The subject disclosure is directed to systems, devices, and methods for producing a plurality of particles of a predetermined size.
For biological pharmaceuticals (‘biologics’), there are several methods for producing sub-micron sized particles. Many of these methods include inconvenient temperature ranges (spray drying), prolonged processing time (freeze-drying), and other stress factors (i.e., mechanical stress caused by milling) that may all affect the quality of the product.
Accordingly, what is needed is a system and method to produce a plurality of particles from biological material with at least one of, and preferably, two or more, and most preferably, all of a small particle size (smaller than 500 nm), narrow particle size distribution (PSD), a high yield, and retained biological activity.
The subject disclosure addresses the issues of current particle producing systems and methods. Specifically, in some embodiments of the present disclosure, a particle generating apparatus for producing a plurality of particles of a predetermined size is provided, which includes atomization means, a connector, a drying chamber, at least one ionizer, and an electrostatic collector.
In many embodiments of the present disclosure, various flows are included and described, which can comprise at least one of a gas (e.g., air), a liquid, solid matter. Thus, upon a flow being described for some embodiments as an “airflow”, one skilled in the art will appreciate that such is a fluid flow, and thus, can be a liquid flow as well.
In such embodiments, at least one of the following additional features, functionality, structure, steps, and/or clarifications (and in some embodiments, a plurality of, and in some embodiments, a majority of, substantially all of, and in some embodiments, all of) can be included, leading to yet further embodiments of the present disclosure:
In some embodiments of the present disclosure, a particle generating apparatus for producing a plurality of particles of a predetermined size distribution is provided. The apparatus includes a solution container configured to retain a solution including at least one predetermined dissolved substance at a predetermined concentration, at least one pump configured to move the solution from the solution container to the atomization means, and optionally back to the solution container, a scale configured to monitor solution consumption, and atomization means. The atomization means includes an atomizer vessel, and at least one of a pneumatic atomizer and an ultrasonic atomizer configured to atomize the solution to produce a droplet flow comprising a plurality of droplets of the solution. The atomization means also includes at least one air inlet configured to provide air for the droplet flow to at least aid in propelling the plurality of droplets. With respect to the pneumatic atomizer, at least one of a size and/or mass of the droplets and a flowrate thereof can be determined by a configuration of the design of the atomizer, and/or a driving fluid (e.g., air) flow pressure of the atomization nebulizer. With respect to the ultrasonic atomizer, at least one of: a size and/or mass of the droplets and a flowrate thereof, can be determined by at least one of: one or more ultrasonic parameters comprising frequency, amplitude, and/or phase, and design of the atomizer vessel.
In some embodiments, the apparatus further includes a drying chamber, configured to expose the droplet flow to a drying flow so as to produce a dried particle flow having particles of a size and/or mass less than a predetermined threshold size, and direct the dried particle flow with particles of a size lesser than or equal to a predetermined threshold. The drying chamber includes a drying chamber air inlet configured to supply air for the drying flow at a regulated flowrate to regulate at least one of the volume of the droplets and volume of dried particles, a fan configured to provide a constant pressure to the drying flow, a drying chamber outlet, a heater (e.g., a heating element) configured to regulate a temperature profile of the drying flow located at a bottom of the drying chamber, a laminar filter configured to generate a predetermined or preselected homogenous drying flow. The drying chamber is configured to provide a controlled upward directed flow of the drying flow so as to dry the received droplet flow to form the plurality of dried particles, and droplets over a predetermined size and/or mass travel downward against the drying flow for at least one of collection, and disposal.
In some embodiments, the apparatus further includes a connector having a bottom end, a top end, a conduit connecting the first and second ends, and a connector droplet flow outlet, which can be configured as or otherwise comprises an inlet to the drying chamber. The connector is configured such that the first end is arranged downstream from the second end and receives the droplet flow from the atomizer, while returning droplets larger than a predetermined size to the solution container. The threshold size can be determined by the average droplet velocity, which depends on the flow rate and the cross-section area of the connector. The conduit can include at least two turns forming at least one corresponding S-bend (and can be referred to as a staircase connector, according to some embodiments), the second end includes the connector droplet flow outlet (which, in some embodiments corresponds to or otherwise comprises a/the drying chamber inlet) configured to at least one of shape and split the droplet flow into a plurality of flows.
