Modern integrated circuits (ICs) house vast amounts of computing and other processing capabilities. Internal circuitry of such ICs may operate at different voltage levels. Such voltages are provided, at least initially from off-chip sources. To this end, integrated circuits include multiple power and ground connections, often referred to as pins or pads. Signaling requirements of an integrated circuit also consume large amounts of pins/pads. However, inclusion of additional pins/pads to accommodate a variety of specialized purposes increases chip real estate and power consumption costs, and raises routing and other complexities. As a result, most integrated circuits are constrained in the use of pins/pads, particularly as shrinking die and IC size compels consumption of fewer pin/pads.
In one aspect, an integrated circuit includes: a voltage regulator to receive a first voltage and regulate the first voltage to output a regulated voltage; a first logic circuit to operate using the regulated voltage; and a regulator control circuit to receive a control signal during a boot of the integrated circuit via a general purpose input/output (GPIO) pad of the integrated circuit and control the voltage regulator to operate in one of an enabled mode and a bypass mode based at least in part on the control signal.
The integrated circuit may include: a first power pad to receive a first supply voltage, the first power pad coupled to the regulator control circuit to provide the first supply voltage to the regulator control circuit; and a second power pad to receive a second supply voltage, the second power pad coupled to the voltage regulator to provide the second supply voltage to the voltage regulator. The integrated circuit may further include a bypass circuit coupled between the second power pad and the first logic circuit. In the bypass mode, the second power pad is to receive a third supply voltage, the third supply voltage less than the second supply voltage, and the bypass circuit is to provide the third supply voltage to the first logic circuit. In the enabled mode, the second power pad is to receive the second supply voltage and provide the second supply voltage to the voltage regulator.
The regulator control circuit may be configured to send at least one signal to the bypass circuit to control the bypass circuit. The regulator control circuit may further be configured to register a state of the control signal in response to a release of a reset signal. When the state of the control signal is active, the regulator control circuit may control the voltage regulator to operate in the bypass mode. In an example, the GPIO pad is an overloaded pad to receive the control signal during the boot of the integrated circuit and to receive at least one other signal during normal operation of the integrated circuit. The regulator control circuit may control the voltage regulator to operate in the bypass mode during a debug operation on the integrated circuit, and otherwise to control the voltage regulator to operate in the enabled mode.
In another aspect, a method includes: in response to a release of a reset signal provided to an integrated circuit via a reset pin, registering a state of a second signal provided to the integrated circuit via a second pin, where after the reset signal release, the second pin is useable for another function. The method further includes, in response to the registered state being a first state, controlling a voltage regulator of the integrated circuit for a bypass mode in which a first external supply voltage provided to the integrated circuit via a third pin is to power at least one logic circuit of the integrated circuit.
In an example, the method includes overloading the second pin with another signal for the another function after the reset signal release. The method may further include executing a scan operation on the integrated circuit using the first external supply voltage while the voltage regulator is controlled for the bypass mode. In response to the registered state being a second state, the method may include controlling the voltage regulator for an enabled mode in which the voltage regulator regulates the first external supply voltage to provide a regulated voltage to the at least one logic circuit.
In an example, the method further includes receiving a general purpose input/output signal via the second pin after the reset signal release. The method also may include receiving the state of the second signal in a regulator control circuit of the integrated circuit, the regulator control circuit powered by the first external supply voltage provided via the third pin. The state of the second signal may be received in a regulator control circuit of the integrated circuit, the regulator control circuit powered by another external supply voltage provided to the integrated circuit via a fourth pin of the integrated circuit.
In another aspect, an apparatus includes: a first pin to receive a reset signal to indicate a reset of the apparatus; a second pin to receive a control signal during a boot of the apparatus, and after a release of the reset signal to receive another signal; a voltage regulator to receive a first supply voltage and give a regulated output voltage; a control circuit to receive the control signal via the second pin and the reset signal via the first pin during the boot of the apparatus, and control the voltage regulator to operate in one of an enabled mode and a bypass mode based on a state of the control signal at the release of the reset signal; and a first logic circuit to operate using the first supply voltage when the voltage regulator is to operate in the bypass mode and using the regulated voltage when the voltage regulator is to operate in the enabled mode.
The apparatus may further include: a first power pad to receive the first supply voltage, the first power pad coupled to the voltage regulator to provide the first supply voltage to the voltage regulator; and a second power pad to receive a second supply voltage, the second power pad coupled to the control circuit to provide the second supply voltage to the control circuit. Still further, the apparatus may include a bypass circuit coupled between the first power pad and the first logic circuit, where in the enabled mode the bypass circuit is disabled and the first power pad is to receive a third supply voltage, the third supply voltage greater than the first supply voltage, and in the bypass mode the bypass circuit to provide the first supply voltage to the first logic circuit.
