al. Feb 1985 A
4525401 Pocock et al. Jun 1985 A
4542029 Caner et al. Sep 1985 A
4547333 Takada Oct 1985 A
4585158 Wardlaw, III Apr 1986 A
4610366 Estes et al. Sep 1986 A
4628669 Herron et al. Dec 1986 A
4642968 McHenry et al. Feb 1987 A
4645078 Reyner Feb 1987 A
4667454 McHenry et al. May 1987 A
4684025 Copland et al. Aug 1987 A
4685273 Caner et al. Aug 1987 A
D292378 Brandt et al. Oct 1987 S
4701121 Jakobsen et al. Oct 1987 A
4723661 Hoppmann et al. Feb 1988 A
4724855 Jackson Feb 1988 A
4725464 Collette Feb 1988 A
4747507 Fitzgerald et al. May 1988 A
4749092 Sugiura et al. Jun 1988 A
4769206 Reymann et al. Sep 1988 A
4773458 Touzani Sep 1988 A
4785949 Krishnakumar et al. Nov 1988 A
4785950 Miller et al. Nov 1988 A
4807424 Robinson et al. Feb 1989 A
4813556 Lawrence Mar 1989 A
4836398 Leftault et al. Jun 1989 A
4840289 Fait et al. Jun 1989 A
4850493 Howard, Jr. Jul 1989 A
4850494 Howard, Jr. Jul 1989 A
4865206 Behm et al. Sep 1989 A
4867323 Powers Sep 1989 A
4880129 McHenry et al. Nov 1989 A
4887730 Touzani Dec 1989 A
4892205 Powers et al. Jan 1990 A
4894267 Bettle Jan 1990 A
4896205 Weber Jan 1990 A
4921147 Poirier May 1990 A
4927679 Beck May 1990 A
4962863 Wendling et al. Oct 1990 A
4967538 Leftault et al. Nov 1990 A
4978015 Walker Dec 1990 A
4997692 Yoshino Mar 1991 A
5004109 Bartley et al. Apr 1991 A
5005716 Eberle Apr 1991 A
5014868 Wittig et al. May 1991 A
5020691 Nye Jun 1991 A
5024340 Alberghini et al. Jun 1991 A
5033254 Zenger Jul 1991 A
5054632 Alberghini et al. Oct 1991 A
5060453 Alberghini et al. Oct 1991 A
5067622 Garver et al. Nov 1991 A
5090180 Sorensen Feb 1992 A
5092474 Leigner Mar 1992 A
5122327 Spina et al. Jun 1992 A
5133468 Brunson et al. Jul 1992 A
5141121 Brown et al. Aug 1992 A
5178290 Ota et al. Jan 1993 A
5199587 Ota et al. Apr 1993 A
5199588 Hayashi Apr 1993 A
5201438 Norwood Apr 1993 A
5217737 Gygax et al. Jun 1993 A
5234126 Jonas et al. Aug 1993 A
5244106 Takacs Sep 1993 A
5251424 Zenger et al. Oct 1993 A
5255889 Collette et al. Oct 1993 A
5261544 Weaver, Jr. Nov 1993 A
5279433 Krishnakumar et al. Jan 1994 A
5281387 Collette et al. Jan 1994 A
5310043 Alcorn May 1994 A
5333761 Davis et al. Aug 1994 A
5337909 Vailliencourt Aug 1994 A
5337924 Dickie Aug 1994 A
5341946 Vailliencourt et al. Aug 1994 A
5389332 Amari et al. Feb 1995 A
5392937 Prevot et al. Feb 1995 A
5405015 Bhatia et al. Apr 1995 A
5407086 Ota et al. Apr 1995 A
5411699 Collette et al. May 1995 A
5454481 Hsu Oct 1995 A
5472105 Krishnakumar et al. Dec 1995 A
5472181 Lowell Dec 1995 A
RE35140 Powers, Jr. Jan 1996 E
5484052 Pawloski et al. Jan 1996 A
D366831 Semersky et al. Feb 1996 S
5492245 Kalbanis Feb 1996 A
5503283 Semersky Apr 1996 A
5543107 Malik et al. Aug 1996 A
5593063 Claydon et al. Jan 1997 A
5598941 Semersky et al. Feb 1997 A
5632397 Fandeux et al. May 1997 A
5642826 Melrose Jul 1997 A
5672730 Cottman Sep 1997 A
5687874 Omori et al. Nov 1997 A
