The technical field generally relates to power generation systems and more specifically relates to monitoring of fluid passages.
Gas turbines are utilized globally for power generation and process applications. These gas turbines primarily move large amounts of high pressure air throughout the gas turbine and overboard through discharge piping into the exhaust plenum for start bleed and into the hot gas path for air cooling. Numerous valves are required to shutoff and control the flow through theses pipes. The valves and pipes commonly leak air overboard that cause performance inefficiencies such as higher fuel consumption. Flags on a stick or heat guns are currently used to detect air leaks.
Methods as described above generally are not able to predict and prevent significant turbine air leaks and subsequent damage. Furthermore, due to inherent time delays associated with analyzing faults, determining failure causes, and identifying corrective action steps, use of present methods often results in undesirable lengths of repair time for critical turbine components.
Disclosed herein are methods, apparatuses, and systems for monitoring fluid passages. In an embodiment, a system may comprise a thermographic camera, a controller that includes a processor and memory. The thermographic camera may be directed toward a region including at least one fluid passage, wherein the thermographic camera is configured to output a signal indicative of a thermographic image of the region. The controller may be communicatively coupled to the thermographic camera. The memory of the controller may be communicatively coupled with the processor, wherein the memory may have stored thereon executable instructions that when executed by the processor cause the processor to effectuate operations comprising: analyzing the thermographic image; and determining that at least a portion of the thermographic image is indicative of a degraded portion of a fluid passage.
In an embodiment, a device may comprise a processor and a memory. The memory of the device may be communicatively coupled with the processor, wherein the memory may have stored thereon executable instructions that when executed by the processor cause the processor to effectuate operations including receiving a thermographic image of a region comprising a fluid passage and determining that the thermographic image comprises an image pattern indicative of a degraded portion of the fluid passage.
In an embodiment, a method may comprise receiving a thermographic image of a region comprising a fluid passage; determining that the thermographic image comprises an image pattern indicative of a degraded portion of the fluid passage; and responsive to determining that the thermographic image comprises an image pattern indicative of a degraded portion of the fluid passage, generating an alert message.
This Brief Description of the Invention is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Brief Description of the Invention is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to limitations that solve any or all disadvantages noted in any part of this disclosure.
A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
Embodiments of the present disclosure may provide systems, devices, and methods for detecting a leak within a fluid passage or anticipating a degraded portion of the fluid passage that may lead to a leak (e.g., a significantly weakened fluid passage). For example, certain embodiments may include a thermographic camera directed toward a region including at least one fluid passage. The thermographic camera may be configured to output a signal indicative of a thermographic image of the region to a controller communicatively coupled with the thermographic camera. The controller may be configured to detect a leak or anticipate a leak within the at least one fluid passage based on the signal. For example, the controller may analyze a thermographic image of the region which may include image pattern recognition analysis to determine whether the thermographic image includes an area indicative of a fluid leak or anticipated fluid leak. The controller may also compare a rate of temperature change in a particular area to a threshold value indicative of a fluid leak or anticipated fluid leak. A crack or significantly degraded area in a fluid passage may have an abnormal image pattern as well as an abnormal temperature. For example, a fluid passage may have an abnormally high temperature or abnormal thermographic image pattern near a crack in comparison with surrounding portions of the fluid passage or other components.
A controller may be coupled to a user interface configured to display a thermographic image of fluid passages or other gas turbine equipment. Numerical temperatures, an indicator of a leak location, or an indicator of a degraded section of a fluid passage may be overlaid on the thermographic image. In an embodiment, an indicator of the location of the alarm condition (e.g., leak/crack/degradation) may be placed on a common camera image that may have a similar perspective view as the thermographic image of a region. In certain embodiments, the controller may be configured to activate an audible and/or visual alarm after detection of an actual or anticipated leak in order to alert an operator to the condition. In further embodiments, the controller may be configured to automatically terminate fluid flow through the at least one fluid passage upon detection of an actual leak or anticipated leak. Flow through the fluid passage may be terminated prior to significant damage to the fluid passage that would cause significant fluid leakage, significant loss in efficiency, or damage to other gas turbine components.
