In the electronics industry, a key design goal with respect to electrical components has long been to build devices that last forever, while providing a completely stable performance. This design goal has even existed for electronic systems which are intended to have a short life due to intended destruction of the electronic system. As an example, many of the devices utilized in some weapon systems, particularly in weapon payloads, are only needed temporarily. When used in weapon payloads, electronic equipment such as sensors or electronically controlled ordnance may be dispersed on a battlefield.
In the consumer market, with advances in technology which not only has improved capabilities of systems utilizing electronic components (such as computers, cell phones, etc.), but also reducing the cost of the components and hence the systems, older systems and devices are discarded as consumers obtain newer and improved devices and systems. Depending on the type of system or device, many end up being discarded in landfills wherein the electrical components, including connectors may not degrade for a number of years.
Manufacturers and users of electronic equipment would realize logistics and safety advantages if electronic equipment disintegrates over time when exposed permanently to the environment. Manufacturers and users of weapon systems would also realize advantages where no effort is required to recover and disable used weapon systems in order to deny access of the technology to an enemy. Additionally, benefits would be realized where no long term post battle danger to civilians or the environment is posed by used or abandoned weapon-related electronics.
Embodiments relate to a system, connector and method for providing for environmental degradable electronic components. The connector comprises a biodegradable base material and a biodegradable binder material, comprising at least one of a protein and a residue, configured to hold together the base material to form a biodegradable connector element. The biodegradable connector element affects an operational condition of an apparatus the biodegradable connector element is used within. Degradation of at least one of the biodegradable base material, the biodegradable binder, and the biodegradable connector element provides for a limited operational lifespan of the apparatus resulting in the apparatus becoming inoperable.
The system comprises an operational element within the system to cause the system to perform a function. The system also comprises a system element within the system configured to activate the operational element. The system also comprises at least one connector element providing for communication between the operational element and the system element, the connector element comprising a biodegradable base material, a biodegradable binder material, comprised of at least one of a protein and a residue, configured to hold together the base material and form the at least one connector element. Degradation of at least one of the biodegradable base material, the biodegradable binder, and the at least one connector element, caused by exposure to an operational environment of the system, provides for a limited operational lifespan of the apparatus resulting in the operational element becoming inoperable.
A more particular description briefly stated above will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered to be limiting of its scope, the embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Embodiments are described herein with reference to the attached figures, wherein like reference numerals, are used throughout the figures to designate similar or equivalent elements. The figures are not drawn to scale and they are provided merely to illustrate aspects disclosed herein. Several disclosed aspects are described below with reference to non-limiting example applications for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the embodiments disclosed herein. One having ordinary skill in the relevant art, however, will readily recognize that the disclosed embodiments can be practiced without one or more of the specific details or with other methods. In other instances, well-known structures or operations are not shown in detail to avoid obscuring aspects disclosed herein. The embodiments are not limited by the illustrated ordering of acts or events, as some acts may occur in different orders and/or concurrently with other acts or events. Furthermore, not all illustrated acts or events are required to implement a methodology in accordance with the embodiments.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-ranges subsumed therein. For example, a range of “less than 10” can include any and all sub-ranges between (and including) the minimum value of zero and the maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 5. Furthermore, the term “at least one of . . . and . . . ” is used herein. The use of this phrase is not meant to be limiting as it is intended to mean either all of the items are included or just one of them.
The term “component” as used herein is not meant to be limiting. As one non-limiting example disclosed further herein, the component 110 may comprise an electrical connector, which may comprise a male connector member (or first connector) and a female connector member (or second connector) which are configured to connect to each other. As another non-limiting example, at least one wire with rapid deteriorating electrically conductive material as disclosed herein. As yet another non-limiting example, at least two separate wires may be joined and/or bridged together where the bridge may be made of rapidly deteriorating electrically conductive material as disclosed herein. As disclosed further herein, the wires may be environmentally degradable.
The biodegradable base material 120 may comprise a plant fiber. Non-limiting examples of the plant fiber may include straw from the stems of barley, oats, rice, rye, wheat. Additional non-limiting examples may include long stalk fibers from flax, corn stalks, bamboo, canes, etc. The biodegradable binder 130, which may also operate as a sealant, may comprise at least one of a protein and a residue. Non-limiting examples of the at least one protein and residue comprise tree sap, shellac, egg whites, albumin, etc. An intended purpose of the binder 130 as the sealant is that it may be water resistant.
Shellac is a resin secreted by the female lac bug, on trees in the forests of India and Thailand. It is processed and sold as dry flakes, which are dissolved in ethyl alcohol to make liquid shellac. Shellac functions as a touch natural primer, sanding sealant, tanning-blocker, odor-blocker, stain, and high-gloss varnish. Liquid shellac has a limited shelf life, of approximately one (1) year.