5690244 Darr Nov 1997 A
5697489 Deonarine et al. Dec 1997 A
5704504 Bueno Jan 1998 A
5713480 Petre et al. Feb 1998 A
5718030 Langmack et al. Feb 1998 A
5730314 Wiemann et al. Mar 1998 A
5730914 Ruppman, Sr. Mar 1998 A
5735420 Nakamaki et al. Apr 1998 A
5737827 Kuse et al. Apr 1998 A
5758802 Wallays Jun 1998 A
5762221 Tobias et al. Jun 1998 A
5780130 Hansen et al. Jul 1998 A
5785197 Slat Jul 1998 A
5819507 Kaneko et al. Oct 1998 A
5829614 Collette et al. Nov 1998 A
5860556 Robbins, III Jan 1999 A
5887739 Prevot et al. Mar 1999 A
5888598 Brewster et al. Mar 1999 A
5897090 Smith et al. Apr 1999 A
5906286 Matsuno et al. May 1999 A
5908128 Krishnakumar et al. Jun 1999 A
D413519 Eberle et al. Sep 1999 S
D415030 Searle et al. Oct 1999 S
5971184 Krishnakumar et al. Oct 1999 A
5976653 Collette et al. Nov 1999 A
5989661 Krishnakumar et al. Nov 1999 A
6016932 Gaydosh et al. Jan 2000 A
RE36639 Okhai Apr 2000 E
6045001 Seul Apr 2000 A
6051295 Schloss et al. Apr 2000 A
6063325 Nahill et al. May 2000 A
6065624 Steinke May 2000 A
6068110 Kumakiri et al. May 2000 A
6074596 Jacquet Jun 2000 A
6077554 Wiemann et al. Jun 2000 A
6090334 Matsuno et al. Jul 2000 A
6105815 Mazda Aug 2000 A
6113377 Clark Sep 2000 A
D433946 Rollend et al. Nov 2000 S
6176382 Bazlur Rashid Jan 2001 B1
D440877 Lichtman et al. Apr 2001 S
6209710 Mueller et al. Apr 2001 B1
6213325 Cheng et al. Apr 2001 B1
6217818 Collette et al. Apr 2001 B1
6230912 Rashid May 2001 B1
6248413 Barel et al. Jun 2001 B1
6253809 Paradies Jul 2001 B1
6273282 Ogg et al. Aug 2001 B1
6290094 Arnold et al. Sep 2001 B1
6298638 Bettle Oct 2001 B1
D450595 Ogg et al. Nov 2001 S
6354427 Pickel et al. Mar 2002 B1
6390316 Mooney May 2002 B1
6413466 Boyd et al. Jul 2002 B1
6439413 Prevot et al. Aug 2002 B1
6460714 Silvers et al. Oct 2002 B1
6467639 Mooney Oct 2002 B2
6485669 Boyd et al. Nov 2002 B1
6494333 Sasaki et al. Dec 2002 B2
6502369 Andison et al. Jan 2003 B1
6514451 Boyd et al. Feb 2003 B1
6585123 Pedmo et al. Jul 2003 B1
6585124 Boyd et al. Jul 2003 B2
6595380 Silvers Jul 2003 B2
6612451 Tobias et al. Sep 2003 B2
6635217 Britton Oct 2003 B1
D482976 Melrose Dec 2003 S
6662960 Hong et al. Dec 2003 B2
6676883 Hutchinson et al. Jan 2004 B2
D492201 Pritchett et al. Jun 2004 S
6749075 Bourque et al. Jun 2004 B2
6749780 Tobias Jun 2004 B2
6763968 Boyd et al. Jul 2004 B1
6763969 Melrose et al. Jul 2004 B1
6769561 Futral et al. Aug 2004 B2
6779673 Melrose et al. Aug 2004 B2
6796450 Prevot et al. Sep 2004 B2
6920992 Lane et al. Jul 2005 B2
6923334 Melrose et al. Aug 2005 B2
6929138 Melrose et al. Aug 2005 B2
6932230 Pedmo et al. Aug 2005 B2
6942116 Lisch et al. Sep 2005 B2
6974047 Kelley et al. Dec 2005 B2
6983858 Slat et al. Jan 2006 B2
7051073 Dutta May 2006 B1
7051889 Boukobza May 2006 B2
D522368 Darr et al. Jun 2006 S
7073675 Trude Jul 2006 B2
7077279 Melrose Jul 2006 B2
7080747 Lane et al. Jul 2006 B2
