Larger bandwidth for data communication while using antennas is an ever growing need. Due to the fact that antennas' dishes are many times limited in size due to deployment problems and logistics. For example when an antenna is deployed in space it is required to be folded to a predefined folded size in order to fit into the space craft out of which it would be deployed. One preferred solution for achieving larger size of the antenna is using deployable antenna reflectors. However, in many cases when folding or spreading antenna reflectors, and in some cases even when unhampered, those folded and then deployed reflectors are deformed and imperfect and hence cause issues such as incorrect antenna illumination footprints, degeneration of bandwidth etc.
Such issues require attention after the deployment of the antenna however in some cases the antenna is not easily or at all unreachable for calibration of the antenna and/or correcting of deployment defects.
Hence, improved systems and methods for improving the performance of deployed antennas is a long felt need.
An antenna assembly is presented, tunable from remote, comprising a main reflector, a sub-reflector associated with the main reflector, and a feed illuminating the main reflector via the sub-reflector, or to transmit transmission to the main reflector via the sub-reflector. The sub-reflector comprising a plurality of actuators disposed over and attached to its outer face, each of the plurality of actuators is adapted to locally deform the surface of the sub-reflector adjacent to that actuator in response to a change in the actuator position.
In some embodiments the plurality of actuators in the antenna assembly are disposed mutually evenly spaced over a selected area of the outer face of the sub-reflector.
In some additional embodiments each of the actuators in the antenna assembly is configured to change its position in response to a control signal.
In still further embodiment the antenna assembly further comprising a control unit. The control unit comprising a controller, a memory unit, a non-transitory storage unit and an input/output unit.
In some embodiments the antenna assembly further comprising a range detector located adjacent to the feed and adapted to scan and record values of distance from the range detector to selected points on the inner surface of the main reflector and to store these values in the non-transitory storage unit.
A sub-reflector for use in an antenna assembly is disclosed comprising a plurality of actuators disposed over and attached to its outer face, each of the plurality of actuators is adapted to locally deform the surface of the sub-reflector adjacent to that actuator in response to a change in the actuator position and a control unit adapted to control the position of each of the plurality of the actuators.
According to some embodiments the plurality of actuators are disposed in the sub-reflector mutually evenly spaced over a selected area of the outer face of the sub-reflector.
According to further embodiments the control unit of the sub-reflector comprising a controller, a memory unit, a non-transitory storage unit and an input/output unit.
According to yet further embodiments the non-transitory storage unit has stored thereon software program that when executed by the controller, causes the input/output unit to provide control signals to the actuators.
According to still further embodiments the sub-reflector further comprising a Reflector Imperfections Map (RIM) stored in the non-transitory storage unit.
According to yet further embodiment the plurality of actuators in the antenna assembly comprise a single actuator that is adapted to move the sub-reflector about a pivot point in angular movement in at least one of two perpendicular planes. The single actuator is further adapted to move the sub-reflector along a linear axis coinciding with the line of crossing of the two perpendicular planes closer to or farther from the main reflector. According to some embodiments the single actuator is further adapted to rotate the sub-reflector about the linear axis.
A method for tuning an antenna assembly is disclosed comprising a main reflector, a sub-reflector and a feed. The method comprising receiving initial deforms map of a main reflector, receiving at the main reflector steady transmission and recording the signal received at the feed, activating an actuator disposed on the outer surface of the sub-reflector and adapted to locally deform the curvature of the sub-reflector there until the signal received at the feed reaches a maximum value, holding the actuator and recording its stratus, repeating sequentially the previous step for each of the actuators disposed on the sub-reflector; and storing the values representing the status of the actuators in a storage in a set indicative of actuators status for maximum-of-maximum.
A method for tuning an antenna assembly is disclosed, the antenna assembly comprises a main reflector, a sub-reflector and a feed, the sub-reflector is provided with a plurality of actuators adapted to locally deform the curvature of the sub-reflector in response to an activation signal, the method comprising deploying a plurality of transmission sensors at a target area of the transmission illumination the antenna assembly, activating transmission from the antenna assembly, measuring and recording level of transmission power at each of the plurality of sensors along with the location of the respective sensor, extracting actual antenna assembly illumination footprint map from the recorded values, comparing the extracted illumination footprint map to a desired footprint, and providing activation signals to at least some of the actuators to deform the curvature of the sub-reflector so that the footprint of the illumination by the antenna assembly at the target area matches the desired footprint.
