A system that increases the throughput and output fidelity of a three-dimensional printer by providing a temperature controlled multifunctional build platform.
There are a wide variety of three-dimensional printers that rely on a variety of technologies to fabricate products that may include plastic parts, food products, and living tissue. The range of available technologies that three-dimensional printers use include: fused deposition modeling, stereo-lithography, selective laser sintering, selective laser melting, electronic beam melting, laminated object manufacturing as well as other technologies that may come into existence. Three-dimensional printers often include build plates that are used to support a work-in-process while the three-dimensional printer fabricates a desired object.
As an example: A variety of three-dimensional printers produce three-dimensional objects by extruding certain viscous materials. The materials may include thermoplastics; thermoplastic compositions; compounds that are embedded into thermoplastics; amalgams of thermoplastics and embedded compounds; thermoplastics that are doped with powders, dyes, and other substances; along with other materials that may exist or come into existence.
Another example of the technology includes three-dimensional printers that produce processed products from food-stuffs that may be suitable for human consumption. Three-dimensional printers may also be adapted to produce living tissue that may be used to replace living body parts.
Many types of three-dimensional printers rely on build plates to support a work-in-process during the fabrication process of the three-dimensional printer. Build-plates are often passive elements that do not actively contribute to the build process and may create obstacles to efficient utilization of a three-dimensional printer.
As an example of the issues related to the build plate: A three-dimensional printer may produce three-dimensional objects by extruding molten thermoplastic and depositing successive layers of the molten thermoplastic sequentially and orthogonally up from the build plate. The initial layers of molten thermoplastic exiting from the printer's extruder or print head that are applied directly onto the build plate may not adhere to the build plate, and the work-in-process may remain attached to the moving extruder tip of the printer and slide the work-in-process around the build plate causing misalignment of the successive layers of molten thermoplastic resulting in failure of the finished product.
During the build process, a work-in-process object may also warp, curl, or creep due to non-uniform cooling of the molten thermoplastic of the object being printed. As the extruded molten thermoplastic cools and hardens, it shrinks slightly. When a the thermoplastic printed object does not shrink uniformly as it cools and sets, the resulting finished printed part may be warped and unusable. Damage to the finished part is commonly evidenced by corners of the printed part lifting off of the build plate or platform.
Upon completion of the build cycle, another problem may arise when removing the finished object from the build plate. It may be difficult to efficiently remove the finished object from the build plate of the 3-D printer because the printed object may remain adhered to the build plate often requiring the use of a knife or scraper to remove the printed object, which is both time consuming and hazardous to the finished product, the build plate, and the printer operator.
Three-dimensional printers may also provide multiple print heads utilizing multiple materials that result in more complex printed objects having thermal properties that vary throughout the finished object. In some instances, the fine temperature gradient management of the build plate is insufficient resulting in nonconforming products.
Build plates are typically composed of metal, plastic or glass that are not usually an effective build surface for a printed object and require enhancements to function efficiently. Modifications to enhance the performance of metal build surfaces include the application of polymide tape, blue painter's tape or other manually applied materials that the molten thermoplastic will adhere to but still permit manual removal of the finished product. Glass build plates may be enhanced in the same manner as metal build plates by the use of diluted polyvinyl acetate glue or certain hair sprays that may be dissolved when the printed product is completed. Applying enhancemens to the build plate is a manual process that requires time consuming effort and often prevents the use of three dimensional printers in automated processes. Eliminating the need for enhancements would significantly improve the efficiency of a three-dimensional printer and expand its utility to more automated processes.
Controlling the build plate temperature aids in addressing product warping. A heated build platform improves printing quality by helping to prevent warping that may occur as the molten thermoplastic cools during the build process. A heated build plate keeps the printed object warm during the printing process and permits more uniform shrinking of the thermoplastic product as it cools below its melting point. Heated beds usually yield higher quality finished builds with materials such as ABS and PLA. A heated build plate may also allow 3-D printer operators to print objects without rafts. Existing build plates, however, are designed to achieve a uniform temperature across the surface of the build plate, which may not produce the optimum quality build possible. The composition and geometry of a work in process may require a varying temperature gradient across the build plate.
Heating a build plate may also cause the build plate itself to warp damaging or reducing the quality of the completed part.
Flexible synthetic build plates have also been developed that provide a medium that adheres to molten thermoplastic. The synthetic build plate is manually inserted onto the standard build plate of a three-dimensional printer before the print process is started. After the printing process is finished, the thermoplastic part is completed and passively cools to an appropriate temperature. The synthetic build plate with the completed part attached is removed from the printer. The printer operator manually bends, twists, or manipulates the synthetic build plate releasing the thermoplastic part from the surface of the synthetic build plate. Manual intervention in the process is time consuming and prevents full automation of part fabrication.