Albumin is from a family of globular proteins, the most common of which is serum albumin. The albumin family consists of all proteins that are water-soluble, are moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins are commonly found in blood plasma, and are unique from other blood proteins in that they are not glycosylated. Substances containing albumins, such as egg white, are called albuminoids.
A rate of degradation of the at least one component is determinative by a composition of the biodegradable binder with the biodegradable base material and at least one condition of the operational environment.
The pheromone may be provided to attract fauna within an operation environment where the device is deployed to approach the device and to want to consume the device, at least the biodegradable components of the device. Thus, as a non-limiting example, the type of pheromone may comprise a scent trace. Another non-limiting example may comprise a releaser pheromone that cause an alteration in a behavior of a type of fauna which results in a desire to approach the device and consume it, as discussed above. The releaser pheromone may provide for a rapid response, but which may quickly degrade or a primer pheromone which may have a slower onset and a longer duration. Other non-limiting examples may include, but are not limited to, a signal pheromone which causes a short-term change in fauna, a trail pheromone to create a path which a certain fauna, such as, but not limited to, ants, may follow to the device, a sex pheromone which may suggest availability of an opposite sex of a type of fauna. In an embodiment, the plant fiber may naturally comprise characteristics to attract fauna. As a non-limiting example, crushed sugarcane stalks produced in the sugar-making process may provide for fauna consumable connectors. Thus, as used herein, the term “pheromone” includes a plant fiber which may already possess traits to attract fauna, independent of another additive.
The wire and actual connection point on the male and female connectors (contacts as discussed above) are metal in order to conduct electricity. As such, these components are not biodegradable, but as disclosed are environmentally degradable, or simply degradable. Thus, metal used for at least one of contacts 310, 410 may be readily susceptible to rapid corrosion when exposed to the elements when in the operational environment. Non-limiting examples of the metal used in at least one of the contacts 310, 410 may comprise at least one of (and/or) copper and silver. In another non-limiting example, at least one of the contacts 310, 410 may comprise powdered metal and a conductive binder having properties similar to the conductive inks used for printed LED circuits.
As further illustrated in
As further illustrated in
Once the binder 130 as the sealant is applied, it may be dried in a desiccator. In operation, once the binder 130 as the sealant is broken, such as, but not limited to, after the connectors are in use and have met their intended life cycle, the natural material of the connectors 310, 410 will begin to break down. A specific type binder 130 as the sealant used may be selected or determined based on a desired operational life, or longevity, of the connectors. In an embodiment, once the male connector 310 and female connector 410 are connected together, a securing compound 440, which may comprise a starch, may be applied to ensure the connectors 310, 410 do not separate prematurely.
Thus, as disclosed above, a connector may be provided which is a part of an apparatus that is deployable in an operational environment. The connector may comprise a male connector component and a female connector component which are configured to connect to each other. The connector may be provided to affect an operational condition of the apparatus, such as, but not limited to, ceasing to allow the apparatus to function. At least one of the connector components comprises a biodegradable base material and a biodegradable binder material, comprising at least one of a protein and a residue, configured to hold together the base material and to seal the at least one of the connector component. Degradation of at least one of the biodegradable base material and the biodegradable binder may provide for a limited operational lifespan of the apparatus before the apparatus becomes inert.
In another non-limiting embodiment at least one component of the apparatus comprises a biodegradable base material and a biodegradable binder material. The biodegradable binder material may comprise at least one of a protein and a residue, is configured to hold together the base material and is configured to operate as a sealant for the at least one component. A pheromone to attract fauna is also provided. When the apparatus is located in an operational environment degradation of the at least one component is initiated due to exposure to the environment, causes the apparatus to become inert, and said degradation releases the pheromone to attract fauna to consume any remaining part of the at least one component.
Thus, when degradation occurs, the degraded section shall be configured to render the operational element 620 or the explosive device 720 inoperable to an extent that should a third party attempt to rewire the degraded communication line (wire), the operational element 620 or the explosive device 720 is still inoperable. This may be accomplished by use of the degradable wire described herein so that the wire at and within at least one of the operational element 620 and the explosive device 720 is also degraded beyond operational use, thus making the explosive device inert. Use of the environmentally degradable wire results in the explosive device or the activation device being further inert to an extent that once the wire is degraded, these components are not functional if removed and then included in another system, apparatus, or device.
As used herein, it is evident that the operational element may also comprise the explosive device. Therefore, these terms shall not be considered limiting as the operational element may comprise other elements within a system. Similarly, the use of apparatus and system may be used interchangeably. Also, though the terms activation device and power source are disclosed, both may be considered a system element which affects a function of the operational element.