A thermographic camera 206 (also known as an infrared camera) is a device that forms an image using infrared radiation, similar to the way that a common camera that forms an image using visible light. A thermographic camera may convert the thermal radiance emitted by an object/body into a still image. Thermographic cameras may also produce standard video signal (e.g., PAL at 25 frames per second). Generally speaking, the higher an object's temperature, the more infrared radiation is emitted as black-body radiation. A thermographic may work even in total darkness because ambient light levels are of minimal affect in the capturing the thermographic image. When used for temperature measurement, the brightest (warmest) parts of the image are customarily colored white, intermediate temperatures reds and yellows, and the dimmest (coolest) parts blue. A scale may be used to relate colors to temperatures. Since the figures herein are black and white, for illustration purposes patterns that are normally shown in color in figures herein are displayed using patterns that may be representative of color.
At 515, an alert may be generated. The alert may be sent to an operator via a user interface. In an embodiment, the alert may be sent to another portion of the plant control system to automatically alter the operation of the power generation system. For example, it may be determined that the degraded fluid passage (which may be a leak or an anticipated leak), may have a longer life if the gas turbine operated in a different manner (e.g., using 4 instead of 5 combustors). A change in the operation of the power generation system, may avert an inconvenient total power generation system shutdown, and allow the operator to setup a convenient time to perform repairs on the degraded fluid passage.
In system 600, thermographic camera 610 may be communicatively coupled to a controller 611. Controller 611 may be configured to analyze a thermographic image from region 612 and detect a degraded fluid passage which may be leaking. Controller 611 may also be able to determine the degree of degradation of a fluid passage in region 612, e.g., currently leaking, anticipated to leak in the near future, or at an acceptable level. Controller 611 may be configured to recognize image patterns indicative of a degraded fluid passage, wherein a thermographic image at time T1 may be compared to a baseline thermographic image. Controller 611 may be communicatively connected with other subsystems within the power generation system 600, such as a gas turbine control 618 and user interface subsystem 616, among other subsystems. Controller 611 may receive operation data from gas turbine subsystem 618 in order to determine whether a fluid passage image for region 612 is within acceptable temperature or image pattern thresholds for running at a particular operation level (e.g., using 4 instead of 5 combustors).
For example, if a crack develops within a fluid passage conveying heated exhaust gas from gas turbine 10 to and HRSG (not shown), the radiation pattern of the area surrounding the fluid passage may increase due to the leaking gas. Thermographic camera 610 may transmit a signal indicative of a thermographic image. The thermographic image may comprise a pattern of colors and corresponding temperatures. The controller 611 may receive the signal and identify the fluid leak based on the image pattern which may be indicative of an increase or another abnormal change in temperature. Before an alert is generated, the abnormal change in temperature may be based on a consistent change in temperature (or image pattern) over a threshold period of time. Controller 611 may manipulate the thermographic image and place an indicator in the image on the probable source of the fluid leak. In an embodiment, controller 611 may place an indicator on a common camera image similar to the perspective of the thermographic image of region 612. A “common camera” takes pictures in light of the visible spectrum. As discussed herein, leaks may be quickly detected, and appropriate corrective action may be taken with minimal downtime or loss of fuel as compared to other leak detection systems. In certain embodiments, the controller 611 may be communicatively coupled to a power generation system and configured to automatically shut down fluid or otherwise alter flow to a leaking or significantly degraded fluid passage.
User interface 616 may be communicatively coupled to controller 611. User interface 616 may include a graphical display configured to display a thermographic image with an overlaid coordinate plane. In an embodiment, controller 611 may monitor temperature and thermographic image patterns for each coordinate within the coordinate plane. An operator may be able to select one or more coordinates and display the temperature of the one or more coordinates as a function of time. Controller 611 may be configured to more closely monitor the image patter or temperature of a coordinate on a thermographic image and alert an operator when temperature or image pattern differences reach a threshold level. In this manner, an operator may monitor the temperature to determine whether a fluid leak is present, determine whether contaminates may be in the fluid, or determine whether there are other fluid passage abnormalities.