For food production, the build plate temperature may need to be substantially reduced below the ambient temperature along with other build plate temperature adjustments to aid in efficiently forming the completed product. In the case of living tissue, the build pate may need to remain within a very specific range of temperatures throughout the build process. In other instances, the build plate temperature may need to remain within certain ranges in order for a product to properly set.
The examples above are only for illustrative purposes and are not intended to be limiting. These and other situations that exist and may come into existence show how the build plate is an obstacle to increasing the throughput and output fidelity of three-dimensional printers.
The present invention overcomes the limitations of existing build plates by providing a system that controls the temperature of an included multifunctional build plate during and after the fabrication process of a three-dimensional printer.
A system, apparatus, and method for controlling the temperature of a build platform to enhance the throughput and output fidelity of a three-dimensional printer. One aspect of the invention provides a multifunctional build platform having a first planar surface and a second planar surface on the opposite side of the first surface of the build platform; a plurality of thermoelectric cell attached to the second surface of the build platform and in electronic communication with a temperature controller; a plurality of temperature sensors connected to the build platform and in electronic communication with a temperature controller; a thermal conduction apparatus ; and a temperature controller having means for accepting electronic temperature signals from the temperature sensors, processing the temperature signals and transmitting signals to the thermoelectric cells to control the temperature of the build platform. The mutifunctional build platform adheres to extruded viscous raw materials that a three-dimensional printer applies to the build platform to fabricate finished products. After the build is completed, the system reduces the temperature of the build platform at a controlled rate. Upon reaching the appropriate temperature, the completed object releases itself from the build platform. In other aspects of the invention, the system provides point by point control of the build platform temperature throughout the build process to fulfill the heating and cooling requirements that are specific to the type of product being produced by the three-dimensional printer.
The system is installed in a three-dimensional printer and replaces the standard build plate of a three-dimensional printer. When an operator initiates a build process in the printer, the electronic controllers of the invention heat or cool the build platform to a predetermined temperature and controls the thermal gradient of the build platform surface during the build process. Upon completion of the build, the electronic controls of the system, modify the temperature of the build platform in accordance with a computer algorithm releasing the finished part.
To further enhance the throughput and overall safe efficient operation of three-dimensional printers, the system may include routines for preemptive detection and diagnosis of thermoelectric cell performance variances and build platform temperatures that could cause failure of the build process or the finished part. The routines may include a built in self-test that is completed before the three-dimensional printer initiates fabrication of the product. Once fabrication starts, another routine may dynamically monitor thermoelectric cell performance within the scope of external environmental factors, the performance limits of the thermoelectric cells, and the thermal properties of the raw materials that the three-dimensional printer uses to fabricate products. Upon detection of variances that exceed the performance parameters of a specific fabrication job, the system notifies the operator and initiates prophylactic action to protect the three-dimensional printer, the work-in-process, and the printer operator from physical and chemical dangers arising from improper thermal gradients. The electronics and computer controls of the system also compensate for variations in individual thermoelectric cell performance that may arise due to pre-existing variances caused during manufacturing of the thermoelectric cells or resulting from aging or use of the cells in the system for heating and cooling.
The system provides a plurality of thermoelectric cells that heat and cool the build platform in response to electronic power and signals provided by thermal controllers. Each thermoelectric cell may be controlled separately and independently from the other thermoelectric cells to permit the temperature of each predefined section of the build platform to be determined by a corresponding thermoelectric device. By providing control of the temperature of each zone or section of the build platform, the printer operator has greater control over the quality and fidelity of the finished part produced by the printer.
Heat transfer to and from the build plate is facilitated by a thermal conduction apparatus that connects to a lower side of the thermoelectric cells and the exterior of the three-dimensional printer. The apparatus provides a base plate that has a first planar surface that securely attaches to the thermoelectric devices on a side of the thermoelectric devices that is on the opposite side of the thermoelectric device to where the thermoelectric devices attach to the build plate. The element is made of metal such as copper or aluminum or another rigid material that provides sufficient thermal conductivity to efficiently transfer heat to and from the thermoelectric devices. There may be at least one water block cooler that uses water or other liquid or a plurality of heat pipes securely attached to a second side of the element on the side opposite to where the thermoelectric devices are attached. The heat pipes connect the base plate to a plurality of radiative elements coupled with the external structure of the three-dimensional printer. The heat pipes may extend out horizontally in a radial pattern or other appropriate geometric pattern from the conductive element to the periphery of the three-dimensional printer.
The radiative elements are semi-tubular and extend vertically upward from the periphery of the base plate a predefined distance. The radiative elements are made of metal such as copper or aluminum or another rigid material that provides sufficient thermal conductivity to efficiently transfer heat to and from the conductive element. The radiative elements provide a means to efficiently transfer heat to and from the base plate of the invention to the external environment surrounding the three-dimensional printer. The system provides electronic devices and computer software means to monitor the temperature of the build plate and to provide power to the thermoelectric devices that are used to heat and cool the build plate.