These, additional, and/or other aspects and/or advantages of the present invention are set forth in the detailed description which follows; possibly inferable from the detailed description; and/or learnable by practice of the present invention.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
The phrases “at least one”, “one or more”, and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C”, “at least one of A, B, or C”, “one or more of A, B, and C”, “one or more of A, B, or C” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together. The term ‘plurality’ refers hereinafter to any positive integer (e.g, 1, 5, or 10).
The term ‘footprint’ refers hereinafter to the remote area that the antenna's transponders offer coverage of a target area (whether receiving or transmitting) wherein the signal strength received at or transmitted from the target area, respectively, is sufficient.
The term ‘deformed’ refers hereinafter to any defect, misalignment or not having the normal, natural or preferred shape or form.
The term “antenna assembly tuning” refers hereinafter to actions or measures taken with respect to an antenna in order to affect its performance, such as affecting or changing its gain, its operational bandwidth, its footprint, etc.
Although embodiments of the invention are not limited in this regard, discussions utilizing terms such as, for example, “processing,” “computing,” “calculating,” “determining,” “establishing”, “analyzing”, “checking”, or the like, may refer to operation(s) and/or process(es) of a computer, a computing platform, a computing system, or other electronic computing device, that manipulates and/or transforms data represented as physical (e.g., electronic) quantities within the computer's registers and/or memories into other data similarly represented as physical quantities within the computer's registers and/or memories or other information non-transitory storage medium that may store instructions to perform operations and/or processes. The term set when used herein may include one or more items. Unless explicitly stated, the method embodiments described herein are not constrained to a particular order or sequence. Additionally, some of the described method embodiments or elements thereof can occur or be performed simultaneously, at the same point in time, or concurrently.
Usually, as depicted in
In many cases, the main reflector in an antenna assembly need to be deployed on-site since due to its size and the available transporting means it needs to be folded when transported to the installation site. When the folded main antenna reaches the installation site it will be deployed or assembled from a folded or dismantled position. Due to transportation difficulties and/or during the deployment and/or assembly some defects or imperfections in the physical and/or electrical characteristics of the main antenna may be caused or revealed. In many of those cases, such when the deployment is taking place in a rural location or in space, on-site correction, rectification or ordering of replacement antenna reflector may be almost impossible, if not completely impossible. As a result performance of the defected antenna may be degraded compared to the planned performance, causing lower antenna gain, lower transmission/receipt bandwidth, etc.
A system and method according to embodiments of the present invention may allow compensating of the main reflector defects and imperfections by adapting and/or manipulating the shape of the reflecting surface of the sub-reflector, such as sub-reflector 102. This may allow the restoration of the antenna performance to substantially those of anon-defected antenna and continuing the use of the main reflector even with its defects and imperfections.
An antenna having perfectly shaped main antenna reflector (i.e. non-defected) with properly shaped sub-reflector and correctly located sub-reflector and feed, a transmission hitting the main antenna reflector from the expected direction will be reflected towards the sub-reflector and from it to the feed, for every transmission line hitting the main antenna reflector from the right direction (also denoted the right inbound transmission direction). Reference is made to
Reference is made now to
As described above, main reflector of an antenna assembly, such as main reflector 101, may suffer of mechanical defects, deforms and other mechanical configuration imperfections due to transport impacts or on-site deployment from a folded position. Imperfections of a main reflector may also occur due to sharp and large temperature changes the reflector is subjected to, for example when deployed in space, due to being impinged by space dust or small rocks or due to hits from space craft's debris. Maintenance of such main reflector after deployment may be very hard or completely impossible.