In some embodiments, the apparatus further includes a plurality of ionizers arranged to expose the particle flow received from the drying chamber via the drying chamber outlet, wherein each of the ionizers produce an ionized flow of negative ions configured to charge the particles to produce a charged particle flow.
In some embodiments, the apparatus further includes an electrostatic collector having a predetermined voltage and configured to receive the charged particle flow, includes a central ground electrode protected by a glass tube, an external cylinder having a wall with a surface at the predetermined voltage, and an electrostatic collector exhaust, and is configured to deflect the incoming charged particles of the charged particle flow towards the surface of the wall, such that, the particles form a layer thereon. Additionally, the apparatus further includes a filter configured to capture dried particles from the electrostatic exhaust that are not collected in the electrostatic collector, and an apparatus exhaust arranged to exhaust a remaining flow (the filter, and exhaust may comprise an exhaust assembly for systems, according to at least some embodiments, see., e.g.,
In some embodiments, the apparatus further includes an electrostatic precipitator, such as any commercially available electrostatic precipitator system (e.g., Kleanland J-series), configured to capture the particles from the particle flow received from the drying chamber via the drying chamber outlet.
Any of the above-noted embodiments (as well as other embodiments disclosed herein), can include at least one of the following additional features, functionality, structure, steps, and/or clarifications (and in some embodiments, a plurality of, and in some embodiments, all of), leading to yet further embodiments of the present disclosure:
In some embodiments, a drying chamber device for a particle generating apparatus is provided and is configured to expose a droplet flow to a drying flow so as to produce a dried particle flow having particles of a size and/or mass less than a predetermined threshold size. In such embodiments (as well as other embodiments disclosed herein), the following additional features, functionality, structure, steps, and/or clarifications (and in some embodiments, a plurality of, and in some embodiments, all of) can be included, leading to yet further embodiments of the present disclosure:
In some embodiments, a connector device for a particle generating apparatus is provided and includes a bottom end, a top end, a conduit connecting the first and second ends, and a connector droplet flow inlet to the drying chamber. In such embodiments, the device can be configured such that the first end is arranged downstream from the second end and receives the droplet flow from the atomizer, while returning droplets larger than a predetermined size to the solution container. The conduit can include at least two turns forming at least one corresponding S-bend (for example), and/or the second end includes the connector air outlet (which in some embodiments, corresponds to or otherwise comprises a/the drying chamber inlet) configured to at least one of shape and split the droplet flow into a plurality of flows.
In some embodiments, an electrostatic collector device for a particle generating apparatus is provided and includes a central ground electrode protected by a glass/ceramic tube, an external cylinder having a wall with a surface at the predetermined voltage. In such embodiments, the device is arranged with a particle generating device so as to expose a particle flow to an ionized flow of negative ions configured to charge particles in the particle flow to produce a charged particle flow.
Any of the above-noted embodiments (as well as other embodiments disclosed herein), can include at least one of the following additional features, functionality, structure, steps, and/or clarifications (and in some embodiments, a plurality of, and in some embodiments, all of), leading to yet further embodiments of the present disclosure:
In some embodiments, a method of producing a population of particles is provided and includes atomizing a solution featuring a dissolved molecule of a predetermined concentration to produce a plurality of droplets in a droplet flow, separating the droplets of less than or equal to a threshold size and/or mass in the droplet flow using gravity and upward flow along a connector (and/or among turns of the connector), where droplets greater than the threshold size and/or mass flow back against the upward flow and are collected or discarded, and directing or otherwise exposing the droplet flow containing the droplets of less than the threshold size into one or more drying flows, where the drying flows provide a controlled upward directed flow of elevated temperature air or gas so as to evaporate the droplets to produce a plurality of dried particles in a dried particle flow. The particles and/or droplets having a size and/or mass greater than a threshold amount too heavy to be retained in the upward drying airflows, fall down and be discarded. Charging the dried particles in the dried particle flow with a flow of negative ions establishing a charged particle flow, and deflecting the charged particle flow via an electrostatic collection device onto a surface for collection thereof.
In some embodiments, a population of particles produced by at least some of the apparatus, system, and/or device embodiments disclosed herein, having a size of: 10 and 700 nm, 20 and 600 nm, 30 and 500 nm, 40 and 400 nm, and 50 and 350 nm, and size ranges between any of the foregoing.
