System for a surveillance marker in robotic-assisted surgery

Information

  • Patent Grant
  • 11857266
  • Patent Number
    11,857,266
  • Date Filed
    Thursday, December 20, 2018
    5 years ago
  • Date Issued
    Tuesday, January 2, 2024
    11 months ago
Abstract
Devices, systems, and methods for providing a surveillance marker configured to detecting movement of a dynamic reference base attached to a patient a robot-assisted surgical procedure are provided. The surveillance marker and the dynamic reference base are connected to a bony structure independent of each other.
Description
FIELD OF THE INVENTION

The present disclosure relates to surveillance marker implementation for robot-assisted surgical techniques.


BACKGROUND OF THE INVENTION

Various medical procedures require the accurate localization of a three-dimensional position of a surgical instrument within the body in order to effect optimized treatment. For example, some surgical procedures to fuse vertebrae require that a surgeon drill multiple holes into the bone structure at specific locations. To achieve high levels of mechanical integrity in the fusing system, and to balance the forces created in the bone structure, it is necessary that the holes are drilled at the correct location. Vertebrae, like most bone structures, have complex shapes including non-planar curved surfaces making accurate and perpendicular drilling difficult.


Conventionally, using currently-available systems and methods, a surgeon manually holds and positions a drill guide tube by using a guidance system to overlay the drill tube's position onto a three dimensional image of the anatomical structures of a patient, for example, bone structures of the patient. This manual process is both tedious, time consuming, and error-prone. Further, whether the surgery can be considered successful largely depends upon the dexterity of the surgeon who performs it. Thus, there is a need for the use of robot assisted surgery to more accurately position surgical instruments and more accurately depict the position of those instruments in relation to the anatomical structures of the patient.


Currently, limited robotic assistance for surgical procedures is available. For example, certain systems allow a user to control a robotic actuator. These systems convert a surgeon's gross movements into micro-movements of the robotic actuator to more accurately position and steady the surgical instruments when undergoing surgery. Although these systems may aid in eliminating hand tremor and provide the surgeon with improved ability to work through a small opening, like many of the robots commercially available today, these systems are expensive, obtrusive, and require a cumbersome setup for the robot in relation to the patient and the user (e.g., a surgeon).


In some robotic-assisted systems, registration techniques may be used in order to properly track surgical instruments in relation to 2D and/or 3D images of the patient's target anatomy. As previously discussed in parent applications to the present disclosure (listed above), a dynamic reference base (DRB) may be physically attached to bony structures of a patient. After registration of the markers to images of the patient's anatomy, the DRB may be used as a reference point in order to properly display the position of navigated surgical instruments in relation to images of the patient's anatomy. In the event the DRB is shifted or dislodged, the registration process may need to be reinitiated so ensure proper registration and that the visual display of the navigated instruments relative to images of the patient's anatomy are accurate to real-life movements of the instruments.


One way to determine if the DRB has been dislodged or move is through the use of a surveillance maker. The use of surveillance makers has been previously described in U.S. patent application Ser. No. 13/294,505 the contents of which are incorporated herein by reference. The surveillance marker is a single tracked marker attached to the patient in a location other than the location of the DRB that tracks patient position. If the patient is moved relative to the tracking cameras, the surveillance marker and DRB would be expected to move together by the same amount, with no relative movement between DRB and surveillance marker. However, movement of the surveillance marker relative to tracking markers on the DRB is an indicator that the DRB may have been accidentally dislodged.


The surveillance marker may require additional preparation and surgical incision of the patient at the location where the surveillance marker is to be applied. Thus, there is a need to allow a surgeon to attach the surveillance marker to the patient using the same incision as was used for DRB placement. To improve functionality, the surveillance marker may not rigidly interface with the DRB.


Accordingly, there exists a need for a surveillance marker that does not rigidly interface with the DRB while still effectively detecting DRB dislodgment. This may be accomplished by the present disclosure by attaching the surveillance marker to bone near the DRB. For example, having the surveillance marker on a post that does not touch the DRB.


SUMMARY OF THE INVENTION

To meet this and other needs, devices, systems, and methods for detecting the presence of unintended movement of a surgical instrument during a surgical procedure are provided.


According to one exemplary embodiment, the present disclosure provides a system for checking accuracy of registration of a patient to a surgical robot. The system includes a dynamic reference base including at least one array marker, a dynamic reference base post connected to the dynamic reference base, a surveillance marker disposed at a predetermined distance from the dynamic reference base; and a surveillance marker post connected to the surveillance marker and disposed independent of the dynamic reference base post. The surveillance marker post and the dynamic reference base are attached to different portions of a bony structure.


According to another exemplary embodiment, the present disclosure provides a system for accuracy of registration of a patient to a surgical robot. The system comprising a dynamic reference base including at least one array marker, a dynamic reference base post associated with the dynamic reference base, a surveillance marker disposed at a predetermined distance from the dynamic reference base, a surveillance marker post associated with the surveillance marker; and a temporary grouping element configured to receive the surveillance marker post and the dynamic reference base post. The surveillance marker post and the dynamic reference base are attached to different portions of a bony structure while received in the temporary grouping element. The temporary grouping member may be configured to be removed from the surveillance marker post and dynamic reference base post after attachment to the bony structure.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention and the following detailed description of certain embodiments thereof may be understood by reference to the following figures:



FIG. 1 is an overhead view of a potential arrangement for locations of the robotic system, patient, surgeon, and other medical personnel during a surgical procedure;



FIG. 2 illustrates the robotic system including positioning of the surgical robot and the camera relative to the patient according to one embodiment;



FIG. 3 illustrates a surgical robotic system in accordance with an exemplary embodiment;



FIG. 4 illustrates a portion of a surgical robot in accordance with an exemplary embodiment;



FIG. 5 illustrates a block diagram of a surgical robot in accordance with an exemplary embodiment;



FIG. 6 illustrates a surgical robot in accordance with an exemplary embodiment;



FIGS. 7A-7C illustrate an end effector in accordance with an exemplary embodiment;



FIG. 8 illustrates a surgical instrument and the end effector, before and after, inserting the surgical instrument into the guide tube of the end effector according to one embodiment;



FIGS. 9A-9C illustrate portions of an end effector and robot arm in accordance with an exemplary embodiment;



FIG. 10 illustrates a dynamic reference array, an imaging array, and other components in accordance with an exemplary embodiment;



FIG. 11 illustrates a method of registration in accordance with an exemplary embodiment;



FIG. 12A-12B illustrate embodiments of imaging devices according to exemplary embodiments;



FIGS. 13A-13B illustrate a surveillance marker in accordance with exemplary embodiments of the present disclosure;



FIGS. 14A-14B illustrate a surveillance marker in accordance with exemplary embodiments of the present disclosure; and



FIG. 15 illustrates a surveillance marker in accordance with an exemplary embodiment of the present disclosure.



FIGS. 16A and 16B illustrates a surveillance marker in accordance in one embodiment of the present disclosure.



FIGS. 17A and 17B illustrates a surveillance marker in accordance with an exemplary embodiment of the present disclosure.



FIG. 18 illustrates yet another embodiment of a multiple surveillance markers in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that the present disclosure is not limited in its application to the details of construction and the arrangement of components set forth in the description herein or illustrated in the drawings. The teachings of the present disclosure may be used and practiced in other embodiments and practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.


The following discussion is presented to enable a person skilled in the art to make and use embodiments of the present disclosure. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the principles herein can be applied to other embodiments and applications without departing from embodiments of the present disclosure. Thus, the embodiments are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the embodiments. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of the embodiments.


Turning now to the drawing, FIGS. 1 and 2 illustrate a surgical robot system 100 in accordance with an exemplary embodiment. Surgical robot system 100 may include, for example, a surgical robot 102, one or more robot arms 104, a base 106, a display 110, an end effector 112, for example, including a guide tube 114, and one or more tracking markers 118. The surgical robot system 100 may include a patient tracking device 116 also including one or more tracking markers 118, which is adapted to be secured directly to the patient 210 (e.g., to the bone of the patient 210). The surgical robot system 100 may also utilize a camera 200, for example, positioned on a camera stand 202. The camera stand 202 can have any suitable configuration to move, orient, and support the camera 200 in a desired position. The camera 200 may include any suitable camera or cameras, such as one or more infrared cameras (e.g., bifocal or stereophotogrammetric cameras), able to identify, for example, active and passive tracking markers 118 in a given measurement volume viewable from the perspective of the camera 200. The camera 200 may scan the given measurement volume and detect the light that comes from the markers 118 in order to identify and determine the position of the markers 118 in three dimensions. For example, active markers 118 may include infrared-emitting markers that are activated by an electrical signal (e.g., infrared light emitting diodes (LEDs)), and passive markers 118 may include retro-reflective markers that reflect infrared light (e.g., they reflect incoming IR radiation into the direction of the incoming light), for example, emitted by illuminators on the camera 200 or other suitable device.



FIGS. 1 and 2 illustrate a potential configuration for the placement of the surgical robot system 100 in an operating room environment. For example, the robot 102 may be positioned near or next to patient 210. Although depicted near the head of the patient 210, it will be appreciated that the robot 102 can be positioned at any suitable location near the patient 210 depending on the area of the patient 210 undergoing the operation. The camera 200 may be separated from the robot system 100 and positioned at the foot of patient 210. This location allows the camera 200 to have a direct visual line of sight to the surgical field 208. Again, it is contemplated that the camera 200 may be located at any suitable position having line of sight to the surgical field 208. In the configuration shown, the surgeon 120 may be positioned across from the robot 102, but is still able to manipulate the end effector 112 and the display 110. A surgical assistant 126 may be positioned across from the surgeon 120 again with access to both the end effector 112 and the display 110. If desired, the locations of the surgeon 120 and the assistant 126 may be reversed. The traditional areas for the anesthesiologist 122 and the nurse or scrub tech 124 remain unimpeded by the locations of the robot 102 and camera 200.


With respect to the other components of the robot 102, the display 110 can be attached to the surgical robot 102 and in other exemplary embodiments, display 110 can be detached from surgical robot 102, either within a surgical room with the surgical robot 102, or in a remote location. End effector 112 may be coupled to the robot arm 104 and controlled by at least one motor. In exemplary embodiments, end effector 112 can comprise a guide tube 114, which is able to receive and orient a surgical instrument 608 (described further herein) used to perform surgery on the patient 210. As used herein, the term “end effector” is used interchangeably with the terms “end-effectuator” and “effectuator element.” Although generally shown with a guide tube 114, it will be appreciated that the end effector 112 may be replaced with any suitable instrumentation suitable for use in surgery. In some embodiments, end effector 112 can comprise any known structure for effecting the movement of the surgical instrument 608 in a desired manner.


The surgical robot 102 is able to control the translation and orientation of the end effector 112. The robot 102 is able to move end effector 112 along x-, y-, and z-axes, for example. The end effector 112 can be configured for selective rotation about one or more of the x-, y-, and z-axis, and a Z Frame axis (such that one or more of the Euler Angles (e.g., roll, pitch, and/or yaw) associated with end effector 112 can be selectively controlled). In some exemplary embodiments, selective control of the translation and orientation of end effector 112 can permit performance of medical procedures with significantly improved accuracy compared to conventional robots that utilize, for example, a six degree of freedom robot arm comprising only rotational axes. For example, the surgical robot system 100 may be used to operate on patient 210, and robot arm 104 can be positioned above the body of patient 210, with end effector 112 selectively angled relative to the z-axis toward the body of patient 210.


In some exemplary embodiments, the position of the surgical instrument 608 can be dynamically updated so that surgical robot 102 can be aware of the location of the surgical instrument 608 at all times during the procedure. Consequently, in some exemplary embodiments, surgical robot 102 can move the surgical instrument 608 to the desired position quickly without any further assistance from a physician (unless the physician so desires). In some further embodiments, surgical robot 102 can be configured to correct the path of the surgical instrument 608 if the surgical instrument 608 strays from the selected, preplanned trajectory. In some exemplary embodiments, surgical robot 102 can be configured to permit stoppage, modification, and/or manual control of the movement of end effector 112 and/or the surgical instrument 608. Thus, in use, in exemplary embodiments, a physician or other user can operate the system 100, and has the option to stop, modify, or manually control the autonomous movement of end effector 112 and/or the surgical instrument 608. Further details of surgical robot system 100 including the control and movement of a surgical instrument 608 by surgical robot 102 can be found in co-pending U.S. patent application Ser. No. 13/924,505, which is incorporated herein by reference in its entirety.


The robotic surgical system 100 can comprise one or more tracking markers 118 configured to track the movement of robot arm 104, end effector 112, patient 210, and/or the surgical instrument 608 in three dimensions. In exemplary embodiments, a plurality of tracking markers 118 can be mounted (or otherwise secured) thereon to an outer surface of the robot 102, such as, for example and without limitation, on base 106 of robot 102, on robot arm 104, or on the end effector 112. In exemplary embodiments, at least one tracking marker 118 of the plurality of tracking markers 118 can be mounted or otherwise secured to the end effector 112. One or more tracking markers 118 can further be mounted (or otherwise secured) to the patient 210. In exemplary embodiments, the plurality of tracking markers 118 can be positioned on the patient 210 spaced apart from the surgical field 208 to reduce the likelihood of being obscured by the surgeon, surgical tools, or other parts of the robot 102. Further, one or more tracking markers 118 can be further mounted (or otherwise secured) to the surgical tools 608 (e.g., a screw driver, dilator, implant inserter, or the like). Thus, the tracking markers 118 enable each of the marked objects (e.g., the end effector 112, the patient 210, and the surgical tools 608) to be tracked by the robot 102. In exemplary embodiments, system 100 can use tracking information collected from each of the marked objects to calculate the orientation and location, for example, of the end effector 112, the surgical instrument 608 (e.g., positioned in the tube 114 of the end effector 112), and the relative position of the patient 210.