D531910 Melrose Nov 2006 S
7137520 Melrose Nov 2006 B1
7140505 Roubal et al. Nov 2006 B2
7150372 Lisch et al. Dec 2006 B2
D535884 Davis et al. Jan 2007 S
7159374 Abercrombie, III et al. Jan 2007 B2
D538168 Davis et al. Mar 2007 S
D547664 Davis et al. Jul 2007 S
7334695 Bysick et al. Feb 2008 B2
7350657 Eaton et al. Apr 2008 B2
D572599 Melrose Jul 2008 S
7416089 Kraft et al. Aug 2008 B2
D576041 Melrose et al. Sep 2008 S
7451886 Lisch et al. Nov 2008 B2
7543713 Trude et al. Jun 2009 B2
7552834 Tanaka et al. Jun 2009 B2
7574846 Sheets et al. Aug 2009 B2
7694842 Melrose Apr 2010 B2
7726106 Kelley et al. Jun 2010 B2
7735304 Kelley et al. Jun 2010 B2
7748551 Gatewood et al. Jul 2010 B2
D623952 Yourist et al. Sep 2010 S
7799264 Trude Sep 2010 B2
7882971 Kelley et al. Feb 2011 B2
7900425 Bysick et al. Mar 2011 B2
7926243 Kelley et al. Apr 2011 B2
D637495 Gill et al. May 2011 S
D637913 Schlies et al. May 2011 S
D641244 Bysick et al. Jul 2011 S
7980404 Trude et al. Jul 2011 B2
8011166 Sheets et al. Sep 2011 B2
8017065 Trude et al. Sep 2011 B2
D646966 Gill et al. Oct 2011 S
8028498 Melrose Oct 2011 B2
8075833 Kelley Dec 2011 B2
D653119 Hunter et al. Jan 2012 S
8096098 Kelley et al. Jan 2012 B2
D653550 Hunter Feb 2012 S
D653957 Yourist et al. Feb 2012 S
8162655 Trude et al. Apr 2012 B2
8171701 Kelley et al. May 2012 B2
8235704 Kelley Aug 2012 B2
8323555 Trude et al. Dec 2012 B2
20010035391 Young et al. Nov 2001 A1
20020063105 Darr et al. May 2002 A1
20020074336 Silvers Jun 2002 A1
20020096486 Lizuka et al. Jul 2002 A1
20020153343 Tobias et al. Oct 2002 A1
20020158038 Heisel et al. Oct 2002 A1
20030015491 Melrose et al. Jan 2003 A1
20030186006 Schmidt et al. Oct 2003 A1
20030196926 Tobias et al. Oct 2003 A1
20030205550 Prevot et al. Nov 2003 A1
20030217947 Ishikawa et al. Nov 2003 A1
20040000533 Kamineni et al. Jan 2004 A1
20040016716 Melrose et al. Jan 2004 A1
20040074864 Melrose et al. Apr 2004 A1
20040129669 Kelley et al. Jul 2004 A1
20040149677 Slat et al. Aug 2004 A1
20040173565 Semersky et al. Sep 2004 A1
20040211746 Trude Oct 2004 A1
20040232103 Lisch et al. Nov 2004 A1
20050035083 Pedmo et al. Feb 2005 A1
20050211662 Eaton et al. Sep 2005 A1
20050218108 Bangi et al. Oct 2005 A1
20060006133 Lisch et al. Jan 2006 A1
20060051541 Steele Mar 2006 A1
20060138074 Melrose Jun 2006 A1
20060151425 Kelley et al. Jul 2006 A1
20060231985 Kelley Oct 2006 A1
20060243698 Melrose Nov 2006 A1
20060255005 Melrose et al. Nov 2006 A1
20060261031 Melrose Nov 2006 A1
20070017892 Melrose Jan 2007 A1
20070045222 Denner et al. Mar 2007 A1
20070045312 Abercrombie, III et al. Mar 2007 A1
20070051073 Kelley et al. Mar 2007 A1
20070084821 Bysick et al. Apr 2007 A1
20070125742 Simpson, Jr. et al. Jun 2007 A1
20070125743 Pritchett, Jr. et al. Jun 2007 A1
20070131644 Melrose Jun 2007 A1
20070181403 Sheets et al. Aug 2007 A1
20070199915 Denner et al. Aug 2007 A1
20070199916 Denner et al. Aug 2007 A1