In some embodiments, a population of particles produced by at least some of the apparatus, system, device, and method embodiments disclosed herein, having a size distribution of D50 (corresponding to 160 nm).
In some embodiments, a method for producing a population of particle is provided and includes at least one of a pneumatic atomizer and an ultrasonic atomizer.
Various embodiments, and elements/features/functionality thereof, can be scaled (e.g., enlarged) for production of a desired amount of particles, from laboratory to industrial scales. Accordingly, various flowrates, material amounts, and the like may also be scaled to obtain specific production requirements.
These and other embodiments, objects and advantages will become even more evident with reference to the concurrently filed figures, a brief description of which is set out below, and following detailed description of at least some of the embodiments.
An example of the systems, apparatuses, and devices, according to various embodiments of the present disclosure are illustrated in
As shown in the figures, in some embodiments, an apparatus 1000 includes a solution container (not shown) configured to retain a solution including at least one predetermined dissolved substance at a predetermined concentration (which can be delivered to the atomizer via a solution inlet 1310 (excess solution can exit via a solution outlet 1312). In some embodiments, the apparatus includes at least one pump (e.g., Boxer GmbH 9QX peristaltic pump) configured to move the solution from the solution container to an atomization means (not shown), and optionally to the solution container, a scale (not shown) (e.g., Ohaus Scout SKX1202) may be provided and configured to monitor solution consumption. The solution container stands on a scale outside the fuselage. The container is connected to the nebulizer with tubes which bring the solution into the nebulizer inside the fuselage. The tubes pass via a pump which is located outside the fuselage. The pump is located between the container and the fuselage.
As shown in
The atomization means (see 1302 in
In some embodiments, the atomizer can comprise an ultrasonic atomizer having a piezoelectric crystal/ceramic/actuator that focuses ultrasonic acoustic energy to a point. Accordingly, fluid exposed to the acoustic energy breaks up into small droplets that are carried upstream by a/the drying airflow in a/the drying chamber (see below and throughout). In some embodiments, the droplet size decreases as the ultrasonic frequency increases. In some embodiments, an ultrasonic frequency range of between 2.4 to 7 MHz can be used.
In some embodiments, another type of ultrasonic atomizer that can be is a mesh atomizer, which comprises a perforated metal (e.g., steel) sheet sandwiched between two piezoelectric rings. Here, droplet size depends on a size of the holes within the metal sheet, which, in some embodiments, may be periodically arranged in a lattice featuring from 1 to 10000 elements, and which may be, according to some embodiments, separated by a distance of 50 to 450 micrometers with a pore diameter, in some embodiments of between 2 and 12 micrometers. Additionally, an operating frequency, in some embodiments, corresponds to frequencies ranging from 95 to 190 kHz.
In some embodiments, operational voltage range (ultrasonic signal amplitude) for ultrasonic atomizers depends on the nature of the piezoelectric material as well as the material thickness, but can vary between 30 to 70 V.
In some embodiments, the apparatus further includes a drying chamber 1020, configured to expose the droplet flow to a drying flow so as to produce a dried particle flow having particles of a size and/or mass less than a predetermined threshold size, in some embodiments, 350 nm, 10 and 700 nm, 20 and 600 nm, 30 and 500 nm, 40 and 400 nm, and 50 and 350 nm, and in some embodiments, size ranges therebetween, and configured to direct the dried particle flow with particles of a size lesser than or equal to a predetermined threshold into an area with one or more ionizers. The drying chamber, in some embodiments, includes a drying chamber air inlet 1030 configured to supply air for the drying flow at a regulated flowrate to regulate at least one of the volume of the droplets and volume of dried particles, a fan/pump (may be of the type 9GV0612P1G03) located after the exhaust filter (not shown) configured to provide a constant pressure to the drying flow, a drying chamber outlet 1040, a heater 1050 (e.g., a heating element) configured to regulate a temperature of the drying flow located at a bottom 1022 of the drying chamber, a laminar filter (not shown) located above the heater at the bottom of the drying chamber configured to homogenize the drying flow. The drying chamber 1020 is configured to provide a controlled upward directed flow of the drying flow so as to dry the received droplet flow to form the plurality of dried particles, and droplets over a predetermined size and/or mass travel downward against the drying flow for at least one of collection, and disposal.