In exemplary embodiments, one or more of markers 118 may be optical markers. In some embodiments, the positioning of one or more tracking markers 118 on end effector 112 can maximize the accuracy of the positional measurements by serving to check or verify the position of end effector 112. Further details of surgical robot system 100 including the control, movement and tracking of surgical robot 102 and of a surgical instrument 608 can be found in co-pending U.S. patent application Ser. No. 13/924,505, which is incorporated herein by reference in its entirety.


Exemplary embodiments include one or more markers 118 coupled to the surgical instrument 608. In exemplary embodiments, these markers 118, for example, coupled to the patient 210 and surgical instruments 608, as well as markers 118 coupled to the end effector 112 of the robot 102 can comprise conventional infrared light-emitting diodes (LEDs) or an Optotrak® diode capable of being tracked using a commercially available infrared optical tracking system such as Optotrak®. Optotrak® is a registered trademark of Northern Digital Inc., Waterloo, Ontario, Canada. In other embodiments, markers 118 can comprise conventional reflective spheres capable of being tracked using a commercially available optical tracking system such as Polaris Spectra. Polaris Spectra is also a registered trademark of Northern Digital, Inc. In an exemplary embodiment, the markers 118 coupled to the end effector 112 are active markers which comprise infrared light-emitting diodes which may be turned on and off, and the markers 118 coupled to the patient 210 and the surgical instruments 608 comprise passive reflective spheres.


In exemplary embodiments, light emitted from and/or reflected by markers 118 can be detected by camera 200 and can be used to monitor the location and movement of the marked objects. In alternative embodiments, markers 118 can comprise a radio-frequency and/or electromagnetic reflector or transceiver and the camera 200 can include or be replaced by a radio-frequency and/or electromagnetic transceiver.


Similar to surgical robot system 100, FIG. 3 illustrates a surgical robot system 300 and camera stand 302, in a docked configuration, consistent with an exemplary embodiment of the present disclosure. Surgical robot system 300 may comprise a robot 301 including a display 304, upper arm 306, lower arm 308, end effector 310, vertical column 312, casters 314, cabinet 316, tablet drawer 318, connector panel 320, control panel 322, and ring of information 324. Camera stand 302 may comprise camera 326. These components are described in greater with respect to FIG. 5. FIG. 3 illustrates the surgical robot system 300 in a docked configuration where the camera stand 302 is nested with the robot 301, for example, when not in use. It will be appreciated by those skilled in the art that the camera 326 and robot 301 may be separated from one another and positioned at any appropriate location during the surgical procedure, for example, as shown in FIGS. 1 and 2. FIG. 4 illustrates a base 400 consistent with an exemplary embodiment of the present disclosure. Base 400 may be a portion of surgical robot system 300 and comprise cabinet 316. Cabinet 316 may house certain components of surgical robot system 300 including but not limited to a battery 402, a power distribution module 404, a platform interface board module 406, a computer 408, a handle 412, and a tablet drawer 414. The connections and relationship between these components is described in greater detail with respect to FIG. 5.



FIG. 5 illustrates a block diagram of certain components of an exemplary embodiment of surgical robot system 300. Surgical robot system 300 may comprise platform subsystem 502, computer subsystem 504, motion control subsystem 506, and tracking subsystem 532. Platform subsystem 502 may further comprise battery 402, power distribution module 404, platform interface board module 406, and tablet charging station 534. Computer subsystem 504 may further comprise computer 408, display 304, and speaker 536. Motion control subsystem 506 may further comprise driver circuit 508, motors 510, 512, 514, 516, 518, stabilizers 520, 522, 524, 526, end effector 310, and controller 538. Tracking subsystem 532 may further comprise position sensor 540 and camera converter 542. System 300 may also comprise a foot pedal 544 and tablet 546.


Input power is supplied to system 300 via a power source 548 which may be provided to power distribution module 404. Power distribution module 404 receives input power and is configured to generate different power supply voltages that are provided to other modules, components, and subsystems of system 300. Power distribution module 404 may be configured to provide different voltage supplies to platform interface module 406, which may be provided to other components such as computer 408, display 304, speaker 536, driver 508 to, for example, power motors 512, 514, 516, 518 and end effector 310, motor 510, ring 324, camera converter 542, and other components for system 300 for example, fans for cooling the electrical components within cabinet 316.


Power distribution module 404 may also provide power to other components such as tablet charging station 534 that may be located within tablet drawer 318. Tablet charging station 534 may be in wireless or wired communication with tablet 546 for charging table 546. Tablet 546 may be used by a surgeon consistent with the present disclosure and described herein. Power distribution module 404 may also be connected to battery 402, which serves as temporary power source in the event that power distribution module 404 does not receive power from input power 548. At other times, power distribution module 404 may serve to charge battery 402 if necessary.


Other components of platform subsystem 502 may also include connector panel 320, control panel 322, and ring 324. Connector panel 320 may serve to connect different devices and components to system 300 and/or associated components and modules. Connector panel 320 may contain one or more ports that receive lines or connections from different components. For example, connector panel 320 may have a ground terminal port that may ground system 300 to other equipment, a port to connect foot pedal 544 to system 300, a port to connect to tracking subsystem 532, which may comprise position sensor 540, camera converter 542, and cameras 326 associated with camera stand 302. Connector panel 320 may also include other ports to allow USB, Ethernet, HDMI communications to other components, such as computer 408.


Control panel 322 may provide various buttons or indicators that control operation of system 300 and/or provide information regarding system 300. For example, control panel 322 may include buttons to power on or off system 300, lift or lower vertical column 312, and lift or lower stabilizers 520-526 that may be designed to engage casters 314 to lock system 300 from physically moving. Other buttons may stop system 300 in the event of an emergency, which may remove all motor power and apply mechanical brakes to stop all motion from occurring. Control panel 322 may also have indicators notifying the user of certain system conditions such as a line power indicator or status of charge for battery 402.


Ring 324 may be a visual indicator to notify the user of system 300 of different modes that system 300 is operating under and certain warnings to the user.


Computer subsystem 504 includes computer 408, display 304, and speaker 536. Computer 504 includes an operating system and software to operate system 300. Computer 504 may receive and process information from other components (for example, tracking subsystem 532, platform subsystem 502, and/or motion control subsystem 506) in order to display information to the user. Further, computer subsystem 504 may also include speaker 536 to provide audio to the user.


Tracking subsystem 532 may include position sensor 504 and converter 542. Tracking subsystem 532 may correspond to camera stand 302 including camera 326 as described with respect to FIG. 3. Position sensor 504 may be camera 326. Tracking subsystem may track the location of certain markers that are located on the different components of system 300 and/or instruments used by a user during a surgical procedure. This tracking may be conducted in a manner consistent with the present disclosure including the use of infrared technology that tracks the location of active or passive elements, such as LEDs or reflective markers, respectively. The location, orientation, and position of structures having these types of markers may be provided to computer 408 which may be shown to a user on display 304. For example, a surgical instrument 608 having these types of markers and tracked in this manner (which may be referred to as a navigational space) may be shown to a user in relation to a three dimensional image of a patient's anatomical structure. Motion control subsystem 506 may be configured to physically move vertical column 312, upper arm 306, lower arm 308, or rotate end effector 310. The physical movement may be conducted through the use of one or more motors 510-518. For example, motor 510 may be configured to vertically lift or lower vertical column 312. Motor 512 may be configured to laterally move upper arm 308 around a point of engagement with vertical column 312 as shown in FIG. 3. Motor 514 may be configured to laterally move lower arm 308 around a point of engagement with upper arm 308 as shown in FIG. 3. Motors 516 and 518 may be configured to move end effector 310 in a manner such that one may control the roll and one may control the tilt, thereby providing multiple angles that end effector 310 may be moved. These movements may be achieved by controller 538 which may control these movements through load cells disposed on end effector 310 and activated by a user engaging these load cells to move system 300 in a desired manner.


Moreover, system 300 may provide for automatic movement of vertical column 312, upper arm 306, and lower arm 308 through a user indicating on display 304 (which may be a touchscreen input device) the location of a surgical instrument or component on three dimensional image of the patient's anatomy on display 304. The user may initiate this automatic movement by stepping on foot pedal 544 or some other input means.



FIG. 6 illustrates a surgical robot system 600 consistent with an exemplary embodiment. Surgical robot system 600 may comprise end effector 602, robot arm 604, guide tube 606, instrument 608, and robot base 610. Instrument tool 608 may be attached to a tracking array 612 including one or more tracking markers (such as markers 118) and have an associated trajectory 614. Trajectory 614 may represent a path of movement that instrument tool 608 is configured to travel once it is positioned through or secured in guide tube 606, for example, a path of insertion of instrument tool 608 into a patient. In an exemplary operation, robot base 610 may be configured to be in electronic communication with robot arm 604 and end effector 602 so that surgical robot system 600 may assist a user (for example, a surgeon) in operating on the patient 210. Surgical robot system 600 may be consistent with previously described surgical robot system 100 and 300.


A tracking array 612 may be mounted on instrument 608 to monitor the location and orientation of instrument tool 608. The tracking array 612 may be attached to an instrument 608 and may comprise tracking markers 804. As best seen in FIG. 8, tracking markers 804 may be, for example, light emitting diodes and/or other types of reflective markers (e.g., markers 118 as described elsewhere herein). The tracking devices may be one or more line of sight devices associated with the surgical robot system. As an example, the tracking devices may be one or more cameras 200, 326 associated with the surgical robot system 100, 300 and may also track tracking array 612 for a defined domain or relative orientations of the instrument 608 in relation to the robot arm 604, the robot base 610, end effector 602, and/or the patient 210. The tracking devices may be consistent with those structures described in connection with camera stand 302 and tracking subsystem 532.



FIGS. 7A, 7B, and 7C illustrate a top view, front view, and side view, respectively, of end effector 602 consistent with an exemplary embodiment. End effector 602 may comprise one or more tracking markers 702. Tracking markers 702 may be light emitting diodes or other types of active and passive markers, such as tracking markers 118 that have been previously described. In an exemplary embodiment, the tracking markers 702 are active infrared-emitting markers that are activated by an electrical signal (e.g., infrared light emitting diodes (LEDs)). Thus, tracking markers 702 may be activated such that the infrared markers 702 are visible to the camera 200, 326 or may be deactivated such that the infrared markers 702 are not visible to the camera 200, 326. Thus, when the markers 702 are active, the end effector 602 may be controlled by the system 100, 300, 600, and when the markers 702 are deactivated, the end effector 602 may be locked in position and unable to be moved by the system 100, 300, 600.


Markers 702 may be disposed on or within end effector 602 in a manner such that the markers 702 are visible by one or more cameras 200, 326 or other tracking devices associated with the surgical robot system 100, 300, 600. The camera 200, 326 or other tracking devices may track end effector 602 as it moves to different positions and viewing angles by following the movement of tracking markers 702. The location of markers 702 and/or end effector 602 may be shown on a display 110, 304 associated with the surgical robot system 100, 300, 600, for example, display 110 as shown in FIG. 2 and/or display 304 shown in FIG. 3. This display 110, 304 may allow a user to ensure that end effector 602 is in a desirable position in relation to robot arm 604, robot base 610, the patient 210, and/or the user.


For example, as shown in FIG. 7A, markers 702 may be placed around the surface of end effector 602 so that a tracking device placed away from the surgical field 208 and facing toward the robot 102, 301 and the camera 200, 326 is able to view at least 3 of the markers 702 through a range of common orientations of the end effector 602 relative to the tracking device 100, 300, 600. For example, distribution of markers 702 in this way allows end effector 602 to be monitored by the tracking devices when end effector 602 is translated and rotated in the surgical field 208.


In addition, in exemplary embodiments, end effector 602 may be equipped with infrared (IR) receivers that can detect when an external camera 200, 326 is getting ready to read markers 702. Upon this detection, end effector 602 may then illuminate markers 702. The detection by the IR receivers that the external camera 200, 326 is ready to read markers 702 may signal the need to synchronize a duty cycle of markers 702, which may be light emitting diodes, to an external camera 200, 326. This may also allow for lower power consumption by the robotic system as a whole, whereby markers 702 would only be illuminated at the appropriate time instead of being illuminated continuously. Further, in exemplary embodiments, markers 702 may be powered off to prevent interference with other navigation tools, such as different types of surgical instruments 608.



FIG. 8 depicts one type of surgical instrument 608 including a tracking array 612 and tracking markers 804. Tracking markers 804 may be of any type described herein including but not limited to light emitting diodes or reflective spheres. Markers 804 are monitored by tracking devices associated with the surgical robot system 100, 300, 600 and may be one or more of the line of sight cameras 200, 326. The cameras 200, 326 may track the location of instrument 608 based on the position and orientation of tracking array 612 and markers 804. A user, such as a surgeon 120, may orient instrument 608 in a manner so that tracking array 612 and markers 804 are sufficiently recognized by the tracking device or camera 200, 326 to display instrument 608 and markers 804 on, for example, display 110 of the exemplary surgical robot system.