20070215571 Trude Sep 2007 A1
20070235905 Trude et al. Oct 2007 A1
20080047964 Denner et al. Feb 2008 A1
20080156847 Hawk et al. Jul 2008 A1
20080257856 Melrose et al. Oct 2008 A1
20090090728 Trude et al. Apr 2009 A1
20090091067 Trude et al. Apr 2009 A1
20090092720 Trude et al. Apr 2009 A1
20090120530 Kelley et al. May 2009 A1
20090134117 Mooney May 2009 A1
20090202766 Beuerle et al. Aug 2009 A1
20090293436 Miyazaki et al. Dec 2009 A1
20100116778 Melrose May 2010 A1
20100133228 Trude Jun 2010 A1
20100163513 Pedmo Jul 2010 A1
20100170199 Kelley et al. Jul 2010 A1
20100213204 Melrose Aug 2010 A1
20100237083 Trude et al. Sep 2010 A1
20100301058 Trude et al. Dec 2010 A1
20110049083 Scott et al. Mar 2011 A1
20110049084 Yourist et al. Mar 2011 A1
20110084046 Schlies et al. Apr 2011 A1
20110094618 Melrose Apr 2011 A1
20110108515 Gill et al. May 2011 A1
20110113731 Bysick et al. May 2011 A1
20110132865 Hunter et al. Jun 2011 A1
20110147392 Trude et al. Jun 2011 A1
20110210133 Melrose et al. Sep 2011 A1
20110266293 Kelley et al. Nov 2011 A1
20110284493 Yourist et al. Nov 2011 A1
20120104010 Kelley May 2012 A1
20120107541 Nahill et al. May 2012 A1
20120132611 Trude et al. May 2012 A1
20120152964 Kelley et al. Jun 2012 A1
20120240515 Kelley et al. Sep 2012 A1
20120266565 Trude et al. Oct 2012 A1
20120267381 Trude et al. Oct 2012 A1
20130000259 Trude et al. Jan 2013 A1
Foreign Referenced Citations (102)
Number Date Country
2002257159 Apr 2003 AU
2077717 Mar 1993 CA
1761753 Jan 1972 DE
P2102319.8 Aug 1972 DE
3215866 Nov 1983 DE
0 225 155 Jun 1987 EP
225 155 Jun 1987 EP
0 346 518 Dec 1989 EP
0 502 391 Sep 1992 EP
0 505054 Sep 1992 EP
0 521 642 Jan 1993 EP
0 551 788 Jul 1993 EP
0666222 Feb 1994 EP
0 739 703 Oct 1996 EP
0 609 348 Feb 1997 EP
0 916 406 May 1999 EP
0957030 Nov 1999 EP
1 063 076 Dec 2000 EP
1571499 Jun 1969 FR
2607109 May 1988 FR
781103 Aug 1957 GB
1113988 May 1968 GB
2050919 Jan 1981 GB
2372977 Sep 2002 GB
S40-15909 Jun 1940 JP
48-31050 Sep 1973 JP
49-028628 Jul 1974 JP
54-72181 Jun 1979 JP
S54-70185 Jun 1979 JP
35656830 May 1981 JP
S56-62911 May 1981 JP
56-72730 Jun 1981 JP
S57-17730 Jan 1982 JP
57-37827 Feb 1982 JP
57-126310 Aug 1982 JP
57-210829 Dec 1982 JP
58-055005 Apr 1983 JP
61-192539 Aug 1986 JP
63-189224 Aug 1988 JP
64-004662 Feb 1989 JP
03-43342 Feb 1991 JP
03-076625 Apr 1991 JP
4-10012 Jan 1992 JP
05-193694 Aug 1993 JP
53-10239 Nov 1993 JP
H05-81009 Nov 1993 JP
06-270235 Sep 1994 JP
6-336238 Dec 1994 JP
07-300121 Nov 1995 JP
H08-048322 Feb 1996 JP
08-244747 Sep 1996 JP
8-253220 Oct 1996 JP
8-282633 Oct 1996 JP
09-039934 Feb 1997 JP
9-110045 Apr 1997 JP
10-167226 Jun 1998 JP
10-181734 Jul 1998 JP
10-230919 Sep 1998 JP
3056271 Nov 1998 JP
11-218537 Aug 1999 JP
2000-229615 Aug 2000 JP
2002-127237 May 2002 JP
2002-160717 Jun 2002 JP
2002-326618 Nov 2002 JP
2003-095238 Apr 2003 JP
2004-026307 Jan 2004 JP
2006-501109 Jan 2006 JP