In some embodiments, the apparatus further includes a connector 1060 having a bottom end 1062, a top end 1064, a conduit connecting the bottom end and the second end, and an connector air inlet 1066 arranged on the bottom end; the connector is configured such that the top end 1064 is arranged downstream from the bottom end 1062 and directs the droplet flow into the drying chamber 1020, while droplets larger than a predetermined size fall back (which can be reused, e.g., directed back to the solution container). In some embodiments, the conduit includes at least two turns 1068 forming at least one corresponding S-bend, the top end 1064 includes the connector air outlet (which in some embodiments, corresponds to or otherwise comprises a/the drying chamber inlet) configured to at least one of shape and split the droplet flow into a plurality of flows.
In some embodiments, the apparatus further includes at least one, and in some embodiments, a plurality of ionizers 1080 arranged to expose the particle flow received from the drying chamber via the drying chamber outlet 1040, where each of the ionizers produce an ionized flow of negative ions configured to charge the particles to produce a charged particle flow.
In some embodiments, the apparatus further includes an electrostatic collector 1090 having a predetermined voltage and configured to receive the charged particle flow, an includes a central ground electrode protected by a glass tube, an external cylinder having a wall with a surface at the predetermined voltage, and an electrostatic collector exhaust (which, in some embodiments, can be considered an outlet, as well as in some embodiments, directs/outputs/exhausts remaining flow. The electrostatic collector is configured to deflect the incoming charged particles of the charged particle flow towards the surface of the wall, such that, the particles form a layer thereon. Additionally, the apparatus further includes a filter configured to capture dried particles from the electrostatic exhaust that are not collected in the electrostatic collector, and an apparatus exhaust arranged to exhaust a remaining flow. The electrostatic exhaust, filter, and any other structure to receive remaining flow after the electrostatic collector, can be part of an exhaust assembly, as shown in
In some embodiments, the apparatus includes an electrostatic precipitation system, such as can be found in commercially available electrostatic precipitators, configured to receive the particle flow from the drying chamber and to separate out the solid particles thereof. Additionally, the apparatus further can include a filter configured to capture dried particles from the electrostatic exhaust that are not collected by the electrostatic precipitation system, and an exhaust arranged to exhaust a remaining flow. The exhaust, filter, and any other structure to receive remaining flow after the electrostatic collector, can be part of an exhaust assembly, as shown in
In some embodiments, a process for producing a population of particles is provided (and in some embodiments, using one and/or another of the apparatuses/systems and devices disclosed herein). In such embodiments, a solution featuring dissolved proteins (for example), of a predetermined concentration, is pumped or otherwise provided to an atomization means (see above). At the atomization means, the solution is atomized. Droplets are generated by atomization form a droplet flow (which may also be referred to as a mist or mist flow) are directed to a connector structure (see above) that selectively separates smaller droplets from larger droplets. In some embodiments, the separation is enhanced by gravity (which may be attained via arrangement of the apparatus, or components thereof, disclosed above according to some embodiments). Accordingly, large droplets of greater than a particular size (and/or mass) flow back into the solution to be reused (e.g., can be directed back to the atomization means or contain for storing the solution).
The droplet flow with smaller particles travels up to an inlet (which may also be referred to as an orifice or a nozzle) of a drying chamber (see above). In the drying chamber, a controlled upward directed flow of hot air or gas is sued to evaporate the droplets, where, as a result, small particles (e.g., of the dissolved molecule, e.g., a protein) are formed and continue to travel upstream in the apparatus. Since the airflow moves the particles against gravity (in some embodiments), particles (and/or droplets) greater than a threshold size and/or mass that are too heavy to be retained in the upward airflow, fall down and be discarded from a final product.