The manner in which a surgeon 120 may place instrument 608 into guide tube 606 of the end effector 602 and adjust the instrument 608 is evident in FIG. 8. The hollow tube or guide tube 114, 606 of the end effector 112, 310, 602 is sized and configured to receive at least a portion of the surgical instrument 608. The guide tube 114, 606 is configured to be oriented by the robot arm 104 such that insertion and trajectory for the surgical instrument 608 is able to reach a desired anatomical target within or upon the body of the patient 210. The surgical instrument 608 may include at least a portion of a generally cylindrical instrument. Although a screw driver is exemplified as the surgical tool 608, it will be appreciated that any suitable surgical tool 608 may be positioned by the end effector 602. By way of example, the surgical instrument 608 may include one or more of a guide wire, cannula, a retractor, a drill, a reamer, a screw driver, an insertion tool, a removal tool, or the like. Although the hollow tube 114, 606 is generally shown as having a cylindrical configuration, it will be appreciated by those of skill in the art that the guide tube 114, 606 may have any suitable shape, size and configuration desired to accommodate the surgical instrument 608 and access the surgical site.



FIGS. 9A-9C illustrate end effector 602 and a portion of robot arm 604 consistent with an exemplary embodiment. End effector 602 may further comprise body 1202 and clamp 1204. Clamp 1204 may comprise handle 1206, balls 1208, spring 1210, and lip 1212. Robot arm 604 may further comprise depressions 1214, mounting plate 1216, lip 1218, and magnets 1220.


End effector 602 may mechanically interface and/or engage with the surgical robot system and robot arm 604 through one or more couplings. For example, end effector 602 may engage with robot arm 604 through a locating coupling and/or a reinforcing coupling. Through these couplings, end effector 602 may fasten with robot arm 604 outside a flexible and sterile barrier. In an exemplary embodiment, the locating coupling may be a magnetically kinematic mount and the reinforcing coupling may be a five bar over center clamping linkage.


With respect to the locating coupling, robot arm 604 may comprise mounting plate 1216, which may be non-magnetic material, one or more depressions 1214, lip 1218, and magnets 1220. Magnet 1220 is mounted below each of depressions 1214. Portions of clamp 1204 may comprise magnetic material and be attracted by one or more magnets 1220. Through the magnetic attraction of clamp 1204 and robot arm 604, balls 1208 become seated into respective depressions 1214. For example, balls 1208 as shown in FIG. 9B would be seated in depressions 1214 as shown in FIG. 9A. This seating may be considered a magnetically-assisted kinematic coupling. Magnets 1220 may be configured to be strong enough to support the entire weight of end effector 602 regardless of the orientation of end effector 602. The locating coupling may be any style of kinematic mount that uniquely restrains six degrees of freedom.


With respect to the reinforcing coupling, portions of clamp 1204 may be configured to be a fixed ground link and as such clamp 1204 may serve as a five bar linkage. Closing clamp handle 1206 may fasten end effector 602 to robot arm 604 as lip 1212 and lip 1218 engage clamp 1204 in a manner to secure end effector 602 and robot arm 604. When clamp handle 1206 is closed, spring 1210 may be stretched or stressed while clamp 1204 is in a locked position. The locked position may be a position that provides for linkage past center. Because of a closed position that is past center, the linkage will not open absent a force applied to clamp handle 1206 to release clamp 1204. Thus, in a locked position end effector 602 may be robustly secured to robot arm 604.


Spring 1210 may be a curved beam in tension. Spring 1210 may be comprised of a material that exhibits high stiffness and high yield strain such as virgin PEEK (poly-ether-ether-ketone). The linkage between end effector 602 and robot arm 604 may provide for a sterile barrier between end effector 602 and robot arm 604 without impeding fastening of the two couplings.


The reinforcing coupling may be a linkage with multiple spring members. The reinforcing coupling may latch with a cam or friction based mechanism. The reinforcing coupling may also be a sufficiently powerful electromagnet that will support fastening end-effector 102 to robot arm 604. The reinforcing coupling may be a multi-piece collar completely separate from either end effector 602 and/or robot arm 604 that slips over an interface between end effector 602 and robot arm 604 and tightens with a screw mechanism, an over center linkage, or a cam mechanism.


Referring to FIGS. 10 and 11, prior to or during a surgical procedure, certain registration procedures may be conducted in order to track objects and a target anatomical structure of the patient 210 both in a navigation space and an image space. In order to conduct such registration, a registration system 1400 may be used as illustrated in FIG. 10.


In order to track the position of the patient 210, a patient tracking device 116 may include a patient fixation instrument 1402 to be secured to a rigid anatomical structure of the patient 210 and a dynamic reference base (DRB) 1404 may be securely attached to the patient fixation instrument 1402. For example, patient fixation instrument 1402 may be inserted into opening 1406 of dynamic reference base 1404. Dynamic reference base 1404 may contain markers 1408 that are visible to tracking devices, such as tracking subsystem 532. These markers 1408 may be optical markers or reflective spheres, such as tracking markers 118, as previously discussed herein.


Patient fixation instrument 1402 is attached to a rigid anatomy of the patient 210 and may remain attached throughout the surgical procedure. In an exemplary embodiment, patient fixation instrument 1402 is attached to a rigid area of the patient 210, for example, a bone that is located away from the targeted anatomical structure subject to the surgical procedure. In order to track the targeted anatomical structure, dynamic reference base 1404 is associated with the targeted anatomical structure through the use of a registration fixture that is temporarily placed on or near the targeted anatomical structure in order to register the dynamic reference base 1404 with the location of the targeted anatomical structure.


A registration fixture 1410 is attached to patient fixation instrument 1402 through the use of a pivot arm 1412. Pivot arm 1412 is attached to patient fixation instrument 1402 by inserting patient fixation instrument 1402 through an opening 1414 of registration fixture 1410. Pivot arm 1412 is attached to registration fixture 1410 by, for example, inserting a knob 1416 through an opening 1418 of pivot arm 1412.


Using pivot arm 1412, registration fixture 1410 may be placed over the targeted anatomical structure and its location may be determined in an image space and navigation space using tracking markers 1420 and/or fiducials 1422 on registration fixture 1410. Registration fixture 1410 may contain a collection of markers 1420 that are visible in a navigational space (for example, markers 1420 may be detectable by tracking subsystem 532). Tracking markers 1420 may be optical markers visible in infrared light as previously described herein. Registration fixture 1410 may also contain a collection of fiducials 1422, for example, such as bearing balls, that are visible in an imaging space (for example, a three dimension CT image). As described in greater detail with respect to FIG. 11, using registration fixture 1410, the targeted anatomical structure may be associated with dynamic reference base 1404 thereby allowing depictions of objects in the navigational space to be overlaid on images of the anatomical structure. Dynamic reference base 1404, located at a position away from the targeted anatomical structure, may become a reference point thereby allowing removal of registration fixture 1410 and/or pivot arm 1412 from the surgical area.



FIG. 11 provides an exemplary method 1500 for registration consistent with the present disclosure. Method 1500 begins at step 1502 wherein a graphical representation (or image(s)) of the targeted anatomical structure may be imported into system 100, 300600, for example computer 408. The graphical representation may be three dimensional CT or a fluoroscope scan of the targeted anatomical structure of the patient 210 which includes registration fixture 1410 and a detectable imaging pattern of fiducials 1420.


At step 1504, an imaging pattern of fiducials 1420 is detected and registered in the imaging space and stored in computer 408. Optionally, at this time at step 1506, a graphical representation of the registration fixture 1410 may be overlaid on the images of the targeted anatomical structure.


At step 1508, a navigational pattern of registration fixture 1410 is detected and registered by recognizing markers 1420. Markers 1420 may be optical markers that are recognized in the navigation space through infrared light by tracking subsystem 532 via position sensor 540. Thus, the location, orientation, and other information of the targeted anatomical structure is registered in the navigation space. Therefore, registration fixture 1410 may be recognized in both the image space through the use of fiducials 1422 and the navigation space through the use of markers 1420. At step 1510, the registration of registration fixture 1410 in the image space is transferred to the navigation space. This transferal is done, for example, by using the relative position of the imaging pattern of fiducials 1422 compared to the position of the navigation pattern of markers 1420.


At step 1512, registration of the navigation space of registration fixture 1410 (having been registered with the image space) is further transferred to the navigation space of dynamic registration array 1404 attached to patient fixture instrument 1402. Thus, registration fixture 1410 may be removed and dynamic reference base 1404 may be used to track the targeted anatomical structure in both the navigation and image space because the navigation space is associated with the image space.


At steps 1514 and 1516, the navigation space may be overlaid on the image space and objects with markers visible in the navigation space (for example, surgical instruments 608 with optical markers 804). The objects may be tracked through graphical representations of the surgical instrument 608 on the images of the targeted anatomical structure.



FIGS. 12A-12B illustrate imaging devices 1304 that may be used in conjunction with robot systems 100, 300, 600 to acquire pre-operative, intra-operative, post-operative, and/or real-time image data of patient 210. Any appropriate subject matter may be imaged for any appropriate procedure using the imaging system 1304. The imaging system 1304 may be any imaging device such as imaging device 1306 and/or a C-arm 1308 device. It may be desirable to take x-rays of patient 210 from a number of different positions, without the need for frequent manual repositioning of patient 210 which may be required in an x-ray system. As illustrated in FIG. 12A, the imaging system 1304 may be in the form of a C-arm 1308 that includes an elongated C-shaped member terminating in opposing distal ends 1312 of the “C” shape. C-shaped member 1130 may further comprise an x-ray source 1314 and an image receptor 1316. The space within C-arm 1308 of the arm may provide room for the physician to attend to the patient substantially free of interference from x-ray support structure 1318. As illustrated in FIG. 12B, the imaging system may include imaging device 1306 having a gantry housing 1324 attached to a support structure imaging device support structure 1328, such as a wheeled mobile cart 1330 with wheels 1332, which may enclose an image capturing portion, not illustrated. The image capturing portion may include an x-ray source and/or emission portion and an x-ray receiving and/or image receiving portion, which may be disposed about one hundred and eighty degrees from each other and mounted on a rotor (not illustrated) relative to a track of the image capturing portion. The image capturing portion may be operable to rotate three hundred and sixty degrees during image acquisition. The image capturing portion may rotate around a central point and/or axis, allowing image data of patient 210 to be acquired from multiple directions or in multiple planes. Although certain imaging systems 1304 are exemplified herein, it will be appreciated that any suitable imaging system may be selected by one of ordinary skill in the art.


Referring now to FIGS. 13A-15 of the present disclosure, exemplary embodiments of a surveillance marker consistent with the present disclosure are illustrated. FIGS. 13A-13B depicts a system 2000 including a surveillance maker 2002, a dynamic reference base (DRB) 2004, which may be a tracking array having array markers 2006, a DRB post 2008, and a surveillance marker post 2010. Also depicted is a patient's bone 2012. In this configuration, surveillance marker 2002 is on surveillance marker post 2010 that is within the hollow center or channel of the main shaft of the DRB post 2008. Surveillance marker post 2010 could consist of hard metal with a sharp, smooth tip for driving into bone with a mallet, or an end-threaded tip for drilling into bone. If DRB 2004 is bumped or dislodged, the tracking array with array markers 2006 would shift relative to the position of surveillance marker 2002 despite the close proximity of the spikes holding DRB 2004 to bone 2012 and the tip of the surveillance post 2010 for the surveillance marker 2002. Post 2010 to which surveillance marker 2002 is mounted is within the hollow main shaft of a spike or clamp to which DRB 2004 is mounted. There may be a loose tolerance between the wall of the hollow main shaft of DRB post 2008 and surveillance marker post 2010.


In the exemplary embodiment of FIG. 13A, with surveillance marker post 2010 encompassed by DRB post 2008, dislodgment and bending movement of DRB 2004 may cause DRB 2004 to press against surveillance marker post 2010 and cause it to move as well. However, since the attachment or entry point to bone 2012 is different for DRB post 2008 and surveillance marker post 2010, the axis of rotation of surveillance marker post 2010 and DRB 2004 may differ, meaning there may be a detectable change in position of surveillance marker 2002 relative to DRB 2004 even if the two structures touch. The amount of relative shift in position of surveillance marker 2002 and tracking markers 2006 if DRB 2004 is bumped may be greatest if surveillance marker post 2010 does not touch the inside wall of the hollow shaft of DRB post 2008. It may be beneficial to have a loose tolerance between surveillance marker post 2010 and inside wall of the DRB post 2010 for a more easily detectable effect. It may also be beneficial to at least begin surveillance with a condition where surveillance marker post 2010 is not touching the hollow wall of DRB post 2004, even if it will eventually touch during bending. To help ensure that surveillance marker post 2010 is not touching the hollow wall of DRB post 2008 during insertion, it may be beneficial to use a temporary centering guide such as a doughnut-shaped piece, through which surveillance marker post 2008 is inserted and which forces the surveillance marker post to the midline of the hollow shaft. After the post is inserted, the guide could be removed so that there remains loose tolerance between the hollow wall of the DRB post 2008 and surveillance marker post 2010. Such a guide could be used at the top of the DRB's tube region, at the bottom of the tube region, or both.