In various embodiments, an integrated circuit having at least one on-chip voltage regulator may be flexibly controlled to cause the voltage regulator to operate in one of an enabled mode in which the voltage regulator is to provide a regulated voltage to one or more logic circuits of the integrated circuit and a bypass mode in which another voltage source is provided to such one or more logic circuits. The control mechanism for mode selection may be by way of a signal received in the integrated circuit via a given pin of the integrated circuit. More specifically, this signal provided to the integrated circuit during a boot operation of the integrated circuit may be used to control the voltage regulator mode (namely enabled or bypass). Thereafter, the pin on which this signal is provided may be used for other purposes. In this way, the need for a dedicated pin to provide a control signal for voltage regulator control can be avoided, reducing pin count and complexity.
While this flexible control of voltage regulator operating mode may occur during normal operation of the integrated circuit within a computing device or other apparatus, understand that typical use cases may be for use during debug and test operations on the integrated circuit. As an example, an integrated circuit may be coupled to a tester or other debug test system for purposes of debug operation. In such debug operation, the debugger may send the signal to control operation mode of the voltage regulator based on a type of testing to be performed.
With embodiments herein, an integrated circuit can be designed that includes fewer numbers of pins, while still providing for great flexibility for debug and other test cases in a manner that may remain hidden to end users. That is, one or more pins may be used to control, e.g., voltage regulator operation mode, during debug or test operations on the integrated circuit. These same one or more pins may be used during normal operation of the integrated circuit for a wide variety of purposes, such as generic signaling, ground or other reference voltage provision and so forth.
Furthermore, while a representative use case described herein is in the context of voltage regulator mode control, embodiments are not so limited. That is, in other examples a control signal received during boot up of the integrated circuit can be used to control other components of the integrated circuit, leveraging one or more pins that may be used for other purposes during normal operation. As an example, control signaling received on one or more pins during integrated circuit boot up may be used to control additional components, such as an on-chip DC-DC voltage converter or so forth. In turn, the same one or more pins may be adapted for any end user-desired use during normal integrated circuit operation.
Referring now to
In the high level shown in
In turn, second logic circuit 120 may be a low voltage logic circuit that includes circuitry to be powered at a lower second voltage level, e.g., at 1.2 volts. As an example, such circuitry may include digital circuitry to perform processing operations, digital control operations and so forth. Such digital circuitry may include transistors and other devices that operate using a lower voltage, namely at this second voltage level.
As further illustrated, integrated circuit 100 also includes an on-chip voltage regulator 130. In embodiments, regulator 130 may be a low dropout (LDO) regulator controlled to operate in one of an enabled mode and a bypass mode. More specifically, at least one switch S1 may be adapted along a bypass path 135 that is coupled in parallel with an input to voltage regulator 130 and an output of voltage regulator 130. As such, when voltage regulator 130 is to operate in the enabled mode, switch S1 is opened, such that an incoming voltage provided to an input to voltage regulator 130 is processed in voltage regulator 130 and output as a regulated voltage, e.g., at a lower voltage, to second logic circuit 120.
Instead, when voltage regulator 130 is to operate in the bypass mode, switch S1 is closed, such that the input voltage is output directly via bypass path 135 to second logic circuit 120. As an example, bypass mode may be used to enable integrated circuit 100 to boot directly from an external supply voltage. This mode may occur for enabling functional testing of integrated circuit 100 even where voltage regulator 130 may have suffered a failure condition. Similarly, this bypass mode may be used to execute a scan operation using an external supply voltage, which may simplify regulator design.
As further illustrated in
More specifically as illustrated in
To effect control of voltage regulator 130, first logic circuit 110 includes a regulator control circuit 115. In embodiments herein, regulator control circuit 115 is configured to receive the reset signal via reset pad 150 and the control signal via GPIO pad 152. In an embodiment, the reset signal may be used as a clock signal and the control signal may be used as a select line to control the determination of voltage regulator operation mode. Based on the state of these two signals, regulator control circuit 115 may output one or more corresponding control signals, namely a Regulator_Enable signal and a Bypass_Enable signal, to control operation of voltage regulator 130. Understand while shown at this high level in the embodiment of
Referring now to
With this implementation, when regulator 130 is enabled, power pad 159 is not powered from outside the chip and the regulated output voltage of regulator 130 powers logic circuit 120. During a bypass mode, regulator 130 is disabled and power pad 159 is powered from outside the chip to supply a low voltage to logic circuit 120.