The thermographic image detection system 600 disclosed herein may be used to pinpoint the source of a leak on a thermographic image. It should be appreciated that the present embodiments may be employed to detect leaks within fluid passages such as valves, seals, connectors, joints, or other passages configured to convey a fluid. The present thermographic image detection system 600 may be utilized to detect fluid leaks from components of other systems, such as processing plants, oil refineries or combustion engines, for example.
Without in any way limiting the scope, interpretation, or application of the claims appearing herein, a technical effect of one or more of the example embodiments disclosed herein is to provide a thermographic image detection system that allows for continuous monitoring of fluid passages for leak detection and proactive monitoring for significant fluid passage degradation. An operator may be alerted of leaks or degradation and fluid passages may be automatically closed in response to detected leaks or fluid passage degradation.
The computer 720 may further include a hard disk drive 727 for reading from and writing to a hard disk (not shown), a magnetic disk drive 728 for reading from or writing to a removable magnetic disk 729, and an optical disk drive 730 for reading from or writing to a removable optical disk 731 such as a CD-ROM or other optical media. The hard disk drive 727, magnetic disk drive 728, and optical disk drive 730 are connected to the system bus 723 by a hard disk drive interface 732, a magnetic disk drive interface 733, and an optical drive interface 734, respectively. The drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules and other data for the computer 720. As described herein, computer-readable media is an article of manufacture and thus not a transient signal.
Although the exemplary environment described herein employs a hard disk, a removable magnetic disk 729, and a removable optical disk 731, it should be appreciated that other types of computer readable media which can store data that is accessible by a computer may also be used in the exemplary operating environment. Such other types of media include, but are not limited to, a magnetic cassette, a flash memory card, a digital video or versatile disk, a Bernoulli cartridge, a random access memory (RAM), a read-only memory (ROM), and the like.
A number of program modules may be stored on the hard disk, magnetic disk 729, optical disk 731, ROM 724 or RAM 725, including an operating system 735, one or more application programs 736, other program modules 737 and program data 738. A user may enter commands and information into the computer 720 through input devices such as a keyboard 740 and pointing device 742. Other input devices (not shown) may include a microphone, joystick, game pad, satellite disk, scanner, or the like. These and other input devices are often connected to the processing unit 721 through a serial port interface 746 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port, or universal serial bus (USB). A monitor 747 or other type of display device is also connected to the system bus 723 via an interface, such as a video adapter 748. In addition to the monitor 747, a computer may include other peripheral output devices (not shown), such as speakers and printers. The exemplary system of
The computer 720 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 749. The remote computer 749 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and may include many or all of the elements described above relative to the computer 720, although only a memory storage device 750 has been illustrated in
When used in a LAN networking environment, the computer 720 is connected to the LAN 751 through a network interface or adapter 753. When used in a WAN networking environment, the computer 720 may include a modem 754 or other means for establishing communications over the wide area network 752, such as the Internet. The modem 754, which may be internal or external, is connected to the system bus 723 via the serial port interface 746. In a networked environment, program modules depicted relative to the computer 720, or portions thereof, may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
Computer 720 may include a variety of computer readable storage media. Computer readable storage media can be any available media that can be accessed by computer 720 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media include both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computer 720. Combinations of any of the above should also be included within the scope of computer readable media that may be used to store source code for implementing the methods and systems described herein. Any combination of the features or elements disclosed herein may be used in one or more embodiments.
The systems described herein are for the purpose of providing context for embodiments of a thermographic image detection system for detecting leaks and anticipated leaks within fluid passages or degradation of performance of a gas turbine system by monitoring fluid passages. It should be appreciated that the thermographic image system described herein may be utilized within other power generation systems, turbine systems, processing plants, or any other system including fluid passages. It should be appreciated that further embodiments of the thermographic image system may include more or fewer thermographic cameras directed toward a plurality of regions of a power generation system.
In describing preferred embodiments of the subject matter of the present disclosure, as illustrated in the Figures, specific terminology is employed for the sake of clarity. The claimed subject matter, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.