FIG. 13B is another configuration of system 2000 with surveillance marker 2002 offset from the midline of DRB post 2008. This configuration may avoid inadvertent rotation of the clamped DRB 2004 about the axis of the shaft when bumped. Such rotation may occur if clamp 2014 holding DRB 2004 in place is not sufficiently tightened and DRB 2004 is disturbed, even slightly. In the exemplary embodiment of FIG. 13A, if rotation of DRB 2004 about DRB post 2008 occurred without any travel of DRB 2004 longitudinally along DRB post 2008, there may be minimal or undetectable relative movement of surveillance marker 2002 during rotational dislodgement since the position of surveillance marker 2002 is on or close to the axis of rotation of DRB 2004 rotational movement. In this event, surveillance marker 2002 may be offset from the midline or longitudinal axis of DRB post 2008 (for example by 1 cm or more), as shown in FIG. 13B. In this configuration, even a slight rotation of DRB 2004 about its mounting shaft would be detectable relative to the unmoved surveillance marker 2002, since surveillance marker 2002 is not on the axis of rotation of DRB 2004. This configuration may also give a distal region on surveillance marker post 2010 that can serve as the head to be struck with a hammer for driving it into bone, or a region to clamp in the chuck of a drill if it is to be drilled into bone. If surveillance marker 2002 is attached centrally to post 2010, a cap or other feature may be added to allow it to be inserted without damaging the surface of surveillance marker 2002, which may be coated with reflective paint. Additionally, during insertion, this configuration may allow surveillance marker 2002 to be manually rotated and positioned pointing toward the tracking cameras for better visibility.



FIGS. 14A-B illustrates an exemplary embodiment of a system 2100 that includes some components as previously described. System 2100 also includes a temporary grouping element 2102. In system 2100, surveillance marker 2002 may be attached through the same incision into a patient, but not physically connected to DRB 2004 or DRB post 2008. One manner to do this may be to use temporary grouping element 2102 to hold surveillance post 2010 and DRB post 2008 so that these components may be inserted as a unit. These components may then become independent after temporary grouping element 2102 is removed as shown in FIG. 14B.


In FIG. 14A, DRB post 2008 and surveillance marker post 2010 may be inserted into bone 2012 simultaneously while being held together at a desired spacing with temporary grouping element 2102. After DRB post 2008 and surveillance marker post 2010 have been inserted, temporary grouping element 2102 may be removed, and DRB 2004 and surveillance marker 2002 may be attached, which may be anchored in independent pieces of bone. Temporary grouping element 2102 may also be an impaction cap to be struck by a hammer during insertion.



FIG. 15 illustrates an exemplary embodiment 2200. In this configuration it may be possible to attach surveillance marker 2002 through the same incision of the patient but not physically connected to DRB 2004. In FIG. 15, different insertion angles may be used, with trajectories of the surveillance marker post 2010 and DRB post 2008 within the same incision (not shown).


The attachment of surveillance marker 2002 as described with regard to FIGS. 13-15 may allow application of a surveillance marker, which has demonstrated benefits, through a single incision instead of requiring multiple incisions which may result in less time in surgery and less discomfort for the patient.


Now turning to FIGS. 16A and 16B, there is shown a surveillance marker 2020 that is used to detect any change of position of the dynamic reference base (DRB) 2024, which is critical for navigational accuracy. In some situations, the surveillance marker 2020 may not be able to detect a position change correctly if a DRB rotates along an axis 2026, and the surveillance marker 2020 is close to or on the axis of rotation 2026. The change of position appears as a rotation of the surveillance marker 2020, which does not register as a position change, since the surveillance marker 2020 is a configured as a sphere.


The surveillance marker 2020 as illustrated in FIGS. 16A and 16B, uses a single optical marker 2028, typically a sphere, ‘registered’ to the DRB 2024. Both surveillance marker and DRB are securely attached to bony anatomy with a separate post or spike. The position of the surveillance marker is tracked with respect to the DRB 2024 coordinate system, so that any shift or rotation of the DRB 2024 (or any shift of the surveillance marker) can be detected, even if the camera is moved. This scheme works well in any situation involving a purely translational shift.



FIGS. 16A and 16B show how a single surveillance marker fails to detect the rotation of an array on a DRB if the DRB mounts to the patient with a hinge mechanism and the hinge's axis of rotation intersects the surveillance marker. However, if more than one surveillance marker is used, the system can successfully detect a rotation, if the axis of rotation of the DRB does not pass through all the surveillance markers. In one exemplary embodiment, this mechanism would utilize two optical markers on the surveillance instrument, which could attach to the same post as shown in FIGS. 17A and 17B to minimize surgical incisions or mounted to different posts. In this embodiment, a surveillance marker 2030 is provided with at least two optical markers 2032, 2034. The system could use the relative distance between each of optical markers 2032, 2034 and the DRB, or between the line formed by the two markers 2032, 2034 and the DRB markers, to calculate the amount of shift. Surveillance markers mounted to a post vertically or mostly vertically as shown in FIG. 17 will most likely not both be collinear with a hinge that is oriented horizontally. In other embodiments, three or more markers may be used to create accuracy through redundancy.


Now turning to FIG. 18, in a preferred embodiment, the system through a software element may alert the user that a single surveillance marker 2040 is in close proximity to the axis of rotation of the DRB 2042 if the location of the DRB's hinge 2044 is known relative to the tracked markers of the DRB 2042 and hinge location is extrapolated and compared to the surveillance marker position 2040. If the surveillance marker 2040 is close to the hinge, for example in one embodiment less than 25 mm from the hinge, the system can alert the user to move the surveillance marker or use a secondary method such as landmark check to test whether there is any rotational movement. Similarly, the system can alert the user if dual surveillance markers form a line that is close to being collinear with the hinge of the DRB.


In another embodiment, the system provides a method of ensuring that the DRB hinge does not intersect the surveillance marker by restricting where the user can mount the surveillance marker to force the surveillance marker to be located away from the DRB's hinge. In one particular embodiment, a collar clamp on the DRB shaft with a small post present for the attachment of a single surveillance marker is used (FIG. 3). There are markings provided on the DRB shaft and physical stops along the shaft or collar, or in another embodiment a wide collar clamp design ensure that the surveillance marker is never able to be mounted far enough up the shaft that it would approach the location of the hinge.


In another embodiment, there is a provided a method of preventing the surveillance marker from approaching the hinge. A temporary guide tube is utilized wherein the temporary guide tube has a minimum allowable radius to the hinge during setup, blocking the user from placing the surveillance marker within that radius of the hinge.


In yet another embodiment, a chain or other tether to the base of the DRB with the surveillance marker attached to the other end could be used that will not allow the surveillance marker to approach the hinge location.


When the DRB is displaced either accidentally or by need, the present system provides a method of monitoring skin movement. In one embodiment, the skin may be marked with ink 2040 or any other bio-compatible material or a second surveillance marker may be attached to the skin (FIG. 3). If a first surveillance marker is already near the skin, like in the previous, embodiment, the mark on the skin can be placed very near the post-mounted marker. The system would be able to use the first surveillance marker mounted to the DRB post to track DRB shift and rotation, while the surgeon would visually monitor the patient's skin mark to track shift (tugging) of the skin immediately surrounding the DRB. The close proximity of the skin mark or the second surveillance market to the first surveillance marker makes it is easier to visualize for the surgeon to discern a shift. If the surgeon suspected that the ink mark or the second surveillance marker has shifted, the surgeon or user can point to the skin mark or the second surveillance marker with a tracked probe to determine how much it had moved relative to the location of the probe at the beginning of the case. If a tracked marker on the skin is used, this marker can continuously monitor the relationship between the DRB post and the skin to assess whether there is offset. The above embodiments provide the advantage of tracking the shift in the surveillance marker relative to the DRB even in the cases where the shift is in the surveillance marker. In addition, multiple surveillance markers provide redundancy to the system when line of sight is compromised.


Now turning to another embodiment in which the system provides method for recovery of registration from DRBs and single optical markers. As discussed earlier, when navigating using a surgical robotic system, continuous tracking of a DRB array that is attached to the patient is required to determine the position of any navigated instrument or tool relative to the patient's anatomy. Under certain conditions, the DRB may sometimes be partially obscured thereby making the DRB untrackable. In other situations, the DRB may be dislodged from its mounting point on the bone, also making it untrackable. When the DRB is partially obstructed, tracking or navigating must be paused and the camera system modified to restore line of sight to the markers on the DRB. When the DRB is dislodged, a new imaging scan is required and registration of the patient to the camera coordinate system is done. The present system provides a method to recover the registration or enables the continual tracking of optical makers of the surgical robot and the one or more markers mounted elsewhere on the patient.


Registration is synchronization of two coordinate systems, typically the tracking coordinate system, such as the coordinate space tracked by an optical system such as the Polaris Spectra (Northern Digital, Inc.), and the image coordinate system such as the coordinate system of a computed tomography (CT) scan. Registration is accomplished when the rigid body transformation to get from one coordinate system to the other is known. To achieve 3D registration, at least 3 reference points on a rigid body that is observed simultaneously in each coordinate system are found and the transformation of coordinates necessary to move the 3 reference points from one coordinate system to their corresponding coordinates in the other coordinate system is calculated. For example, if a tracking fixture has optical tracking markers that are in a known location (known from engineering design or located by any experimental means) in the fixture's local coordinate system and these tracking markers' xyz locations are tracked by the cameras, the transformation from camera coordinate system to fixture coordinate system can be calculated. In the field of 3D rigid body mechanics, transformations between coordinate systems are applied by multiplying each point to be transformed by a 4×4 transformation matrix. In such matrices, the first three columns describe the orientation of the rigid body and the 4th column describes the translational offset. The transformation matrix from the camera coordinate system to the fixture coordinate system may be represented as:

TCamera-Fixture


And to transform a point P from the camera coordinate system to the fixture coordinate system is represented as:

PFixture=TCamera-Fixture×Pcamera


There are provided several different methods for determining the 4×4 transformation matrix from sets of the same points in two coordinate systems. For example, the Kabsch algorithm is a method for calculating the optimal transformation matrix that minimizes the RMSD (root mean squared deviation) between two paired sets of points. Transformation matrices may be easily combined to achieve new useful transformation matrices. In one embodiment, the fixture described above may contain fiducials for detection within a CT volume. If the locations of these fiducials are known in the local coordinate system of the fixture, the transformation of coordinates from fixture to CT image coordinate system can be found as

TFixture-Image

    • using the Kabsch or similar algorithm. As a result, the transformation results from the camera coordinate system to the coordinate system of the medical image can be determined by combining two transformations:

      TCamera-Image=TCamera-Fixture×TFixture-Image


If the DRB is dislodged, the relationship between fiducials and the CT are no longer the same as at the time the CT scan was taken, as a result the TFixture-Image is incorrect and TCamera-Image is not valid.


In a preferred embodiment, a tracking array positioned on an end effector provides the location of the end effector in the coordinate system of the cameras. The robot system is equipped with encoders on each axis that precisely monitor the positions of each linkage of the robot arm. As the robot arm is moved, the position of the end effector is detected from tracking markers, but the positional change may also be calculated from kinematics by considering the geometry of each joint of the robotic arm and the amount of movement on each joint as monitored by the rotational or linear encoders. This ability to reference points in the tracking coordinate system from kinematic information provides an additional transformation calculation that can be utilized: the transformation from current tracked coordinates of the robot's end effector to a fixed reference in the camera coordinate system. That is, a frame of tracking data provides a snapshot of the tracked position of the robot end effector, but through a transformation derived from the axis encoder readings that account for the change in position due to movement of the joints, this moving frame of data can be transformed into the fixed reference frame of the robot despite any movement of the patient or camera that may occur. This transformation allows the moving array on the end effector to function the same as if another array were physically mounted to the base of the robot to track its position.

TCamera-RobotBase=TCamera-EndEffector×TEndEffector-RobotBase


As described in a previous embodiment a surveillance marker is used to continuously monitor the integrity of the DRB's attachment to bone. If the patient moves, both the DRB and the surveillance marker would move together without changing their relative position, but if the DRB or surveillance marker is dislodged, the relative position would change.


In another embodiment, a method for recovering the registration that is based on the last known position of the DRB relative to the robot is provided. The system continuously updates the last valid location of the DRB relative to the robot base and stores this location in system memory for later usage if necessary.