The total performance of antenna assembly, such as antenna assembly 100 or 100A, may be handled to compensate for main reflector imperfections, according to embodiments of the present invention, by manipulating the specific concave shape of the sub-reflector, e.g. sub-reflector 102. Imperfections of the main reflector may be located, measured, assumed or evaluated in various ways. For example the main reflector of an antenna assembly may be measured after production for finding and mapping deviation of its curvature from the planned curvature, for example by measuring the curvature of the produced main reflector and documenting locations of deviation and the nature of the deviation. According to another embodiment, expected imperfections of a main reflector that is made to be folded, transported to the installation location and then be deployed, may be folded, subjected to transportation typical damages and then be deployed, where all of these operations may take place locally where the main reflector is manufactured. In case where the antenna assembly is made to be deployed, for example, in outer space, the main reflector may be deployed in a facility simulating very low air pressure and even zero gravity. After the main reflector has been deployed its imperfections may be evaluated and/or measured. For example, a map of deviation of the reflector shape from the required shape may be drawn. Such map of imperfections may be recorded and stored digitally. The map may include locations on the main reflector where deviations were found, and the nature of the deviation. According to some embodiments, this digitally stored map of imperfections (deviations of the concave of the reflector from its desired form) may be defined as Reflector Imperfections Map (RIM). According to some embodiments, based on the data of the RIM, required changes in the form of the concave of the sub-reflector may be calculated, so that the total performance of the antenna assembly, as measured at the feed in case of incoming transmission, will be as close as possible to an antenna assembly having un-defected main reflector. Such performance may be achieved when the maximal gain of the antenna assembly for the received transmission, is as close as possible to the gain that would have been received by the antenna assembly having a perfectly shaped main reflector.
This requirement may be achieved, according to embodiments of the present invention, by deforming the concave shape of the sub-reflector so as to direct as much of the transmission power towards the feed unit, with as less as possible out-of-phase received transmission and/or as less as possible cross-polarization received transmission at the feed unit. Antenna assembly, which comprise at least one sub-reflector that is adapted to change its curvature according to, for example, required corrections to deforms in the main reflector may be denoted adaptive antenna system.
Reference is made now to
Reference is made now to
Reference is made now to
A bundle of transmission lines 202, for example as reflected from main reflector such as main reflector 102A, may hit location 210A on the concave surface of sub-reflector 210. The curvature of sub-reflector 210 may be deformed by the activation of actuator 220A. When actuator 220A is activated to locally push the surface of sub-reflector inwardly, as schematically depicted by line, 210CH1, the reflected transmission lines 202C may form a local dispersing bundle due to the local convex form of the surface of sub-reflector 210. When actuator 220A is activated to locally pull the surface of sub-reflector inwardly, as schematically depicted by line 210CH2, the reflected transmission lines 202B may form a local converging bundle focusing locally at local focus point 215A, due to the local concave form of the surface of sub-reflector 210.
In some embodiments of the invention, an adaptive antenna system may comprise several elements, for example a main reflector, such as reflector 100, or an array of reflectors; a feed assembly comprising a feed element, such as feed unit 103 or an array of feed elements 103 and a sub-reflector, such as sub-reflector 102/200 or an array of sub-reflectors 102/200. The system may further comprise computing device or devices and optionally feedback device or devices. Such a system may be deployed in its designated location and the feedback device may be deployed at the remote location that the antenna is targeting to illuminate or is directed to receive transmissions from. The system's sub-reflector may further be adapted to be manipulated in order to adjust the illumination on or from the main reflector, for example as described above.
Correction of Main Reflector Deforms Without Remote Feedback Devices
An adaptive antenna system may be deployed, installed and operated in remote locations or in locations the access to the adaptive antenna system there is very hard, expensive or otherwise non-profitable or impossible, such as satellite antenna deployed in space, a remote automatic transmission station located in a location with hard access, etc. An adaptive antenna system may have, according to some embodiments, at least one transmission channel with an operator, a person in charge, a computing facility accessible by a corresponding expert, and the like.
Reference is made now to
Computing unit 320 may include a controller 324 that may be, for example, a central processing unit processor (CPU), a chip or any suitable computing or computational device, an operating system 325, a memory 326, an executable code stored in the memory, non-transitory storage 327, and input/output devices 322. Controller 324 may be configured to carry out methods described herein, and/or to execute or act as the various modules, units, etc. More than one computing device 320 may be included in a system according to embodiments of the invention, and one or more computing devices 320 may act as the various components of a system. For example, by the executing executable code stored in memory 326, controller 324 may be configured to carry out a method of correcting deforms or defects in a main antenna of antenna system 310.