2007-216981 Aug 2007 JP
2008-189721 Aug 2008 JP
2009-001639 Jan 2009 JP
240448 Jun 1995 NZ
296014 Oct 1998 NZ
335565 Oct 1999 NZ
506684 Sep 2001 NZ
512423 Sep 2001 NZ
521694 Oct 2003 NZ
WO 9309031 May 1993 WO
WO 9312975 Jul 1993 WO
WO 9405555 Mar 1994 WO
WO 9406617 Mar 1994 WO
WO 9703885 Feb 1997 WO
WO 9714617 Apr 1997 WO
WO 9734808 Sep 1997 WO
WO 9921770 May 1999 WO
WO 0038902 Jul 2000 WO
WO 0051895 Sep 2000 WO
WO 0112531 Feb 2001 WO
WO 0140081 Jun 2001 WO
WO 0174689 Oct 2001 WO
WO 0202418 Jan 2002 WO
WO 0218213 Mar 2002 WO
WO 02085755 Oct 2002 WO
WO 2004028910 Apr 2004 WO
WO 2004106176 Sep 2004 WO
WO 2004106175 Dec 2004 WO
WO 2005012091 Feb 2005 WO
WO 2005025999 Mar 2005 WO
WO 2005087628 Sep 2005 WO
WO 2006113428 Oct 2006 WO
WO 2007047574 Apr 2007 WO
WO 2007127337 Nov 2007 WO
WO 2010058098 May 2010 WO
Non-Patent Literature Citations (73)
Entry
International Application No. PCT/US2009/051023—PCT International Search Report and Written Opinion of the International Searching Authority mailed Sep. 8, 2009.
Chanda, M. & Roy, Salil K., Plastics Technology Handbook, 2007, CRC Press, pp. 2-34-2-37.
ISR and Written Opinion for PCT/US2010/020045 dated Mar. 15, 2010.
“Application and Development of PET Plastic Bottle,” Publication of Tsinghad Tongfang Optical Disc Co. Ltd., Issue 4, 2000, p. 41. (No English language translation available).
U.S. Appl. No. 60/220,326, filed Jul. 24, 2000.
International Search Report for PCT/US2005/008374 dated Aug. 2, 2005.
IPRP (including Written Opinion) for PCT/US2005/008374 dated Sep. 13, 2006.
Final Office Action for U.S. Appl. No. 10/558,284 dated Sep. 9, 2008.
Office Action for U.S. Appl. No. 10/558,284 dated Jan. 25, 2008.
Office Action for U.S. Appl. No. 10/566,294 dated Oct. 27, 2008.
Final Office Action for U.S. Appl. No. 10/566,294 dated Feb. 13, 2009.
Office Action for U.S. Appl. No. 10/851,083 dated Nov. 11, 2008.
Final Office Action for U.S. Appl. No. 10/851,083 dated Jun. 12, 2008.
Office Action for U.S. Appl. No. 10/851,083 dated Sep. 6, 2007.
International Search Report for PCT/US2004/024581 dated Jul. 25, 2005.
IPRP (including Written Opinion) for PCT/US2004/024581 dated Jan. 30, 2006.
International Search Report for PCT/US2004/016405 dated Feb. 15, 2005.
IPRP (including Written Opinion) for PCT/US2004/016405 dated Nov. 25, 2005.
Office Action for Application No. EP 06 750 165.0-2307 dated Nov. 24, 2008.
International Search Report for PCT/US2006/040361 dated Feb. 26, 2007.
IPRP (including Written Opinion) for PCT/US2006/040361 dated Apr. 16, 2008.
International Search Report for PCT/US2007/006318 dated Sep. 11, 2007.
IPRP (including Written Opinion) PCT/US2007/006318 dated Sep. 16, 2008.
IPRP (including Written Opinion) PCT/US2006/014055 dated Oct. 16, 2007.
Office Action for Application No. 12/349,268 dated Aug. 12, 2010.
Notice of Allowance for U.S. Appl. No. 12/349,268 dated Dec. 16, 2010.