If the DRB becomes dislodged by inadvertent contact with medical personnel or equipment, the surveillance marker would show a change in offset of the DRB markers and would positively indicate that movement had occurred. If tracking data also shows that the distance between the robot's fixed reference frame and the surveillance marker on the patient have not moved, it can be safely assumed that the patient has not moved relative to the robot. As a result, the DRB may be reattached and a new registration established based on the tracked position of the robot. To establish a new registration, the new position of the DRB and robot's array would be tracked simultaneously, giving the transformation calculation from the end effector to the new DRB position. Additionally, the last known DRB location in the coordinate system of the robot would be recalled from the memory storage device. The new registration can therefore be established as:

TCamera-Image=TCamera-RobotEE×TRobotEE-RobotBase×TRobotBase-LastKnownDRB×TLastKnownDRB-Image


With the new DRB attachment, the following is also true:

TCamera-Image=TCamera-DRB×TDRB-Image


Setting the two equations equal to each other, the transformation from new location of the DRB to the image can be determined as

TDRB-Image=TDRB-Camera×TCamera-RobotEE×TRobotEE-RobotBase×TRobotBase-LastKnownDRB×TLastKnownDRB−Image


During collection of the new location of the DRB in the camera coordinate system, the location of the surveillance marker relative to the robot base would be continuously measured to ensure that the surveillance marker has not moved since before the DRB was dislodged. In another embodiment, if there is movement of the surveillance marker or movement of both the surveillance marker and the DRB at the time of dislodgment, a new scan and registration would be required.


In another embodiment, the system provides a method for re-registering the patient when there is a partial obstruction of the DRB to where only 2 of the 4 optical markers on the DRB remain visible while 2 optical markers are blocked. If the robot is movement when there is a partial obstruction, the motion of the robot arm is stopped until the DRB becomes fully visualized by the camera system, or if a tool or instrument is being tracked, the tool or instrument would freeze in its display on the screen. However, the system will track the DRB, if the surveillance marker remains visible. The two visible optical markers of the DRB and the surveillance marker comprise 3 points, which is the minimum points to define a rigid body. If the distances of the surveillance marker relative to the two visible points have not changed, the DRB has not moved in bone. From any previous frame of data where all markers on the DRB were visible, the transformation of the surveillance marker into the DRB coordinate system could have been determined by applying the transformation from camera to DRB to the tracked position of the surveillance marker. This value is stored to the system memory. After the optical markers on the DRB are blocked, the 2 blocked optical markers can be “reconstructed” by applying a point matching algorithm where one point set is the tracked xyz coordinates of the two DRB optical markers plus the surveillance marker and the corresponding point set to be matched is the same two DRB markers and the surveillance marker in the coordinate system of the DRB. For example,

Point set 1={Visible DRB marker 1,Visible DRB marker 2,Surveillance marker}DRB
Point set 2={Visible DRB marker 1,Visible DRB marker 2,Surveillance marker}CameraTDRB-Camera


The reconstructed DRB markers are determined as this transformation applied to the known locations of the missing DRB markers in the DRB coordinate system:

PBlockedDRBmarker1,Camera=TDRB-Camera×PBlockedDRBmarker1,DRB
PBlockedDRBmarker2,Camera=TDRB-Camera×PBlockedDRBmarker2,DRB


Using a full set of the two previously visible DRB optical markers plus the two reconstructed markers, the normal sequence of transformations can be applied and standard tracking methods followed.


While the invention has been disclosed in connection with the preferred embodiments shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. Accordingly, the spirit and scope of the present invention is not to be limited by the foregoing examples, but is to be understood in the broadest sense allowable by law.

Claims
  • 1. A system for monitoring registration of a patient to a surgical robot, said system comprising: a tracking camera system;a surgical robot having a base, arm attached to the base and an end effector attached to the arm;robot tracking markers disposed on the surgical robot for tracking movement of the surgical robot by the tracking camera system;a dynamic reference base (DRB) including a marker array trackable by the tracking camera system, the marker array being an optical marker array;a dynamic reference base post connected to the DRB; anda surveillance marker adapted to be disposed at a predetermined distance from the DRB and trackable by the tracking camera system, wherein the surveillance marker is configured to be secured to the patient independently from the dynamic reference base and is an optical marker, wherein the surveillance marker is mechanically not connected to the dynamic reference base,a processor configured to continuously monitor the locations of the surveillance marker, the DRB marker array and the robot tracking markers through the tracking camera system, and to detect whether registration is lost from movement of the DRB relative to the surveillance marker and if so, automatically establish a new registration based on the tracked locations of the surveillance marker and the robot tracking markers without re-scanning with an imaging device.
  • 2. The system of claim 1, wherein the surveillance marker is off-set from a longitudinal axis of the dynamic reference base post.
  • 3. The system of claim 1, wherein the surveillance marker is disposed on a surveillance marker post, wherein the surveillance marker post is disposed in a hollow channel of the dynamic reference base post.
  • 4. The system of claim 1, further comprising a surveillance marker post associated with the surveillance marker, wherein the surveillance marker post is metal and contains a sharp tip configured to drive into the bony structure.
  • 5. The system of claim 1, wherein the DRB includes at least three DRB markers and the processor is configured to detect a loss of tracking at least one of the DRB markers while maintaining tracking of at least two of the DRB markers and if so, maintain registration based on the tracking of the surveillance marker and the at least two of the DRB markers without re-registration.
  • 6. The system of claim 5, wherein the processor determines that the dynamic reference base has moved based on a change in the predetermined distance.
  • 7. The system of claim 1, wherein the robot tracking markers are disposed on the end effector.
  • 8. The system of claim 7, wherein the processor is configured to automatically establish the new registration based on the tracked locations of the robot tracking markers on the end effector and an encoder position in the surgical robot arm.
  • 9. The system of claim 1, further comprising a surveillance marker post associated with the surveillance marker, wherein the surveillance marker post is adapted to be disposed in the bony structure at an angle relative to dynamic reference base post.
  • 10. The system of claim 9, wherein the surveillance marker post and the dynamic reference post are configured to be inserted into a single incision.
  • 11. A system for monitoring registration of a patient to a surgical robot, said system comprising: a tracking camera system;a surgical robot having a base, arm attached to the base and an end effector attached to the arm;robot tracking markers disposed on the surgical robot for tracking movement of the surgical robot by the tracking camera system;a dynamic reference base (DRB) including a marker array trackable by the tracking camera system, the marker array being an optical marker array;a dynamic reference base post associated with the DRB;a surveillance marker disposed at a predetermined distance from the dynamic reference base and being a single optical marker, wherein the surveillance marker is mechanically not connected to the dynamic reference base;a surveillance marker post on which the surveillance marker is disposed;wherein the surveillance marker post and the dynamic reference base are adapted to be attached to a bony structure at different entry points,a processor configured to continuously monitor the locations of the surveillance marker, the DRB marker array and the robot tracking markers through the tracking camera system, and to detect whether registration is lost from movement of the DRB relative to the surveillance marker and if so, automatically establish a new registration based on the tracked location of the surveillance marker and the last known tracked location of the robot tracking markers without re-scanning with an imaging device.
  • 12. The system of claim 11, wherein the surveillance marker is off-set from a longitudinal axis of the surveillance marker post.
  • 13. The system of claim 11, wherein the surveillance marker post and the dynamic reference base post are adapted to be inserted into a single incision.
  • 14. The system of claim 11, wherein the surveillance marker post is metal and contains a sharp tip configured to drive into the bony structure.
  • 15. The system of claim 11, wherein the dynamic reference base post includes one or more spikes to attach to the bony structure.
  • 16. The system of claim 11, wherein the DRB includes at least three DRB markers and the processor is configured to detect a loss of tracking at least one of the DRB markers while maintaining tracking of at least two of the DRB markers and if so, maintain registration based on the tracking of the surveillance marker and the at least two of the DRB markers without re-registration.
  • 17. The system of claim 16, wherein the processor determines that the dynamic reference base has moved based on a change in the predetermined distance.
  • 18. The system of claim 16, wherein the surveillance marker and the at least three DRB markers are each an optical marker configured to be recognized by the tracking camera system.
  • 19. The system of claim 11, wherein the robot tracking markers are disposed on the end effector.
  • 20. The system of claim 19, wherein the processor is configured to automatically establish the new registration based on the tracked locations of the robot tracking markers on the end effector and an encoder position in the surgical robot arm.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 15/448,670 filed on Mar. 3, 2017 which is a continuation-in-part of U.S. patent application Ser. No. 15/157,444 filed May 18, 2016, which is a continuation-in-part application of U.S. patent application Ser. No. 15/095,883 filed on Apr. 11, 2016 (published as U.S. Patent Publication No. 2016/0220320 A1), which is a continuation-in-part application of U.S. patent application Ser. No. 14/062,707 filed on Oct. 24, 2013 (published as U.S. Patent Publication No. 2014/0275955 A1), which is a continuation-in-part application of U.S. patent application Ser. No. 13/924,505 filed on Jun. 21, 2013 (published as U.S. Patent Publication No. 2013/0345718 A1, with corrected publication as U.S. Patent Publication No. 2016/0242849 A9), which is a nonprovisional patent application that claims priority to U.S. provisional patent application No. 61/662,702 filed on Jun. 21, 2012, and claims priority to U.S. provisional patent application No. 61/800,527 filed on Mar. 15, 2013, the entire contents of all of which are incorporated herein by reference. This application also claims priority to Provisional Patent Application Ser. No. 62/608,188 filed on Dec. 20, 2017, which is incorporated in entirety herein.