Operating system 325 may be or may include any code segment (e.g., one similar to the executable code described above) designed and/or configured to perform tasks involving coordination, scheduling, arbitration, supervising, controlling or otherwise managing operation of computing unit 320, for example, scheduling execution of software programs or enabling software programs or other modules or units to communicate. Operating system 325 may be a commercial operating system, a proprietary operating system or a combination thereof.
Memory 326 may be or may include, for example, a Random Access Memory (RAM), a read only memory (ROM), a Dynamic RAM (DRAM), a Synchronous DRAM (SD-RAM), a double data rate (DDR) memory chip, a Flash memory, a volatile memory, a non-volatile memory, a cache memory, a buffer, a short term memory unit, a long term memory unit, or other suitable memory units or storage units. Memory 120 may be or may include a plurality of, possibly different memory units. Memory 120 may be a computer or processor non-transitory readable medium, or a computer non-transitory storage medium, e.g., a RAM.
The executable code may be any executable code, e.g., an application, a program, a process, task or script. The executable code may be executed by controller 324 possibly under control of operating system 325. For example, the executable code may be an application that manages a process for compensating for defects in main antenna of antenna system 310, as described herein. A system according to embodiments of the invention may include a plurality of executable code segments similar to the executable code described above, that may be loaded into memory 326 and cause controller 324 to carry out methods described herein.
According to embodiments of the present invention, transmission 302 received by antenna system 310 may be collected at the feed unit 310C and signals carried by this transmission may be provided to computing unit 320 via communication channel 315. The signals in transmission 302 may carry, according to some embodiments, data indicative of the power of transmission at the transmitting station. When such data is transmitted it may be extracted and stored in computing unit 320. In other cases such data may not be included in the transmission. When no data indicative of the power of transmission at the transmitting station is transmitted a process based only on the power of the received signals at the feed 310C will be performed by computing unit 320. Assuming transmission 320 having fixed transmission power is received at antenna system 310 and the collected signal at feed 310C is communicated to computing unit 320.
Absent any information indicative of the total performance of antenna system 310 other than the power of signals received at feed 310C, computing device 320 may perform the following process. When signals are received at feed 310C and communicated to computing unit 320 the power of the signals SIGP0 is recorded. In the next step a first actuator 310BACT1 from the array of actuators 310BACT is selected computing system 320 sends control signal to slightly change locally the curvature of sub-reflector 310B. The change may be as small as 1/N where N is the number of discrete steps that may be performed by an actuator from actuators array 310BACT. In some embodiments the value of such step may be 220AD/N, and it should comply with the general requirement of 1/100 of the operational wavelength. In some embodiments the value of N may be in the range of 50-500. According to some embodiments the initial direction of this change (in or out bound) and its magnitude may be selected randomly. In other embodiments these values may be calculated based on previous such processes and the effect changes made during these previous processes made. In other embodiments these values may be calculated based on the Reflector Imperfections Map (RIM) information that may be pre-stored in the memory unit or storage unit of computing unit 320.
The change in the power of the signal received at feed 310C is recorded and another change is performed by actuator 310BACT1 and its effect on the power of the received signal is again recorded. This process may be repeated until a maximum of the received power, denoted PMAX1, is achieved. The position of actuator 310BACT1 is recorded and associated with the value PMAX1.
This process may be repeated for all actuators 310BACTm for values 1<m<M, where M is the number actuators. Once this process terminates and terminal values PMAXm for 1<m<M are recorded, this set of values is denoted updated max-of-max (UMOM) for antenna system 310. It will be noted that the actual order of actuators, whether selected one-by-one along an outer circle then restarting with an inner circle (herein denoted circular-from-out-to-center), or beginning from the center outwardly (herein denoted circular-from-center-out), or beginning along a radial line from out to center and then picking a neighbor radial (herein denoted radial-from-out-to-center) or vise versa (denoted radial-center-to-out), or any other scheme—such scheme will be stored with the associated resulting received signal power. Accordingly, the performance of each of the schemes may be compared and the scheme that yields maximum received power may be selected.
