1. Field of the Invention
Embodiments of the present invention relate to a system control unit, a light-emitting diode (LED) driver including the system control unit, and a method of controlling static current for the LED driver. In some embodiments, the LED driver is configured to set a step output current corresponding to current that flows through an LED array using the peak values of each switching interval of current that flows through a power transistor connected to a primary coil of a transformer, and update a gate control signal for controlling the operation of the power transistor using the set step output current.
2. Description of the Related Art
LED lighting refers to a lighting apparatus configured to have static current flow through an LED and maintain constant luminosity. The luminosity of the LED can be adjusted by controlling the amount of static current that flows through the LED. If a mean current flowing through the LED is constant, it is said that the static current is controlled.
Referring to
A full-wave rectifier 111 of the power conversion unit 110 rectifies an AC voltage Vac supplied to the primary side, and a DC input voltage VIN is generated using the rectified voltage through a first capacitor C1. The switching unit 130 includes a power transistor Q1 and a switching resistor RS that are coupled in series. The power transistor Q1 operates in response to a gate control signal VG. The transformer 120 transfers the DC input voltage VIN, generated from the power conversion unit 110, to the secondary side of the transformer 120 according to a turn ratio of the primary winding NP and the secondary winding NS of a coil that forms the transformer 120 depending on the switching operation of the power transistor Q1 connected to a primary coil of the transformer 120. The primary-side zero current detection unit 150 generates a resonant voltage VW into which a value obtained by multiplying the sum of voltage VF that drops to a diode D1 connected to a secondary coil of the transformer 120 and voltage VO that drops to an LED array 160 connected to the secondary side by a ratio of a secondary-side winding NS and an auxiliary winding Na is incorporated in a process in which energy stored on the primary side of the transformer 120 is transferred to the secondary side, in particular, in an interval in which the power transistor Q1 is turned off.
The system control unit 140 includes an output current (IO) estimator 141, a diode turn-on (To) interval estimator 142, a voltage (Vo) estimator 143, and a pulse width modulation (PWM) controller 144. The IO estimator 141 estimates a current IO that flows through the LED array 160 using voltage CS corresponding to a current Ids that flows through the power transistor Q1. The diode turn-on interval estimator 142 estimates a time interval TD in which the diode D1 connected to the secondary coil is turned on using a division voltage VS obtained by dividing the resonant voltage VW at a specific ratio. The Vo estimator 143 estimates voltage VO that drops to the LED array 160 using a time interval TD in which the diode D1 connected to the secondary coil is turned on and a division voltage VS obtained by dividing a feedback voltage VW at a specific ratio. The PWM controller 144 generates the gate control signal VG that determines the amount of static current supplied to the LED array 160 using the voltage VO that drops to the LED array 160.
Referring to
The diode D1 connected to the secondary coil is turned on at the moment when the power transistor Q1 is turned off, and thus the current ID flowing through the diode D1 has a peak value ID
The resonant voltage VW has a negative voltage level when the power transistor Q1 is turned on, but has a voltage level, that is, a value obtained by multiplying the sum of the voltage VF that drops to the diode D1 connected to the secondary coil and the voltage VO that drops to the LED array 160 connected to the secondary side by a ratio of the secondary winding Ns and the auxiliary winding Na at the moment when the power transistor Q1 is turned off and then has a constant resonance characteristic a point of time at which the diode D1 connected to the secondary coil is turned off. Here, the resonance characteristic refers to LC resonance between a parasitic capacitor (not shown), formed between the drain and source terminals of the power transistor Q1 that is turned off, and an inductor that forms the transformer 120.
In the case of the LED driver shown in
Accordingly, embodiments of the present invention have been made in an effort to solve the problems occurring in the related art, and an object of some of these embodiments is to provide a system control unit for controlling a static current supplied to a LED array connected to a secondary coil of a transformer using the peak values of currents that flow through a power transistor, that is, a switching element connected to a primary coil of the transformer.
Another object is to provide an LED driver including the system control unit for controlling a static current supplied to a LED array connected to a secondary coil of a transformer using the peak values of currents that flow through a power transistor, that is, a switching element connected to a primary coil of the transformer.
Yet another object is to provide a method of controlling the static current of an LED driver, which controls static current supplied to an LED array connected to a secondary coil of a transformer using peak values of currents that flow through a power transistor, that is, a switching element connected to a primary coil of the transformer.