US Referenced Citations (829)
Number Name Date Kind
4150293 Franke Apr 1979 A
4335715 Kirkley Jun 1982 A
4421112 Mains et al. Dec 1983 A
4744353 McFarland May 1988 A
4901712 Voegell et al. Feb 1990 A
5020933 Salvestro et al. Jun 1991 A
5078719 Schreiber Jan 1992 A
5180388 DiCarlo Jan 1993 A
5246010 Gazzara et al. Sep 1993 A
5246444 Schreiber Sep 1993 A
5354314 Hardy et al. Oct 1994 A
5397323 Taylor et al. Mar 1995 A
5476467 Benoist Dec 1995 A
5598453 Baba et al. Jan 1997 A
5772594 Barrick Jun 1998 A
5791908 Gillio Aug 1998 A
5800440 Stead Sep 1998 A
5820559 Ng et al. Oct 1998 A
5825982 Wright et al. Oct 1998 A
5887121 Funda et al. Mar 1999 A
5895389 Schenk et al. Apr 1999 A
5911449 Daniele et al. Jun 1999 A
5951475 Gueziec et al. Sep 1999 A
5987960 Messner et al. Nov 1999 A
6012216 Esteves et al. Jan 2000 A
6031888 Ivan et al. Feb 2000 A
6033415 Mittelstadt et al. Mar 2000 A
6080181 Jensen et al. Jun 2000 A
6106511 Jensen Aug 2000 A
6122541 Cosman Sep 2000 A
6144875 Schweikard et al. Nov 2000 A
6157853 Blume et al. Dec 2000 A
6167145 Foley et al. Dec 2000 A
6167292 Badano et al. Dec 2000 A
6201984 Funda et al. Mar 2001 B1
6203196 Meyer et al. Mar 2001 B1
6205411 DiGioia, III et al. Mar 2001 B1
6212419 Blume et al. Apr 2001 B1
6231565 Tovey et al. May 2001 B1
6236875 Bucholz et al. May 2001 B1
6246900 Cosman et al. Jun 2001 B1
6301495 Gueziec et al. Oct 2001 B1
6306126 Montezuma Oct 2001 B1
6312435 Wallace et al. Nov 2001 B1
6314311 Williams et al. Nov 2001 B1
6320929 Von Der Haar Nov 2001 B1
6322567 Mittelstadt et al. Nov 2001 B1
6325808 Bernard et al. Dec 2001 B1
6340363 Bolger et al. Jan 2002 B1
6377011 Ben-Ur Apr 2002 B1
6379302 Kessman et al. Apr 2002 B1
6402762 Hunter et al. Jun 2002 B2
6424885 Niemeyer et al. Jul 2002 B1
6447503 Wynne et al. Sep 2002 B1
6451027 Cooper et al. Sep 2002 B1
6477400 Barrick Nov 2002 B1
6484049 Seeley et al. Nov 2002 B1
6487267 Wolter Nov 2002 B1
6490467 Bucholz et al. Dec 2002 B1
6490475 Seeley et al. Dec 2002 B1
6499488 Hunter et al. Dec 2002 B1
6501981 Schweikard et al. Dec 2002 B1
6507751 Blume et al. Jan 2003 B2
6535756 Simon et al. Mar 2003 B1
6560354 Maurer, Jr. et al. May 2003 B1
6565554 Niemeyer May 2003 B1
6587750 Gerbi et al. Jul 2003 B2
6614453 Suri et al. Sep 2003 B1
6614871 Kobiki et al. Sep 2003 B1
6619840 Rasche et al. Sep 2003 B2
6636757 Jascob et al. Oct 2003 B1
6645196 Nixon et al. Nov 2003 B1
6666579 Jensen Dec 2003 B2
6669635 Kessman et al. Dec 2003 B2
6701173 Nowinski et al. Mar 2004 B2
6757068 Foxlin Jun 2004 B2
6782287 Grzeszczuk et al. Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786896 Madhani et al. Sep 2004 B1
6788018 Blumenkranz Sep 2004 B1
6804581 Wang et al. Oct 2004 B2
6823207 Jensen et al. Nov 2004 B1
6827351 Graziani et al. Dec 2004 B2
6837892 Shoham Jan 2005 B2
6839612 Sanchez et al. Jan 2005 B2
6856826 Seeley et al. Feb 2005 B2
6856827 Seeley et al. Feb 2005 B2
6879880 Nowlin et al. Apr 2005 B2
6892090 Verard et al. May 2005 B2
6920347 Simon et al. Jul 2005 B2
6922632 Foxlin Jul 2005 B2
6968224 Kessman et al. Nov 2005 B2
6978166 Foley et al. Dec 2005 B2
6988009 Grimm et al. Jan 2006 B2
6991627 Madhani et al. Jan 2006 B2
6996487 Jutras et al. Feb 2006 B2
6999852 Green Feb 2006 B2
7007699 Martinelli et al. Mar 2006 B2
7016457 Senzig et al. Mar 2006 B1
7043961 Pandey et al. May 2006 B2
7062006 Pelc et al. Jun 2006 B1
7063705 Young et al. Jun 2006 B2
7072707 Galloway, Jr. et al. Jul 2006 B2
7083615 Peterson et al. Aug 2006 B2
7097640 Wang et al. Aug 2006 B2
7099428 Clinthorne et al. Aug 2006 B2
7108421 Gregerson et al. Sep 2006 B2
7130676 Barrick Oct 2006 B2
7139418 Abovitz et al. Nov 2006 B2
7139601 Bucholz et al. Nov 2006 B2
7155316 Sutherland et al. Dec 2006 B2
7164968 Treat et al. Jan 2007 B2
7167738 Schweikard et al. Jan 2007 B2
7169141 Brock et al. Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7182083 Yanof et al. Feb 2007 B2
7194120 Wicker et al. Mar 2007 B2
7197107 Arai et al. Mar 2007 B2
7207995 Vandewalle Apr 2007 B1
7231014 Levy Jun 2007 B2
7231063 Naimark et al. Jun 2007 B2
7239940 Wang et al. Jul 2007 B2
7248914 Hastings et al. Jul 2007 B2
7301648 Foxlin Nov 2007 B2
7302288 Schellenberg Nov 2007 B1
7302355 Jansen et al. Nov 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7318805 Schweikard et al. Jan 2008 B2
7318827 Leitner et al. Jan 2008 B2
7319897 Leitner et al. Jan 2008 B2
7324623 Heuscher et al. Jan 2008 B2
7327865 Fu et al. Feb 2008 B2
7331967 Lee et al. Feb 2008 B2
7333642 Green Feb 2008 B2
7339341 Oleynikov et al. Mar 2008 B2
7366562 Dukesherer et al. Apr 2008 B2
7379790 Toth et al. May 2008 B2
7386365 Nixon Jun 2008 B2
7422592 Morley et al. Sep 2008 B2
7435216 Kwon et al. Oct 2008 B2
7440793 Chauhan et al. Oct 2008 B2
7460637 Clinthorne et al. Dec 2008 B2
7466303 Yi et al. Dec 2008 B2
7493153 Ahmed et al. Feb 2009 B2
7505617 Fu et al. Mar 2009 B2
7533892 Schena et al. May 2009 B2
7542791 Mire et al. Jun 2009 B2
7555331 Viswanathan Jun 2009 B2
7567834 Clayton et al. Jul 2009 B2
7594912 Cooper et al. Sep 2009 B2
7606613 Simon et al. Oct 2009 B2
7607440 Coste-Maniere et al. Oct 2009 B2
7623902 Pacheco Nov 2009 B2
7630752 Viswanathan Dec 2009 B2
7630753 Simon et al. Dec 2009 B2
7643862 Schoenefeld Jan 2010 B2
7660623 Hunter et al. Feb 2010 B2
7661881 Gregerson et al. Feb 2010 B2
7683331 Chang Mar 2010 B2
7683332 Chang Mar 2010 B2
7689320 Prisco et al. Mar 2010 B2
7691098 Wallace et al. Apr 2010 B2
7702379 Avinash et al. Apr 2010 B2
7702477 Tuemmler et al. Apr 2010 B2
7711083 Heigl et al. May 2010 B2
7711406 Kuhn et al. May 2010 B2
7720523 Omernick et al. May 2010 B2
7725253 Foxlin May 2010 B2
7726171 Langlotz et al. Jun 2010 B2
7742801 Neubauer et al. Jun 2010 B2
7751865 Jascob et al. Jul 2010 B2
7753921 Leitner Jul 2010 B2
7760849 Zhang Jul 2010 B2
7762825 Burbank et al. Jul 2010 B2
7763015 Cooper et al. Jul 2010 B2
7763035 Melkent et al. Jul 2010 B2
7787699 Mahesh et al. Aug 2010 B2
7796728 Bergfjord Sep 2010 B2
7813838 Sommer Oct 2010 B2
7818044 Dukesherer et al. Oct 2010 B2
7819859 Prisco et al. Oct 2010 B2
7824401 Manzo et al. Nov 2010 B2
7831294 Viswanathan Nov 2010 B2
7834484 Sartor Nov 2010 B2
7835557 Kendrick et al. Nov 2010 B2
7835778 Foley et al. Nov 2010 B2
7835784 Mire et al. Nov 2010 B2
7840253 Tremblay et al. Nov 2010 B2
7840256 Lakin et al. Nov 2010 B2
7842042 Reay-Young et al. Nov 2010 B2
7843158 Prisco Nov 2010 B2
7844320 Shahidi Nov 2010 B2
7853305 Simon et al. Dec 2010 B2
7853313 Thompson Dec 2010 B2
7865269 Prisco et al. Jan 2011 B2
D631966 Perloff et al. Feb 2011 S
7879045 Gielen et al. Feb 2011 B2
7881767 Strommer et al. Feb 2011 B2
7881770 Melkent et al. Feb 2011 B2
7886743 Cooper et al. Feb 2011 B2
RE42194 Foley et al. Mar 2011 E
RE42226 Foley et al. Mar 2011 E
7900524 Calloway et al. Mar 2011 B2
7907166 Lamprecht et al. Mar 2011 B2
7909122 Schena et al. Mar 2011 B2
7925653 Saptharishi Apr 2011 B2
7930065 Larkin et al. Apr 2011 B2
7935130 Willliams May 2011 B2
7940999 Liao et al. May 2011 B2
7945012 Ye et al. May 2011 B2
7945021 Shapiro et al. May 2011 B2
7953470 Vetter et al. May 2011 B2
7954397 Choi et al. Jun 2011 B2
7971341 Dukesherer et al. Jul 2011 B2
7974674 Hauck et al. Jul 2011 B2
7974677 Mire et al. Jul 2011 B2
7974681 Wallace et al. Jul 2011 B2
7979157 Anvari Jul 2011 B2
7983733 Viswanathan Jul 2011 B2
7988215 Seibold Aug 2011 B2
7996110 Lipow et al. Aug 2011 B2
8004121 Sartor Aug 2011 B2
8004229 Nowlin et al. Aug 2011 B2
8010177 Csavoy et al. Aug 2011 B2
8019045 Kato Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
8035685 Jensen Oct 2011 B2
8046054 Kim et al. Oct 2011 B2
8046057 Clarke Oct 2011 B2
8052688 Wolf, II Nov 2011 B2
8054184 Cline et al. Nov 2011 B2
8054752 Druke et al. Nov 2011 B2
8057397 Li et al. Nov 2011 B2
8057407 Martinelli et al. Nov 2011 B2
8062288 Cooper et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8066524 Burbank et al. Nov 2011 B2
8073335 Labonville et al. Dec 2011 B2
8079950 Stern et al. Dec 2011 B2
8086299 Adler et al. Dec 2011 B2
8092370 Roberts et al. Jan 2012 B2
8098914 Liao et al. Jan 2012 B2
8100950 St. Clair et al. Jan 2012 B2
8105320 Manzo Jan 2012 B2
8108025 Csavoy et al. Jan 2012 B2
8109877 Moctezuma de la Barrera et al. Feb 2012 B2
8112292 Simon Feb 2012 B2
8116430 Shapiro et al. Feb 2012 B1
8120301 Goldberg et al. Feb 2012 B2
8121249 Wang et al. Feb 2012 B2
8123675 Funda et al. Feb 2012 B2
8133229 Bonutti Mar 2012 B1
8142420 Schena Mar 2012 B2
8147494 Leitner et al. Apr 2012 B2
8150494 Simon et al. Apr 2012 B2
8150497 Gielen et al. Apr 2012 B2
8150498 Gielen et al. Apr 2012 B2
8165658 Waynik et al. Apr 2012 B2
8170313 Kendrick et al. May 2012 B2
8179073 Farritor et al. May 2012 B2
8182476 Julian et al. May 2012 B2
8184880 Zhao et al. May 2012 B2
8202278 Orban, III et al. Jun 2012 B2
8208708 Homan et al. Jun 2012 B2
8208988 Jensen Jun 2012 B2
8219177 Smith et al. Jul 2012 B2
8219178 Smith et al. Jul 2012 B2
8220468 Cooper et al. Jul 2012 B2
8224024 Foxlin et al. Jul 2012 B2
8224484 Swarup et al. Jul 2012 B2
8225798 Baldwin et al. Jul 2012 B2
8228368 Zhao et al. Jul 2012 B2
8231610 Jo et al. Jul 2012 B2
8263933 Hartmann et al. Jul 2012 B2
8239001 Verard et al. Aug 2012 B2
8241271 Millman et al. Aug 2012 B2
8248413 Gattani et al. Aug 2012 B2
8256319 Cooper et al. Sep 2012 B2
8271069 Jascob et al. Sep 2012 B2
8271130 Hourtash Sep 2012 B2
8281670 Larkin et al. Oct 2012 B2
8282653 Nelson et al. Oct 2012 B2
8301226 Csavoy et al. Oct 2012 B2
8311611 Csavoy et al. Nov 2012 B2
8313430 Pimenta Nov 2012 B1
8320991 Jascob et al. Nov 2012 B2
8332012 Kienzle, III Dec 2012 B2
8333755 Cooper et al. Dec 2012 B2
8335552 Stiles Dec 2012 B2
8335557 Maschke Dec 2012 B2
8348931 Cooper et al. Jan 2013 B2
8353963 Glerum Jan 2013 B2
8358818 Miga et al. Jan 2013 B2
8359730 Burg et al. Jan 2013 B2
8374673 Adcox et al. Feb 2013 B2
8374723 Zhao et al. Feb 2013 B2
8379791 Forthmann et al. Feb 2013 B2
8386019 Camus et al. Feb 2013 B2
8392022 Ortmaier et al. Mar 2013 B2
8394099 Patwardhan Mar 2013 B2
8395342 Prisco Mar 2013 B2
8398634 Manzo et al. Mar 2013 B2
8400094 Schena Mar 2013 B2
8414957 Enzerink et al. Apr 2013 B2
8418073 Mohr et al. Apr 2013 B2
8450694 Baviera et al. May 2013 B2
8452447 Nixon May 2013 B2
RE44305 Foley et al. Jun 2013 E
8462911 Vesel et al. Jun 2013 B2
8465476 Rogers et al. Jun 2013 B2