When scheme of activation of actuators 310BACTm is calculated or selected several considerations may be brought in. one such consideration is the effect of out-of-phase transmission lines.
When the transmission wavelength is in the millimetric range or less, a dent deformation of the main reflector having depth or protrusion in the order of magnitude of one millimeter or less, the transmission line reflected from this defected area of the main antenna may be received at the feed out-of-phase with regard to the majority of received transmission lines reflected, for example, from non-defected locations on the main reflector, subsequently causing reduction of the total received power of the signal.
In another example, transmission lines reflected from defected locations on the main reflector may cause cross-polarization to some of the transmission lines received at the feed of the antenna system, subsequently causing also reduction of the total received power of the signal.
In some other example both phenomena may occur concurrently thus reducing the total received power of the signal at the feed even further.
Planning and/or performing of the above described process for arriving at the UMOM values may take into consideration the effect of out-of-phase and cross-polarization phenomena in order to receive better results, by searching for minimum value of each, denoted herein MINOOP and MINCP respectively.
According to some embodiments the computations associated with extraction of indication of defects and imperfections in the main reflector from signals received from the antenna assembly, and providing control signals to the actuators to compensate for such defects may be done remotely from the location where the antenna assembly is deployed. Reference is made to
Correction of Main Reflector Deforms and Forming Desired Footprint with Remote Feedback Devices
In order to ensure that a remotely deployed antenna illuminates a desired footprint, for example on the earth, and/or in order to locate defects and imperfections in the main reflector feedback devices may be deployed in the target area. Several on or more feedback devices may be utilized. Reference is made to
According to some embodiments, such map AAP may be used for mapping the actual performance of an antenna that has defects in its main reflector, in order to calibrate the total performance of the antenna assembly base on its actual performance as measured its target area.
In a calibration process according to some embodiments, the remotely deployed antenna may be instructed to illuminate (transmit) the target area, the feedback devices 404 may measure the received transmission power and this information may be compiled into a local AAP. This mapping may be compared to a calculated footprint of a non-defected antenna located where the measured antenna is and illuminating the target area 450. Form this comparison the location and nature of defects in the main reflector of the measured antenna may be calculated. The comparison may be done in a computing unit located at the remote antenna, or in a computing unit located remotely from the antenna. These calculations may be translated into correction vector that will be communicated to the actuators of the sub-reflector of the measured antenna. In further embodiments, several illumination footprint characteristics may be measured and recorded for further use. The system's computing device may receive the radiation footprint information and may further calculate, determine and locate the defected sectors in the main reflector using, for example, the Fourier series and transform and Nyquist-Shannon sampling theorem.
According to further embodiments measured illumination footprint of an antenna may be used for shaping the form of the footprint. Shaping of a footprint to deviate from the footprint naturally formed by the illuminating antenna may be desired, for example, in order to make sure that the transmission energy is not directed to locations where there are no users requiring the transmission of the antenna, or in order to limit the transmission to places where authorized users are located and prevent this transmission from non-authorized users located in other places.
Reference is made now to
Correction of Main Reflector Deforms Based on Geometric Measurements of the Main Reflector
Defects and imperfections of a main reflector of an antenna assembly deployed remotely may be measured on-site using geometric measuring device capable of measuring the form of the main reflector of the antenna assembly. Reference is made now to
According to yet further embodiments, actuators of a sub-reflector, such as subreflector 200 of
Tuning Performance Parameters of Antenna Assembly
According to embodiments of the present invention performance parameters of an antenna assembly may be tuned or re-tuned to achieve certain changes of the antenna assembly performance. Reference is made now to
A process for compensating main reflector deforms by way of changing the position of actuators of a sub-reflector according to a certain scheme may comprise the following stages, as depicted in
A process for compensating main reflector deforms or for forming a desired antenna illumination footprint based on received transmission sensors on the ground, may comprise the following stages, as depicted in
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2015/051176 | 12/3/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62087821 | Dec 2014 | US |