The method 900 may also further comprise releasing a pheromone that is combined with at least one of the biodegradable base material and the biodegradable binder as a result of the degradation of at least one of the biodegradable base material and the biodegradable binder to allow for consumption of the at least one component by fauna located in the operational environment, at 930. The method 900 may further comprise initiating degradation of a sealant applied to a surface of the biodegradable base material and the biodegradable binder of the at least one component based on exposure to the environment over the time period, the sealant comprises at least one of a protein and a residue, at 930.
When using an embodiment disclosed herein, at a minimum, electronic connection devices are decomposable in an operational environment (or when exposed to natural elements, such as, but not limited to, water, air, sunlight, and/or biological consumption). As disclosed, the connection may not be an electronic connection that is degradable. Thus, by constructing connectors, or communication channels, from materials which breakdown under the operational environment and/or are consumable by fauna or microorganisms an end result can be achieved which minimizes the physical debris left in the environment after the apparatus, such as, but not limited to, a weapon payload or system, is delivered. The degradable component may not be limited to the connection device, but may also comprise other components of the apparatus, such as, but not limited to, a casing. At a minimum, at least one electronic connection, or communication channel, which is essential to operation of apparatus, is configured as disclosed herein since degradation of the at least one electronic connection or component may result in the apparatus becoming inert.
As such, manufacturers will have the capability to build electronics from materials which will deteriorate and/or dissolve leaving benign residue where the electronics will continue to maintain the current functionality and ruggedness of conventional electronics, but when triggered, be able to degrade partially or completely into their surroundings. From a military perspective, once triggered to dissolve, these electronics would be useless to any enemy who might come across them. Furthermore, if including an explosive component, such electronics will no longer be able to explode, thus not harming non-combatants who may later find the electronics in the operational field.
While various disclosed embodiments have been described above, it should be understood that they have been presented by way of non-limiting examples only. Numerous changes to the disclosed embodiments can be made in accordance with the embodiments herein without departing from the spirit or scope of this disclosure. Thus, the breadth and scope of this disclosure should not be limited by any of the above described embodiments. Rather, the scope of this disclosure should be defined in accordance with the following claims and their equivalents.
Although disclosed embodiments have been illustrated and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. While a particular feature may have been disclosed with respect to only one of several implementations, such a feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting to the disclosed embodiments. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms “including,” “includes,” “having,” “has,” “with,” or variants thereof are used in either the detailed description and/or the claims, such terms are intended to be inclusive in a manner similar to the term “comprising.”
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the embodiments belong. It will be further understood that terms, such as those defined in commonly-used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Furthermore, while embodiments have been described with reference to various embodiments, it will be understood by those having ordinary skill in the art that various changes, omissions and/or additions may be made and equivalents may be substituted for elements thereof without departing from the spirit and scope of the embodiments. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the embodiments without departing from the scope thereof. Therefore, it is intended that the embodiments not be limited to the particular embodiment disclosed as the best mode contemplated, but that all embodiments falling within the scope of the appended claims are considered. Moreover, unless specifically stated, any use of the terms first, second, etc., does not denote any order or importance, but rather the terms first, second, etc., are used to distinguish one element from another.
This application claims the benefit of U.S. Provisional Application No. 61/764,806 filed Feb. 14, 2013, and incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4875950 | Waldock | Oct 1989 | A |
5736669 | Thomas | Apr 1998 | A |
6114164 | Dennis | Sep 2000 | A |
6703660 | Yitzchaik | Mar 2004 | B2 |
6880290 | Mahoney | Apr 2005 | B2 |
7565929 | Bustos et al. | Jul 2009 | B2 |
7686629 | Yu et al. | Mar 2010 | B1 |
8113290 | Sharma et al. | Feb 2012 | B2 |
8585841 | Lubbe | Nov 2013 | B2 |
8850984 | Smylie | Oct 2014 | B2 |
20100018106 | Philbrook | Jan 2010 | A1 |
20110053255 | Smylie | Mar 2011 | A1 |
20110056702 | Sharma et al. | Mar 2011 | A1 |
20110155500 | Smylie | Jun 2011 | A1 |
20110158455 | Kim et al. | Jun 2011 | A1 |
20110319978 | Schaffer | Dec 2011 | A1 |
20120053319 | Reguera | Mar 2012 | A1 |
20120223293 | Borenstein et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
102838784 | Dec 2012 | CN |
2007073109 | Jun 2007 | WO |
WO 2010144016 | Dec 2010 | WO |
WO-2013113058 | Aug 2013 | WO |
Entry |
---|
Sauter et al., “Storage, Mobilization, and Interrelations of Starch, Sugars, Protein, and Fat in the Ray Storage Tissue of Poplar Trees”, Trees vol. 8, pp. 297-304 (1994). |
Tlustos et al., “Exploitation of Fast Growing Trees in Metal Remediation”, M. Mackova et al. (eds.), Phytoremediation Rhizoremediation, Springer Books pp. 83-102 (2006). |
Number | Date | Country | |
---|---|---|---|
61764806 | Feb 2013 | US |