Referring now to
As illustrated, method 200 begins by receiving a reset signal in a first logic circuit via a first pin (block 210). In one example, this reset signal may be sent by a host processor of a computing system including the integrated circuit, e.g., on boot or other reset of the system. This reset signal may be of an inactive or low state when the system is undergoing reset. Although it is possible for this reset signal to be communicated on system reset during normal system operation, in many example use cases, the voltage regulator control of
Regardless of the source of the reset signal, still with reference to
Still with reference to
More specifically, based on this registering or reading of the signal, it is determined whether this signal state is active or logic high (diamond 240). If not, control passes to block 250 where the voltage regulator may be controlled to be in an enabled mode. To this end, the regulator control circuit may send one or more control signals (e.g., an active regulator enable signal) to cause the voltage regulator to be enabled for normal operation. As such, the voltage regulator receives an input voltage, regulates it to a regulated voltage level, e.g., at a lower voltage level, and outputs the regulated voltage (which may be used to power one or more logic circuits of the integrated circuit). Instead, if the signal state is active or logic high, control passes to block 260 where the voltage regulator may be controlled to be in a bypass mode. To this end, the regulator control circuit may send one or more control signals (e.g., an active bypass enable signal) to cause the voltage regulator to be controlled for bypass operation. As such, an incoming supply voltage is directly provided to power one or more logic circuits of the integrated circuit. Understand while shown at this high level in the embodiment of
Referring now to
Note that with an embodiment herein, after the control update occurs continued operation of the integrated circuit is in the configured mode, here the enabled mode. As a result, after a given time duration following the control update, the GPIO pad/pin on which the control signal was received may be used for any other desired purpose. More specifically as shown in
Referring now to
Note that the above embodiments may provide a restriction to an end user, such that the overloaded pad should not be set to an active state on reset release when the supply voltage provided to the voltage regulator is at a high voltage level (e.g., 3 volts). If this situation were to occur, the voltage regulator would be bypassed and this high supply voltage would be applied directly to logic circuitry, such as transistors and other devices that may potentially be damaged by this high supply voltage.
Thus in other embodiments it is possible to mask the use of a GPIO pin (or other suitable pin such as GPI pin), for purposes of providing a control signal during boot up. Specifically, this pin may be identified in a data sheet and other documentation to customers and end users as a ground pin. As such, no user would provide a high voltage to that pin, avoiding the potential for damage as per the situation described above. With this documentation indication of a pin as a ground pin, end users may maintain this pin grounded outside the integrated circuit, such that an undesired high logic value on this pin is not received. Note that in such embodiments, even though this pin is identified in customer-facing documentation as a ground pin, internal to the integrated circuit, the pin does not connect with a chip ground.
Referring now to
Referring now to
As further illustrated, IC 600 further includes power circuitry 640. Such power circuits may include one or more voltage regulators as described herein. As illustrated, at least one power pad 642 may provide a voltage to power circuitry 640, including as an input to a voltage regulator, which may have a bypass circuit coupled thereto, to enable control of the voltage regulator to operate in an enabled mode or a bypass mode, depending upon the state of signaling via pads 626 and 628 during boot, as described herein.
As further illustrated in
With embodiments as described herein, special capabilities for controlling a voltage regulator or other component of an integrated circuit may be provided with reduced pin counts. As described above, a GPIO pin, ground pin or so forth may be used to provide control signaling during boot operation such as may be used during debugging or testing. Note however that this special control signaling may remain transparent or not visible to at least certain customers and/or end users. That is, a data sheet for the integrated circuit may not identify this special control functionality. Instead, the pads/pins on which this control signaling occurs can simply be identified as a pin intended for a given function in end usage cases, e.g., as a GPIO pin, ground pin, GPI pin, reference pin, or so forth.
Embodiments thus enable reduction in pin counts, including a reduction in an additional power pin that would otherwise be required to provide a lower external supply voltage to certain logic circuitry of the integrated circuit. As such, embodiments enable two different manners of booting up an integrated circuit, namely using an on-chip voltage regulator in an enabled mode or using an external supply voltage when the voltage regulator is controlled to operate in a bypass mode.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Number | Name | Date | Kind |
---|---|---|---|
6058061 | Ooishi | May 2000 | A |
6795366 | Lee | Sep 2004 | B2 |
7181631 | Volk | Feb 2007 | B2 |
7265605 | Vasudevan | Sep 2007 | B1 |
8629713 | Pietri | Jan 2014 | B2 |
9323272 | Rana | Apr 2016 | B2 |
20070069807 | Ho | Mar 2007 | A1 |
20100219687 | Oh | Sep 2010 | A1 |
20170063229 | Powell | Mar 2017 | A1 |
20170093399 | Atkinson et al. | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20190339729 A1 | Nov 2019 | US |