In order to achieve one or more of these objects, embodiments of the present invention provide a system control unit included in an LED driver, where the LED driver also includes a switching unit and a transformer. In such embodiments, the switching unit includes a power transistor configured to operate in response to a gate control signal, and a switching resistor placed between the power transistor and a ground voltage. The transformer is configured to transfer an input voltage to a secondary coil of the transformer at a specific ratio in response to a switching operation of the switching unit connected to a primary coil of the transformer. In addition, in such embodiments, the system control unit includes a current peak value arithmetic unit, a step output current setting unit, a mean value arithmetic unit, and a gate control signal update unit. In such embodiments, the current peak value arithmetic unit is configured to detect, for each switching interval in a plurality of switching intervals, a peak value of current flowing through the power transistor. The step output current setting unit is configured to set an amount of a step output current corresponding to current flowing through an LED array for a kth (k is a natural number) switching interval in the plurality of switching intervals, as a peak value of current that flows through the power transistor and that is detected in a (k-1)th switching interval. The mean value arithmetic unit is configured to calculate a static current mean value by averaging set step output currents within a predetermined set time interval. The gate control signal update unit is configured to update the gate control signal using the static current mean value.
Embodiments of the present invention also provide an LED driver having a power conversion unit, a switching unit, a transformer, and a system control unit. In such embodiments, the power conversion unit is configured to generate an input voltage by rectifying a supply voltage of an AC form. The switching unit includes a power transistor configured to operate in response to a gate control signal, and a switching resistor placed between the power transistor and a ground voltage. The transformer is configured to transfer the input voltage or a supply voltage of a DC form to a secondary coil of the transformer at a specific ratio in response to a switching operation of the switching unit connected to a primary coil of the transformer. The system control unit includes a current peak value arithmetic unit, a step output current setting unit, a mean value arithmetic unit, and a gate control signal update unit. In such embodiments, the current peak value arithmetic unit is configured to detect, for each switching interval in a plurality of switching intervals, a peak value of current flowing through the power transistor. The step output current setting unit is configured to set an amount of a step output current corresponding to current flowing through an LED array for a kth (k is a natural number) switching interval in the plurality of switching intervals, as a peak value of current that flows through the power transistor and that is detected in a (k-1)th switching interval. The mean value arithmetic unit is configured to calculate a static current mean value by averaging set step output currents within a predetermined set time interval. The gate control signal update unit is configured to update the gate control signal using the static current mean value.
Embodiments of the present invention also provide a method of controlling a static current of an LED driver, such as the LED driver described in the preceding paragraph. In such embodiments, the method includes a current peak value detection step, a step output current calculation step, a static current mean value calculation step, and a gate control signal update step. The current peak value detection step includes detecting, for each switching interval in the plurality of switching intervals, the peak value of current flowing through the power transistor. The step output current calculation step includes setting an amount of a step output current corresponding to current flowing through the LED array for a kth (k is a natural number) switching interval, as a peak value of current that is detected in a (k-1)th switching interval and flows through the power transistor. The static current mean value calculation step includes calculating a static current mean value by averaging set step output currents belonging to a predetermined set time interval. The gate control signal update step includes updating the gate control signal using the static current mean value.
The above objects and other features and advantages of embodiments of the present invention will become more apparent after reading the following detailed description taken in conjunction with the drawings, in which:
Reference will now be made in greater detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numerals will be used throughout the drawings and the description to refer to the same or like parts.
A core idea of some embodiments of the present invention is to set step output currents using a small number of parameters, that is, peak values of current that flows through a power transistor, that is, a switching element connected to a primary coil, calculate the mean value of static currents by averaging the values of step output currents belonging to a set time interval, and update a gate control signal using the calculated static current mean value.
Referring to
In the present embodiment, a supply voltage supplied to the LED driver 300 is illustrated as being an AC voltage Vac, but is not limited thereto. For example, the supply voltage may be a DC voltage. If the supply voltage is a DC voltage, the LED driver 300 of the present embodiment may not include the power conversion unit 310.
The power conversion unit 310 includes a full-wave rectifier 311 and a first capacitor C1 connected between the output terminal of the full-wave rectifier 311 and a ground GND. The power conversion unit 310 rectifies the AC voltage Vac using the full-wave rectifier 311 and converts the rectified voltage of the first capacitor C1 into the input voltage VIN. The input voltage VIN becomes a DC voltage rarely having a ripple or a DC voltage having a very small ripple when the first capacitor C1 has a high capacitance, but may become a DC voltage having a great ripple when the first capacitor C1 has a low capacitance. The DC voltage having a great ripple includes voltage having a waveform that is substantially similar to the waveform of a rectified voltage. As will be described later, the LED driver 300 of the present embodiment can operate effectively when the input voltage VIN is not only a DC voltage that does not have a ripple or has a small ripple, but also a DC voltage having a great ripple.