8465771 Wan et al. Jun 2013 B2
8467851 Mire et al. Jun 2013 B2
8467852 Csavoy et al. Jun 2013 B2
8469947 Devengenzo et al. Jun 2013 B2
RE44392 Hynes Jul 2013 E
8483434 Buehner et al. Jul 2013 B2
8483800 Jensen et al. Jul 2013 B2
8486532 Enzerink et al. Jul 2013 B2
8489235 Moll et al. Jul 2013 B2
8500722 Cooper Aug 2013 B2
8500728 Newton et al. Aug 2013 B2
8504201 Moll et al. Aug 2013 B2
8506555 Ruiz Morales Aug 2013 B2
8506556 Schena Aug 2013 B2
8508173 Goldberg et al. Aug 2013 B2
8512318 Tovey et al. Aug 2013 B2
8515576 Lipow et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8521331 Itkowitz Aug 2013 B2
8526688 Groszmann et al. Sep 2013 B2
8526700 Isaacs Sep 2013 B2
8527094 Kumar et al. Sep 2013 B2
8528440 Morley et al. Sep 2013 B2
8532741 Heruth et al. Sep 2013 B2
8541970 Nowlin et al. Sep 2013 B2
8548563 Simon et al. Oct 2013 B2
8549732 Burg et al. Oct 2013 B2
8551114 Ramos de la Pena Oct 2013 B2
8551116 Julian et al. Oct 2013 B2
8556807 Scott et al. Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8560118 Green et al. Oct 2013 B2
8561473 Blumenkranz Oct 2013 B2
8562594 Cooper et al. Oct 2013 B2
8571638 Shoham Oct 2013 B2
8571710 Coste-Maniere et al. Oct 2013 B2
8573465 Shelton, IV Nov 2013 B2
8574303 Sharkey et al. Nov 2013 B2
8585420 Burbank et al. Nov 2013 B2
8594841 Zhao et al. Nov 2013 B2
8597198 Sanborn et al. Dec 2013 B2
8600478 Verard et al. Dec 2013 B2
8603077 Cooper et al. Dec 2013 B2
8611985 Lavallee et al. Dec 2013 B2
8613230 Blumenkranz et al. Dec 2013 B2
8621939 Blumenkranz et al. Jan 2014 B2
8624537 Nowlin et al. Jan 2014 B2
8630389 Kato Jan 2014 B2
8634897 Simon et al. Jan 2014 B2
8634957 Toth et al. Jan 2014 B2
8638056 Goldberg et al. Jan 2014 B2
8638057 Goldberg et al. Jan 2014 B2
8639000 Zhao et al. Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8644907 Hartmann et al. Feb 2014 B2
8657809 Schoepp Feb 2014 B2
8660635 Simon et al. Feb 2014 B2
8666544 Moll et al. Mar 2014 B2
8675939 Moctezuma de la Barrera Mar 2014 B2
8678647 Gregerson et al. Mar 2014 B2
8679125 Smith et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8682413 Lloyd Mar 2014 B2
8684253 Giordano et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8693730 Umasuthan et al. Apr 2014 B2
8694075 Groszmann et al. Apr 2014 B2
8696458 Foxlin et al. Apr 2014 B2
8700123 Okamura et al. Apr 2014 B2
8706086 Glerum Apr 2014 B2
8706185 Foley et al. Apr 2014 B2
8706301 Zhao et al. Apr 2014 B2
8717430 Simon et al. May 2014 B2
8727618 Maschke et al. May 2014 B2
8734432 Tuma et al. May 2014 B2
8738115 Amberg et al. May 2014 B2
8738181 Greer et al. May 2014 B2
8740882 Jun et al. Jun 2014 B2
8746252 McGrogan et al. Jun 2014 B2
8749189 Nowlin et al. Jun 2014 B2
8749190 Nowlin et al. Jun 2014 B2
8761930 Nixon Jun 2014 B2
8764448 Yang et al. Jul 2014 B2
8771170 Mesallum et al. Jul 2014 B2
8781186 Clements et al. Jul 2014 B2
8781630 Banks et al. Jul 2014 B2
8784385 Boyden et al. Jul 2014 B2
8786241 Nowlin et al. Jul 2014 B2
8787520 Baba Jul 2014 B2
8792704 Isaacs Jul 2014 B2
8798231 Notohara et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8808164 Hoffman et al. Aug 2014 B2
8812077 Dempsey Aug 2014 B2
8814793 Brabrand Aug 2014 B2
8816628 Nowlin et al. Aug 2014 B2
8818105 Myronenko et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8821511 von Jako et al. Sep 2014 B2
8823308 Nowlin et al. Sep 2014 B2
8827996 Scott et al. Sep 2014 B2
8828024 Farritor et al. Sep 2014 B2
8830224 Zhao et al. Sep 2014 B2
8834489 Cooper et al. Sep 2014 B2
8834490 Bonutti Sep 2014 B2
8838270 Druke et al. Sep 2014 B2
8844789 Shelton, IV et al. Sep 2014 B2
8855822 Bartol et al. Oct 2014 B2
8858598 Seifert et al. Oct 2014 B2
8860753 Bhandarkar et al. Oct 2014 B2
8864751 Prisco et al. Oct 2014 B2
8864798 Weiman et al. Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8867703 Shapiro et al. Oct 2014 B2
8870880 Himmelberger et al. Oct 2014 B2
8876866 Zappacosta et al. Nov 2014 B2
8880223 Raj et al. Nov 2014 B2
8882803 Iott et al. Nov 2014 B2
8883210 Truncale et al. Nov 2014 B1
8888821 Rezach et al. Nov 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8894652 Seifert et al. Nov 2014 B2
8894688 Suh Nov 2014 B2
8894691 Iott et al. Nov 2014 B2
8906069 Hansell et al. Dec 2014 B2
8964934 Ein-Gal Feb 2015 B2
8992580 Bar et al. Mar 2015 B2
8996169 Lightcap et al. Mar 2015 B2
9001963 Sowards-Emmerd et al. Apr 2015 B2
9002076 Khadem et al. Apr 2015 B2
9005297 Katrana et al. Apr 2015 B2
9017335 Stiehl Apr 2015 B2
9044190 Rubner et al. Jun 2015 B2
9050108 Grinberg et al. Jun 2015 B2
9107683 Hourtash et al. Aug 2015 B2
9125556 Zehavi et al. Sep 2015 B2
9131986 Greer et al. Sep 2015 B2
9215968 Schostek et al. Dec 2015 B2
9308050 Kostrzewski et al. Apr 2016 B2
9380984 Ll et al. Jul 2016 B2
9393039 Lechner et al. Jul 2016 B2
9398886 Gregerson et al. Jul 2016 B2
9398890 Dong et al. Jul 2016 B2
9414859 Ballard et al. Aug 2016 B2
9420975 Gutfleisch et al. Aug 2016 B2
9456827 Grinberg et al. Oct 2016 B2
9463073 Gill et al. Oct 2016 B2
9492235 Hourtash et al. Nov 2016 B2
9592096 Maillet et al. Mar 2017 B2
9750465 Engel et al. Sep 2017 B2
9757203 Hourtash et al. Sep 2017 B2
9795354 Menegaz et al. Oct 2017 B2
9814535 Bar et al. Nov 2017 B2
9820783 Donner et al. Nov 2017 B2
9833265 Donner et al. Nov 2017 B2
9848922 Tohmeh et al. Dec 2017 B2
9925011 Gombert et al. Mar 2018 B2
9931025 Graetzel et al. Apr 2018 B1
10034717 Miller et al. Jul 2018 B2
10575906 Wu Mar 2020 B2
20010036302 Miller Nov 2001 A1
20020035321 Bucholz et al. Mar 2002 A1
20030125622 Schweikard et al. Jul 2003 A1
20030161442 Zeiss Aug 2003 A1
20040019263 Jutras et al. Jan 2004 A1
20040024311 Quaid Feb 2004 A1
20040034302 Abovitz et al. Feb 2004 A1
20040068172 Nowinski et al. Apr 2004 A1
20040076259 Jensen et al. Apr 2004 A1
20040097952 Sarin et al. May 2004 A1
20040153191 Grimm et al. Aug 2004 A1
20040157188 Luth et al. Aug 2004 A1
20040215071 Frank et al. Oct 2004 A1
20050085714 Foley et al. Apr 2005 A1
20050096502 Khalili May 2005 A1
20050107679 Geiger et al. May 2005 A1
20050113659 Pothier et al. May 2005 A1
20050119639 McCombs et al. Jun 2005 A1
20050143651 Verard et al. Jun 2005 A1
20050149045 Elliott Jul 2005 A1
20050171558 Abovitz et al. Aug 2005 A1
20050215888 Grimm et al. Sep 2005 A1
20060009780 Foley Jan 2006 A1
20060036264 Selover et al. Feb 2006 A1
20060100610 Wallace et al. May 2006 A1
20060142657 Quaid et al. Jun 2006 A1
20060161059 Wilson Jul 2006 A1
20060173329 Marquart et al. Aug 2006 A1
20060178559 Kumar et al. Aug 2006 A1
20060184396 Dennis et al. Aug 2006 A1
20060241416 Marquart et al. Oct 2006 A1
20060264963 Reed et al. Nov 2006 A1
20060265179 Jansen Nov 2006 A1
20060291612 Nishide et al. Dec 2006 A1
20070001879 Kaftan et al. Jan 2007 A1
20070015987 Benlloch Baviera et al. Jan 2007 A1
20070016009 Lakin et al. Jan 2007 A1
20070021738 Hasser et al. Jan 2007 A1
20070038059 Sheffer et al. Feb 2007 A1
20070066887 Mire Mar 2007 A1
20070073133 Schoenefeld Mar 2007 A1
20070078475 Bodduluri et al. Apr 2007 A1
20070122020 Claus et al. May 2007 A1
20070156121 Millman et al. Jul 2007 A1
20070156157 Nahum et al. Jul 2007 A1
20070167712 Keglovich et al. Jul 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20070238985 Smith et al. Oct 2007 A1
20070239169 Plaskos et al. Oct 2007 A1
20080004523 Jensen Jan 2008 A1
20080010706 Moses et al. Jan 2008 A1
20080013809 Zhu Jan 2008 A1
20080033283 Dellaca et al. Feb 2008 A1
20080046122 Manzo et al. Feb 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080108912 Node-Langlois May 2008 A1
20080108991 von Jako May 2008 A1
20080109012 Falco et al. May 2008 A1
20080119725 Lloyd May 2008 A1
20080144906 Allred et al. Jun 2008 A1
20080154389 Smith et al. Jun 2008 A1
20080161680 von Jako et al. Jul 2008 A1
20080161682 Kendrick et al. Jul 2008 A1
20080177203 von Jako Jul 2008 A1
20080188934 Moser et al. Aug 2008 A1
20080200794 Teichman et al. Aug 2008 A1
20080214922 Hartmann et al. Sep 2008 A1
20080215181 Smith Sep 2008 A1
20080228068 Viswanathan et al. Sep 2008 A1
20080228195 von Jako et al. Sep 2008 A1
20080228196 Wang et al. Sep 2008 A1
20080235052 Node-Langlois et al. Sep 2008 A1
20080269596 Revie et al. Oct 2008 A1
20080287771 Anderson Nov 2008 A1
20080287781 Revie et al. Nov 2008 A1
20080300477 Lloyd et al. Dec 2008 A1
20080300478 Zuhars et al. Dec 2008 A1
20080302950 Park et al. Dec 2008 A1
20080306490 Lakin et al. Dec 2008 A1
20080319311 Hamadeh Dec 2008 A1
20080319491 Schoenefeld Dec 2008 A1
20090012509 Csavoy et al. Jan 2009 A1
20090030428 Omori et al. Jan 2009 A1
20090080737 Battle et al. Mar 2009 A1
20090099445 Burger Apr 2009 A1
20090185655 Koken et al. Jul 2009 A1
20090198121 Hoheisel Aug 2009 A1
20090216113 Meier et al. Aug 2009 A1
20090228019 Gross et al. Sep 2009 A1
20090234217 Mire et al. Sep 2009 A1
20090240141 Neubauer et al. Sep 2009 A1
20090254326 Isaacs Oct 2009 A1
20090259123 Navab et al. Oct 2009 A1
20090259230 Khadem et al. Oct 2009 A1
20090264899 Appenrodt et al. Oct 2009 A1
20090281417 Hartmann et al. Nov 2009 A1
20090306480 Protopsaltis Dec 2009 A1
20090306499 Van Vorhis et al. Dec 2009 A1
20100022874 Wang et al. Jan 2010 A1
20100039506 Sarvestani et al. Feb 2010 A1
20100046718 Weiser et al. Feb 2010 A1
20100076305 Maier-Hein et al. Mar 2010 A1
20100114288 Haller et al. May 2010 A1
20100125286 Wang et al. May 2010 A1
20100130986 Mailloux et al. May 2010 A1
20100168764 Jacobs Jul 2010 A1
20100174410 Greer et al. Jul 2010 A1
20100228117 Hartmann Sep 2010 A1
20100228265 Prisco Sep 2010 A1
20100228340 Erbel et al. Sep 2010 A1
20100249571 Jensen et al. Sep 2010 A1
20100274120 Heuscher Oct 2010 A1
20100280363 Skarda et al. Nov 2010 A1
20100331858 Simaan et al. Dec 2010 A1
20110019884 Blau Jan 2011 A1
20110020084 Brett et al. Jan 2011 A1
20110022229 Jang et al. Jan 2011 A1
20110040305 Gomez et al. Feb 2011 A1
20110071347 Rogers et al. Mar 2011 A1
20110077504 Fischer et al. Mar 2011 A1
20110082468 Hagag et al. Apr 2011 A1
20110098553 Robbins et al. Apr 2011 A1
20110137152 Li Jun 2011 A1
20110184245 Xia et al. Jul 2011 A1
20110190588 McKay Aug 2011 A1
20110213379 Blau et al. Sep 2011 A1
20110213384 Jeong Sep 2011 A1
20110224684 Larkin et al. Sep 2011 A1
20110224685 Larkin et al. Sep 2011 A1
20110224686 Larkin et al. Sep 2011 A1
20110224687 Larkin et al. Sep 2011 A1
20110224688 Larkin et al. Sep 2011 A1
