The present invention relates generally to methods and apparatus for providing oxygen to a patient's blood. More particularly the device and method incorporate the use of a portable gas exchange device and associated equipment that can supplement the oxygenation process performed by the lungs of the patient.
The traditional method of blood oxygenation is called ECMO for extracorporeal membrane oxygenation. In general such devices include a pump that extracts blood from the body, passes it through a membrane oxygenator and returns the blood to the patient's circulation. The presence of the oxygenator and the extracorporeal pump permit the system to perform as a heart/lung bypass and such devices are widely used to perform open heart or still heart surgery. Such devices have also been used to treat patients in respiratory failure, although such use is minimal.
In general the prior art device will include a permeable membrane with one side exposed to a gas containing oxygen and the other side exposed to the blood. Small pores within the membrane permit gas exchange between the blood and the gas side of the system effectively functioning as a “lung.”
The device and method of this invention can be used to treat the approximately 150,000 cases of respiratory failure that occur each year in the United States. Many of these cases are currently treated with positive pressure ventilation (PPV). Although PPV is useful it is difficult to control and patents may suffer Barotraumas, Sheertraumas, Volutrauma, Biotrauma, and ventilator associated pneumonia.
By way of contrast the present invention relies on an oxygen rich carrier fluid to exchange gases including oxygen through a membrane. In some configuration the membrane separates the patients blood from the gas carrier fluid. The liquid to liquid oxygen transfer process uses a membrane to mediate the oxygen transfer process and resembles a “gill” rather than a “lung”.
Throughout the several figures of the drawings identical reference numerals indicate equivalent structure wherein
In the figure the patient 10 is cannulated on the venous side (V) through cannula 12, which extracts blood. Ultimately this blood is oxygenated and returned to the patient through cannula 14, also on the venous side. Although arterial to venous (A to V) cannulation is possible, it is preferred to operate V to V. The blood taken from the patient is passed through a oxygenator 16 chamber, which has a “blood side” inlet 17 and a fluid oxygen carrier side inlet 18. In operation oxygenated carrier fluid is passed through the membrane oxygenator from the inlet side 18 to the outlet 19 at a rate sufficient to increase the partial pressure of oxygen in the patient's blood. The device need not function to completely supplant the lungs for the patient but rather may be used to increase the amount of oxygen available for metabolism while the lungs are healing from a disease or acute injury. In the figure the pump 24 meters, regulates and controls the rate of blood flow through the system, however, it should be recognized that the pressure drop across the pump is quite modest and in fact it may be possible to drive blood through the system without a pump, relying solely upon the patient's cardiac output. Returning to the figure the oxygen carrier liquid may be pumped through the membrane oxygenator and discarded as shown in
An experimental version of the device and method have been carried out using a dialysis filter as the gas exchanger. Hemopure was used as the oxygen carrier, which is a commercially available blood substitute product. A peristaltic pump pulls venous blood into the system and returns the blood into the venous system. The pre membrane blood pH was 6.4 while the post membrane pH was 7.016, the partial pressure of carbon dioxide pre membrane was pCO2 71 mm Hg and 16 mm Hg post membrane. The partial pressure of oxygen pO2 was 37 mm Hg and pre membrane and 250 mm Hg after the membrane. These figures show significant improvement over values of Co2 and pH over prior art techniques.