The transformer 320 transfers the input voltage VIN to a secondary coil of the transformer 320 at a specific ratio in response to the switching operation of the switching unit 330 connected to the primary coil of the transformer 320. Assuming that the number of turns of the primary coil included in the transformer 320 is NP and the number of turns of the secondary coil included therein is NS, the specific ratio refers to a turn ratio of the number of turns NP of the primary coil and the number of turns NS of the secondary coil.
The switching unit 330 includes a power transistor Q1 configured to operate in response to a gate control signal VG, and a switching resistor RS placed between the power transistor Q1 and the ground GND. When the power transistor Q1 is in a turn-on state, current flows through on the primary side of the transformer 320, energy corresponding to the current is stored in the primary coil of the transformer 320, and the stored energy is transferred to the secondary coil of the transformer 320 according to a ratio of the number of turns of the primary coil and the number of turns of the secondary coil in an interval in which the power transistor Q1 is turned off.
The system control unit 340 detects the peak value of current that flows through the power transistor Q1 in each of the switching intervals of the switching unit 330, sets a step output current IO
In order to perform the above functions, the system control unit 340 includes a current peak value arithmetic unit 341, a step output current setting unit 342, a mean value arithmetic unit 343, and a gate control signal update unit 344.
The current peak value arithmetic unit 341 detects the peak value of current that flows through the power transistor Q1 in each switching interval. The step output current setting unit 342 sets the amount of a step output current IO
The mean value arithmetic unit 343 calculates a static current mean value IO
The set time interval may be set according to experiences or randomly, but it is preferably determined by the frequency of an AC voltage Vac if the AC voltage Vac rectified by the full-wave rectifier 311 has been converted into the input voltage VIN of a DC form by the first capacitor C1 having a high capacitance.
Referring to
In the current peak value detection step 420, the peak value of current that flows through the power transistor Q1 in each switching interval is detected. In the step output current calculation step 430, the amount of a step output current IO
In the predetermined set time interval determination step 440, if a plurality of the consecutive step output currents IO
In the static current mean value calculation step 450, the static current mean value IO
Here, a method of estimating current flowing through the power transistor Q1 for the predetermined set time interval and the specific ratio are the same as those of
At least one of the current peak value detection step 420, the step output current calculation step 430, the predetermined set time interval determination step 440, the static current mean value calculation step 450, and the gate control signal update step 460 is repeatedly performed while the LED driver 300 supplies a static current to the LED array 350.
In
Referring to
The current Ids that flows through the power transistor Q1 at the sampling moment will become the peak value Ipeak of the current flowing through the power transistor Q1. Here, the peak value Ipeak of the sampled current flowing through the power transistor Q1 is incorporated into the next switching interval. Referring to
From
The static current mean value IO
Embodiments of the present invention can be effective when the input voltage VIN is not only DC, but also AC, and a reason thereof is described below.
Referring to
If the input voltage VIN is a DC voltage having a great ripple, voltage having a waveform of a rectified voltage form is applied to the transformer 320. In general, the AC current Vac supplied to the LED driver has a frequency 50-60 Hz. The gate control signal VG for controlling the operation of the power transistor Q1 has a frequency of several tens of KHz, and thus the current Ids flowing through the power transistor Q1 has a form, such as that shown in
In this case, current flowing through the secondary side becomes the product of the peak value Ipk and a ratio of the number of turns of the primary coil and the number of turns of the secondary coil of the transformer 320. Accordingly, a power factor has to be corrected because current on the secondary side has the same form as current on the primary side. In the prior art, a complicated operation for correcting the power factor must be performed every switching interval because the turn-on and turn-off cycle of the power transistor Q1 is varied.
In accordance with an embodiment of the present invention, this power factor correction is not necessary because the mean value of currents supplied to the LED array 350 is calculated.
In the LED driver and the method of controlling the static current of the LED driver in accordance with some embodiments of the present invention, the gate control signal is controlled using one parameter, that is, the peak value of current that flows through the power transistor, that is, a switching element connected to the primary coil. Accordingly, the hardware necessary for operation is simple because the operation itself is not complicated.
Furthermore, if an input current does not have a DC form, but an AC form, a static current on the secondary side can be effectively controlled. In this case, a power factor can be improved as compared with a case where the input current has a DC form.
Although some embodiments of the present invention have been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions, and substitutions are possible, without departing from the scope and the spirit of the invention as disclosed in the accompanying claims.
This non-provisional patent application claims priority to the provisional patent application having U.S. Ser. No. 61/703,712, filed on Sep. 20, 2012, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61703712 | Sep 2012 | US |