In some embodiments, the dried particles travel through a conduit featuring one or multiple ionizers that provide a flow of negative ions charges to the dried particles thereby charging the particles. The charged particles then travel into an electrostatic collector (see above), where particles are deflected toward a surface of a wall of a component of the electrostatic collector where the dried particles (at least a portion, and in some embodiments, most of the particles, and in some embodiments all or substantially all of the deflected, dried particles) collect thereon forming a layer. Remaining particles which do not form part of the layer of collected particles, can continue traveling upstream and exhausted into a filtration device (e.g., HEPA filter), via, for example, an exhaust assembly (see
In some embodiments, computer modeling, and more specifically, computational fluid dynamics (CFD) is used (via a processor/computer) to improve particle yield (i.e., mg out/mg in), PSD, and particle quality. Accordingly, in some such embodiments, CFD is used to describe a two phase or three phase flow of fluid (gas/fluid solid particulate) in systems (according to the disclosed embodiments). To this end, using CFD, according to some embodiments, aids in identifying and engineering against vortexes (for example, for improved yield) in places where solution/particles (e.g., API) cannot be recovered. For example, in some embodiments, CFD functionality is validated/calibrated for specific conditions in the particle generating system (according to some embodiments) by using light sheet enabled particle image velocimetry, such that, particles provide natural entities which can be followed. Accordingly, this approach, in some embodiments, permits achieving a smaller size distribution spread, increase production rate and yield, since turbulent areas can be engineered away.
For example, in some embodiments, particles production can be modeled based on density or density gradient, and/or minimizing a change of line time by minimizing build-up of particulates and residue in hard to clean areas (e.g., nooks and crannies) of the apparatus/system.
As shown in
CFD functionality can, in some embodiments, provide a process to calibrate, e.g., with a lookup table, the drying air flow, allowing particle image velocimetry to be used in a real-time feedback loop to keep flow in an optimal mode (allowing for achievement of predetermined goals). Accordingly, the less stochasticity in the flow, the more/tighter control of the particle size, and thus, particle sizes can be optimized in a deterministic fashion.
Particles produced, according to some embodiments, enable the production of improved particles (see
Similarly, Lactic Dehydrogenase (LDH, Sigma L1254) was nanoformed using a system and method according to some embodiments, at 20-80° C. (see
While various inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means, steps, and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant only to be examples and that actual parameters, dimensions, materials, and configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will also recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing disclosed embodiments are presented by way of example only and that, within the scope of claims supported by the present disclosure (including equivalents thereto), inventive embodiments may be practiced otherwise than as specifically described and claimed.
Some of the inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, method, and step, described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, methods, and steps, if such features, systems, articles, materials, kits, methods, and steps, are not mutually inconsistent, is included within the inventive scope of the present disclosure. Some embodiments disclosed herein may also be combined with one or more features, as well as complete systems, devices or methods of other embodiments (as well as known systems, devices, or methods) to yield yet other embodiments and inventions. Moreover, some embodiments, may be distinguishable from the prior art by specifically lacking one and/or another feature disclosed in the particular prior art reference(s); i.e., claims to some embodiments may be distinguishable from the prior art by including one or more negative limitations.
Also, as shown above, various inventive concepts may be embodied as one or more methods. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.
Any and all references to publications or other documents, including but not limited to, patents, patent applications, articles, webpages, books, etc., presented anywhere in the present application, are herein incorporated by reference in their entirety. Moreover, all definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The terms “can” and “may” are used interchangeably in the present disclosure, and indicate that the referred to element, component, structure, function, functionality, objective, advantage, operation, step, process, apparatus, system, device, result, or clarification, has the ability to be used, included, or produced, or otherwise stand for the proposition indicated in the statement for which the term is used (or referred to) for a particular embodiment(s).
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A only (optionally including elements other than B); in another embodiment, to B only (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e., “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of” “Consisting essentially of,” when used in the claims, shall have its ordinary meaning as used in the field of patent law.
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
This application is a continuation of PCT/EP2021/082722, filed Nov. 23, 2021, which claims benefit of and priority to U.S. provisional patent application no. 63/117,898, filed Nov. 24, 2020. Each of the entire foregoing disclosures is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
20170333861 | Friesen et al. | Nov 2017 | A1 |
20200247702 | Yuan | Aug 2020 | A1 |
20200261930 | Liu et al. | Aug 2020 | A1 |
Number | Date | Country |
---|---|---|
109 433 123 | Mar 2019 | CN |
210 868 279 | Jun 2020 | CN |
WO 2020092721 | May 2020 | WO |
Entry |
---|
English machine translation of CN 1094333123 (Year: 2019). |
International Search Report and Written Opinion issued for PCT/EP2021/082722 dated May 3, 2022, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20230048148 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63117898 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2021/082722 | Nov 2021 | US |
Child | 17974490 | US |