These and other objects, features, and advantages of the present invention will become apparent from the following detailed description and the appended drawings in which:
The embodiments of the invention disclosed in this description are merely exemplary of the invention that may be embodied in various and alternative forms. The drawings and figures included with this description are not necessarily to scale, and features may be exaggerated or minimized to illustrate details of particular components. Specific structural and functional details disclosed should be interpreted merely as a representative basis to variously employ the present invention and should not to be interpreted as limiting the invention.
The embodiments of the present disclosure generally provide for a plurality of circuits and/or electrical devices. All references to the circuits or electrical devices and the functionality provided by each, are not intended to be limited to encompassing only what is illustrated and described herein. While particular labels may be assigned to the various circuits or other electrical devices disclosed, such labels are not intended to limit the scope of operation for the circuits and/or the other electrical devices. Such circuits and/or other electrical devices may be combined with each other and/or separated in any manner based on the particular type of electrical implementation that is desired. It is recognized that any circuit and/or other electrical device disclosed herein may include any number of microprocessors, integrated circuits, memory devices (e.g., FLASH, RAM, ROM, EPROM, EEPROM, or other suitable variants thereof) and software which co-act with one another to perform operation(s) disclosed herein.
As shown in
The system may produce a uniform or variable thermal gradient across the build platform 10 that ranges in variability from a substantially uniform temperature gradient across the build platform to a temperature gradient that varies point wise from point to point across the surface plane of the build platform . The variability of the temperature gradient is dependent on the number of jointly or independently computer controlled thermoelectric cells 12 shown in
The multifunctional build platform 10 is multifunctional in that the build platform as shown in
As shown in
In one aspect of the invention, the build platform 10 is planar and of an appropriate geometric configuration adapted to fit horizontally across the bottom of a build chamber of a three-dimensional printer 200. As shown in
As shown in
As shown in
The thermoelectric cells 12 may be Peltier devices or other thermoelectric devices that use appropriately biased and powered electric current to heat and cool the build platform 20. The thermoelectric cells 12 are rigidly attached to the electric circuit 24 associated with the second surface 22 of the build plate and the electric leads of the thermoelectric cells 12 are soldered or otherwise connected to the printed circuit associated with the second surface of the build platform to provide electric current to the thermoelectric cells 12 under system control.
In one aspect of the invention, as shown in
The base plate 28 of the thermal conduction apparatus 16 may be a suitable thermal conductor that may be metal such as copper or aluminum or any other substantially rigid thermally conductive material that will aid in efficiently transferring heat between the thermoelectric cells 12 and the heat pipes 30. As shown in
As shown in
Each radiative element 32 may be an extended semi-tubular rigid element composed of thermally conductive material having a predefined diameter and securely attached to the exterior peripheral structural frame 206 of the three-dimensional printer, as shown in
In another aspect of the invention, the thermal conduction apparatus may provide at least one water block cooler that uses water or other liquids for heat transfer attached to the second surface of the base plate to provide cooling for the thermoelectric cells.
As shown schematically in
A plurality of temperature sensors 14 are positioned proximate to the thermoelectric cells 12 and electronically communicate the temperature of the build plate 20 to the thermal controller 50 on the printed-circuit-board-A 18. Each temperature sensor 14 transmits a signal to the thermal controller 26 that indicates the temperature of the build plate 20 proximate to the immediate location of the temperature sensor 14. The thermal controller 50 determines whether the temperature of build plate 20 at the location of each temperature sensor 14 is greater or less than a predetermined temperature threshold provided by a computer algorithm.
In one aspect of the invention, during the build phase If the temperature of the build plate 20 at a location proximate to a particular temperature sensor 14 is less than the temperature threshold, then the controller determines that it may be necessary to energize the thermoelectric cells 12 associated with the respective temperature sensors 14 to heat the location on the build plate 20 proximate to the associated temperature sensor.
After the build phase, the system cools the build plate 20 by energizing the thermoelectric components at a current that is biased at a reverse polarity of the current applied to heat the build plate during the build phase. Each temperature sensor 14 transmits a signal to the thermal controller 26 indicating the temperature proximate to the respective temperature sensor 14. The thermal controller 26 determines If the temperature of the build plate 20 at a location proximate to a particular temperature sensor 14 is greater than a temperature threshold associated with the particular temperature sensor, then the thermal controller 26 determines that it may be necessary to energize the thermoelectric cells 12 associated with the respective temperature sensors to cool the location on the build plate 20 proximate to the associated temperature sensor 14.