Office Action for U.S. Appl. No. 12/651,461 dated May 3, 2011.
Official Notification for counterpart Japanese Application No. 2006-522084 dated May 19, 2009.
Examination Report for counterpart New Zealand Application No. 545528 dated Jul. 1, 2008.
Examination Report for counterpart New Zealand Application No. 569422 dated Jul. 1, 2008.
Examination Report for New Zealand Application No. 550336 dated Mar. 26, 2009.
Examination Report for counterpart New Zealand Application No. 545528 dated Sep. 20, 2007.
Examination Report for counterpart New Zealand Application No. 569422 dated Sep. 29, 2009.
Office Action for Chinese Application No. 2006800380748 dated Jul. 10, 2009.
Examiner's Report for Australian Application No. 2006236674 dated Sep. 18, 2009.
Examiner's Report for Australian Application No. 2006236674 dated Nov. 6, 2009.
Office Action for Chinese Application No. 200680012360.7 dated Jul. 10, 2009.
Examination Report for New Zealand Application No. 563134 dated Aug. 3, 2009.
Office Action for European Application No. 07752979.0-2307 dated Aug. 21, 2009.
International Search Report for PCT/US2006/014055 dated Dec. 7, 2006.
Office Action dated Feb. 3, 2010 for Canadian Application No. 2,604,231.
Communication dated Mar. 9, 2010 for European Application No. 09 173 607.4 enclosing European search report and European search opinion dated Feb. 25, 2010.
European Search Report for EPA 10185697.9 dated Mar. 21, 2011.
International Search report dated Apr. 21, 2010 from corresponding PCT/US2009/066191 filed Dec. 1, 2009.
International Preliminary Report on Patentability and Written Opinion dated Jun. 14, 2011 for PCT/US2009/066191. 7 pages.
Office Action, Japanese Application No. 2008-506738 dated Aug. 23, 2011.
Extended European Search Report for EPA 10185697.9 dated Jul. 6, 2011.
Patent Abstracts of Japan, vol. 012, No. 464; Dec. 6, 1988.
Patent Abstracts of Japan, vol. 2002, No. 09, Sep. 4, 2002.
Patent Abstracts of Japan, vol. 015, No. 239, Jun. 20, 1991.
Examination Report dated Jul. 25, 2012, in New Zealand Patent Application No. 593486.
Taiwanese Office Action dated Jun. 10, 2012, Application No. 095113450.
Japanese First Notice of Reasons for Rejection dated Aug. 23, 2011, in Application No. 2008-506738.
Japanese Second Notice of Reasons for Rejection dated Jun. 11, 2012, in Application No. 2008-506738.
Office Action dated Aug. 14, 2012, in Japanese Patent Application No. 2008-535769.
Examiner's Report dated Feb. 15, 2011 in Australian Application No. AU200630483.
Office Action dated Oct. 31, 2011, in Australian Patent Application No. 2011203263.
Office Action dated Jul. 19, 2011, in Japanese Patent Application No. 2008-535769.
Office Action dated Dec. 6, 2011, in Japanese Patent Application No. 2008-535769.
International Search Report and Written Opinion for PCT/US2012/050251 dated Nov. 16, 2012.
International Search Report and Written Opinion for PCT/US2012/050256 dated Dec. 6, 2012.
Requisition dated Feb. 3, 2010 for Canadian Application No. 2,604,231.
Requisition dated Jan. 9, 2013 for Canadian Application No. 2,559,319.
Office Action dated Feb. 5, 2013, in Mexican Patent Application No. MX/a/2008/004703.
Office Action dated Jul. 26, 2010 for Canadian Application No. 2,527,001.
Australian Office Action dated Mar. 3, 2011 in Application No. 2010246525.
Australian Office Action dated Nov. 8, 2011, in Application No. 2011205106.
Examiner Report dated May 26, 2010, in Australian Application No. 2004261654.
Examiner Report dated Jul. 23, 2010, in Australian Application No. 2004261654.
Requisition dated May 25, 2010 for Canadian Application No. 2,534,266.
Communication dated Jun. 16, 2006, for European Application No. 04779595.0.
Final Official Notification dated Mar. 23, 2010 for Japanese Application No. 2006-522084.
International Search Report and Written Opinion dated Dec. 18, 2012, in PCT/US12/056330.
Related Publications (1)
Number Date Country
20100018838 A1 Jan 2010 US