In some aspects of the invention, the system algorithm relies of differences between the thermal coefficient of expansion for the work-in-process in comparison to the thermal coefficient of expansion of the materials comprising the build plate. The system uses the differences in the expansion rates of the various materials as compared to the thermal expansion rate of the build plate 20 to cause the build plate to release the finished product resulting from the build cycle of a three dimensional printer at the appropriate temperature gradient.
In one aspect of the invention as shown in
During the build process, the system dynamically monitors the electronic and thermal performance of the system and compares the performance data to a set of predetermined parameters 114, and communicates electronically to the printer and printer operator 116 if the build process should halt or if any remedial action may be taken to prevent a process failure and to protect the safety of the operator, the printer, and the surrounding environment.
When the three dimensional printer 200 has completed fabricating the work-in-process to produce the intended finished product 118, the system initiates a cooling process 120. The thermal controller compares the temperature at each polling location on the build plate and compares the temperatures to the target values in the file corresponding to each temperature sensor location on the build plate. An algorithm calculates the polarity bias and level of current needed for each thermoelectric cell to cool the build plate in accordance with the cool down temperature gradient of the build plate 122. The system communicates the polarity bias and the current values to the thermal controllers for each thermoelectric cell 124. The system sequentially polls each mapped location of the build plate. The system repeats the procedure until the temperature of the build plate equals a calculated value and the finished part releases from the build plate and the process ends 126.
In an alternative embodiment, as shown schematically in
One or more temperature sensors 14 are positioned on the second surface 22 of the build platform 10 proximate to the thermoelectric cells 12 and electronically communicates 70 the temperature of the build platform to the thermal controller 50 associated with the respective H-bridge 52 coupled with printed-circuit-board-B 60. Each temperature sensor 14 transmits a signal 70 to an associated thermal controller 50 that indicates the temperature of the build platform 10 proximate to the immediate location of the respective temperature sensor 14. The thermal controller 50 determines whether the temperature of build platform at the location of each temperature sensor 14 is greater or less than a temperature threshold.
During the build phase of the three dimensional printer, if the temperature of the build plate at a location proximate to a particular temperature sensor 14 is not within the range of a predetermined temperature threshold, then the respective thermal controller determines that it may be necessary to energize the thermoelectric cells 12 associated with the respective temperature sensor 14 with the appropriately biased electric current to heat or cool the location on the build build platform 10 proximate to the associated temperature sensor 14.
After the build phase, the system modifies the temperature of the build platform 10 by energizing the thermoelectric cells 12 at a current that is at reverse polarity of the current applied to heat the build platform 10 during the build phase. Each temperature sensor 14 transmits a signal to an associated thermal controller 50 indicating the temperature proximate to the respective temperature sensor 14. The thermal controller 50 determines If the temperature of the build platform 10 at a location proximate to a particular temperature sensor 14 is greater than than a temperature threshold associated with the particular temperature sensor 14, then the thermal controller 50 determines that it may be necessary to energize the thermoelectric cells 12 associated with the respective temperature sensors 14 to cool the location on the build build platform 10 proximate to the associated temperature sensor 14.
In some aspects of the invention, the system relies of differences between the thermal coefficient of expansion for the work-in-process in comparison to the thermal coefficient of expansion of the materials comprising the build platform 10. The system uses the differences in the expansion rates of the various materials to cause the build plate 20 to release the work-in-process at the appropriate temperature gradient.
In one aspect of the invention, as shown in
During the build process, the system dynamically monitors the electronic and thermal performance of the system and compares the performance data to a set of predetermined parameters 164, and communicates electronically to the printer and printer operator 166 if the build process should halt or if any remedial action may be taken to prevent a process failure and to protect the safety of the operator, the printer, and the surrounding environment.
During the build phase, if the temperature of the build plate at a location proximate to a particular temperature sensor 14 is not within the range of a predetermined temperature threshold, then the respective thermal controller determines that it may be necessary to energize the thermoelectric cells 12 associated with the respective temperature sensor 14 with the appropriately biased electric current to heat or cool the location on the build platform 10 proximate to the associated temperature sensor 14.
When the printer has completed building the intended part, the system initiates the cooling process. The compares the temperature at each polling location on the build plate and compares the temperatures to the target values in the file corresponding to each polled location on the build plate 170. An algorithm calculates the polarity bias and level of current needed for each thermoelectric cell to cool the build plate in accordance with the cool down temperature gradient of the build plate. The system communicates the polarity bias and the current values to the controllers for each thermoelectric cell. 172 The system sequentially polls each mapped location of the build platform corresponding to each respective thermoelectric cell 174. The system repeats the procedure for the entire surface of the build plate and may compare the thermal gradient at each point to the thermal profile for the specific build process 174. The system continues to loop through the cooling process until the temperature of the build plate matches the thermal gradient calculated at the start of the cooling process and until the finished part releases from the build plate and the process ends 176.