20110224689 Larkin et al. Sep 2011 A1
20110224825 Larkin et al. Sep 2011 A1
20110230967 O'Halloran et al. Sep 2011 A1
20110238080 Ranjit et al. Sep 2011 A1
20110257653 Hughes et al. Oct 2011 A1
20110276058 Choi et al. Nov 2011 A1
20110282189 Graumann Nov 2011 A1
20110286573 Schretter et al. Nov 2011 A1
20110295062 Gratacos Solsona et al. Dec 2011 A1
20110295370 Suh et al. Dec 2011 A1
20110306873 Shenai et al. Dec 2011 A1
20110306986 Lee et al. Dec 2011 A1
20120035507 George et al. Feb 2012 A1
20120046668 Gantes Feb 2012 A1
20120051498 Koishi Mar 2012 A1
20120053597 Anvari et al. Mar 2012 A1
20120059248 Holsing et al. Mar 2012 A1
20120071753 Hunter et al. Mar 2012 A1
20120108954 Schulhauser et al. May 2012 A1
20120136372 Amat Girbau et al. May 2012 A1
20120143084 Shoham Jun 2012 A1
20120184839 Woerlein Jul 2012 A1
20120197182 Millman et al. Aug 2012 A1
20120226145 Chang et al. Sep 2012 A1
20120235909 Birkenbach et al. Sep 2012 A1
20120245596 Meenink Sep 2012 A1
20120253332 Moll Oct 2012 A1
20120253360 White et al. Oct 2012 A1
20120256092 Zingerman Oct 2012 A1
20120289820 Rohling Nov 2012 A1
20120294498 Popovic Nov 2012 A1
20120296203 Hartmann et al. Nov 2012 A1
20130006267 Odermatt et al. Jan 2013 A1
20130016889 Myronenko et al. Jan 2013 A1
20130030571 Ruiz Morales et al. Jan 2013 A1
20130035583 Park et al. Feb 2013 A1
20130051647 Miao et al. Feb 2013 A1
20130060146 Yang et al. Mar 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130064427 Picard et al. Mar 2013 A1
20130094742 Feilkas Apr 2013 A1
20130096574 Kang et al. Apr 2013 A1
20130113791 Isaacs et al. May 2013 A1
20130116706 Lee et al. May 2013 A1
20130131695 Scarfogliero et al. May 2013 A1
20130144307 Jeong et al. Jun 2013 A1
20130158542 Manzo et al. Jun 2013 A1
20130165937 Patwardhan Jun 2013 A1
20130165948 Popovic Jun 2013 A1
20130178867 Farritor et al. Jul 2013 A1
20130178868 Roh Jul 2013 A1
20130178870 Schena Jul 2013 A1
20130184873 Namiki Jul 2013 A1
20130204271 Brisson et al. Aug 2013 A1
20130211419 Jensen Aug 2013 A1
20130211420 Jensen Aug 2013 A1
20130218142 Tuma et al. Aug 2013 A1
20130223702 Holsing et al. Aug 2013 A1
20130225942 Holsing et al. Aug 2013 A1
20130225943 Holsing et al. Aug 2013 A1
20130231556 Holsing et al. Sep 2013 A1
20130237995 Lee et al. Sep 2013 A1
20130245375 DiMaio et al. Sep 2013 A1
20130261640 Kim et al. Oct 2013 A1
20130268007 Rezach et al. Oct 2013 A1
20130272488 Bailey et al. Oct 2013 A1
20130272489 Dickman et al. Oct 2013 A1
20130274761 Devengenzo et al. Oct 2013 A1
20130279784 Gill et al. Oct 2013 A1
20130281821 Liu et al. Oct 2013 A1
20130296884 Taylor et al. Nov 2013 A1
20130303887 Holsing et al. Nov 2013 A1
20130307955 Deitz et al. Nov 2013 A1
20130317521 Choi et al. Nov 2013 A1
20130325033 Schena et al. Dec 2013 A1
20130325035 Hauck et al. Dec 2013 A1
20130331686 Freysinger et al. Dec 2013 A1
20130331858 Devengenzo et al. Dec 2013 A1
20130331861 Yoon Dec 2013 A1
20130342578 Isaacs Dec 2013 A1
20130345717 Markvicka et al. Dec 2013 A1
20130345718 Crawford et al. Dec 2013 A1
20130345757 Stad Dec 2013 A1
20140001235 Shelton, IV Jan 2014 A1
20140012131 Heruth et al. Jan 2014 A1
20140031664 Kang et al. Jan 2014 A1
20140046128 Lee et al. Feb 2014 A1
20140046132 Hoeg et al. Feb 2014 A1
20140046340 Wilson et al. Feb 2014 A1
20140049629 Siewerdsen et al. Feb 2014 A1
20140052150 Taylor et al. Feb 2014 A1
20140058406 Tsekos Feb 2014 A1
20140067343 Yamagata Mar 2014 A1
20140073914 Lavallee et al. Mar 2014 A1
20140080086 Chen Mar 2014 A1
20140081128 Verard et al. Mar 2014 A1
20140088410 Wu Mar 2014 A1
20140088612 Bartol et al. Mar 2014 A1
20140094694 Moctezuma de la Barrera Apr 2014 A1
20140094851 Gordon Apr 2014 A1
20140096369 Matsumoto et al. Apr 2014 A1
20140100587 Farritor et al. Apr 2014 A1
20140121676 Kostrzewski et al. May 2014 A1
20140128882 Kwak et al. May 2014 A1
20140135744 Stein et al. May 2014 A1
20140135796 Simon et al. May 2014 A1
20140142591 Alvarez et al. May 2014 A1
20140142592 Moon et al. May 2014 A1
20140148692 Hartmann et al. May 2014 A1
20140163581 Devengenzo et al. Jun 2014 A1
20140171781 Stiles Jun 2014 A1
20140171900 Stiles Jun 2014 A1
20140171965 Loh et al. Jun 2014 A1
20140180308 von Grunberg Jun 2014 A1
20140180309 Seeber et al. Jun 2014 A1
20140187915 Yaroshenko et al. Jul 2014 A1
20140188132 Kang Jul 2014 A1
20140194699 Roh et al. Jul 2014 A1
20140200587 Pompee et al. Jul 2014 A1
20140130810 Azizian et al. Aug 2014 A1
20140221819 Sarment Aug 2014 A1
20140221822 Ehlers et al. Aug 2014 A1
20140222023 Kim et al. Aug 2014 A1
20140228631 Kwak et al. Aug 2014 A1
20140234804 Huang et al. Aug 2014 A1
20140257328 Kim et al. Sep 2014 A1
20140257329 Jang et al. Sep 2014 A1
20140257330 Choi et al. Sep 2014 A1
20140275760 Lee et al. Sep 2014 A1
20140275955 Crawford et al. Sep 2014 A1
20140275985 Walker et al. Sep 2014 A1
20140276931 Parihar et al. Sep 2014 A1
20140276940 Seo Sep 2014 A1
20140276943 Bowling et al. Sep 2014 A1
20140276944 Farritor et al. Sep 2014 A1
20140288413 Hwang et al. Sep 2014 A1
20140299648 Shelton, IV et al. Oct 2014 A1
20140303434 Farritor et al. Oct 2014 A1
20140303643 Ha et al. Oct 2014 A1
20140305995 Shelton, IV et al. Oct 2014 A1
20140309659 Roh et al. Oct 2014 A1
20140316420 Ballard et al. Oct 2014 A1
20140316436 Bar et al. Oct 2014 A1
20140323803 Hoffman et al. Oct 2014 A1
20140324070 Min et al. Oct 2014 A1
20140330288 Date et al. Nov 2014 A1
20140336669 Park Nov 2014 A1
20140343416 Panescu et al. Nov 2014 A1
20140357989 Hendriks et al. Dec 2014 A1
20140364720 Darrow et al. Dec 2014 A1
20140371577 Maillet et al. Dec 2014 A1
20150032164 Crawford et al. Jan 2015 A1
20150039034 Frankel et al. Feb 2015 A1
20150049174 Lee et al. Feb 2015 A1
20150085970 Bouhnik et al. Mar 2015 A1
20150100066 Kostrzewski et al. Apr 2015 A1
20150100067 Cavanagh et al. Apr 2015 A1
20150146847 Liu May 2015 A1
20150150524 Yorkston et al. Jun 2015 A1
20150157416 Andersson Jun 2015 A1
20150157468 Wakayama et al. Jun 2015 A1
20150173810 Biedermann et al. Jun 2015 A1
20150196261 Funk Jul 2015 A1
20150196365 Kostrzewski et al. Jul 2015 A1
20150209056 Shoham et al. Jul 2015 A1
20150213633 Chang et al. Jul 2015 A1
20150335480 Alvarez et al. Nov 2015 A1
20150342647 Frankel et al. Dec 2015 A1
20160005194 Schretter et al. Jan 2016 A1
20160030129 Christian et al. Feb 2016 A1
20160033284 Sato Feb 2016 A1
20160063707 Masumoto Mar 2016 A1
20160100773 Ching et al. Apr 2016 A1
20160166329 Langan et al. Jun 2016 A1
20160220320 Crawford et al. Aug 2016 A1
20160235480 Scholl et al. Aug 2016 A1
20160235492 Morard et al. Aug 2016 A1
20160235493 LeBoeuf et al. Aug 2016 A1
20160249990 Glozman et al. Sep 2016 A1
20160256225 Crawford et al. Sep 2016 A1
20160278818 Donner Sep 2016 A1
20160296266 Chandanson et al. Oct 2016 A1
20160302871 Gregerson et al. Oct 2016 A1
20160320322 Suzuki Nov 2016 A1
20160331335 Gregerson et al. Nov 2016 A1
20170000562 Frank et al. Jan 2017 A1
20170007327 Haider et al. Jan 2017 A1
20170020609 Wentorf et al. Jan 2017 A1
20170079727 Crawford et al. Mar 2017 A1
20170112552 Sinnott et al. Apr 2017 A1
20170135770 Scholl et al. May 2017 A1
20170143284 Sehnert et al. May 2017 A1
20170143426 Isaacs et al. May 2017 A1
20170156816 Ibrahim Jun 2017 A1
20170189126 Weir Jul 2017 A1
20170202629 Maillet et al. Jul 2017 A1
20170209222 Gassner et al. Jul 2017 A1
20170212723 Atarot et al. Jul 2017 A1
20170215825 Johnson et al. Aug 2017 A1
20170215826 Johnson et al. Aug 2017 A1
20170215827 Johnson et al. Aug 2017 A1
20170231710 Scholl et al. Aug 2017 A1
20170245946 Tabandeh et al. Aug 2017 A1
20170245951 Crawford et al. Aug 2017 A1
20170258426 Risher-Kelly et al. Sep 2017 A1
20170258526 Lang Sep 2017 A1
20170258532 Shalayev et al. Sep 2017 A1
20170258535 Crawford et al. Sep 2017 A1
20170265952 Donhowe et al. Sep 2017 A1
20170273748 Hourtash et al. Sep 2017 A1
20170296277 Hourtash et al. Oct 2017 A1
20170312032 Amanatullah et al. Nov 2017 A1
20170333137 Roessler Nov 2017 A1
20170348061 Joshi et al. Dec 2017 A1
20170360493 Zucher et al. Dec 2017 A1
20180008355 Mozes et al. Jan 2018 A1
20180042464 Arai et al. Feb 2018 A1
20180049825 Kwon et al. Feb 2018 A1
20180064496 Hladio et al. Mar 2018 A1
20180064497 Hussain et al. Mar 2018 A1
20180066794 Okuda et al. Mar 2018 A1
20180092699 Finley Apr 2018 A1
20180200016 Chappuis Jul 2018 A1
20180249981 Johnson et al. Sep 2018 A1
20180325608 Kang et al. Nov 2018 A1
20180325610 Cameron et al. Nov 2018 A1
Foreign Referenced Citations (121)
Number Date Country
2015234609 Oct 2016 AU
1536975 Oct 2004 CN
1714742 Jan 2006 CN
102036615 Apr 2011 CN
202027725 Nov 2011 CN
102438551 May 2012 CN
102596062 Jul 2012 CN
102612350 Jul 2012 CN
102933163 Feb 2013 CN
103945764 Jul 2014 CN
104334110 Feb 2015 CN
104994805 Oct 2015 CN
105101903 Nov 2015 CN
105939687 Sep 2016 CN
106163446 Nov 2016 CN
106691600 May 2017 CN
106999168 Aug 2017 CN
106999245 Aug 2017 CN
107088091 Aug 2017 CN
107405170 Nov 2017 CN
107545585 Jan 2018 CN
108601569 Sep 2018 CN
108652743 Oct 2018 CN
209153975 Jul 2019 CN
107847275 Oct 2020 CN
102014221469 Apr 2016 DE
02012215001 Dec 2021 DE
1103223 May 2001 EP
1224918 Jul 2002 EP
1346687 Sep 2003 EP
1523950 Apr 2005 EP
2468207 Jun 2012 EP
2471483 Jul 2012 EP
2471617 Jul 2012 EP
3181085 Jun 2017 EP
3391848 Oct 2018 EP
3517069 Jul 2019 EP
3-118053 May 1991 JP
11-313837 Nov 1999 JP
2001135734 May 2001 JP
2002253574 Sep 2002 JP
2004518475 Jun 2004 JP
2005-533579 Nov 2005 JP
2007-044488 Feb 2007 JP
2007-531543 Nov 2007 JP
2007534351 Nov 2007 JP
2007537835 Dec 2007 JP
2008-507361 Mar 2008 JP
2008507361 Mar 2008 JP
2008188417 Aug 2008 JP
2008-538184 Oct 2008 JP
2009537229 Oct 2009 JP
2011-120782 Jun 2011 JP
2011-517594 Jun 2011 JP
2012075507 Apr 2012 JP
2013075195 Apr 2013 JP
2013-541365 Nov 2013 JP
2014036700 Feb 2014 JP
2014-48228 Mar 2014 JP
2014097220 May 2014 JP
2015-504721 Feb 2015 JP
201536161 Feb 2015 JP
2015100677 Jun 2015 JP
2015119968 Jul 2015 JP
2015521084 Jul 2015 JP
2015528713 Oct 2015 JP
2015-534480 Dec 2015 JP
2015534845 Dec 2015 JP
2016-33474 Mar 2016 JP
2016043211 Apr 2016 JP
2016185225 Oct 2016 JP
2016-193222 Nov 2016 JP
2016193222 Nov 2016 JP
2016539681 Dec 2016 JP
2017087313 May 2017 JP
2017-528255 Sep 2017 JP
2017176848 Oct 2017 JP
2017530842 Oct 2017 JP
2017221660 Dec 2017 JP
2017223657 Dec 2017 JP
2018011938 Jan 2018 JP
2018-027288 Feb 2018 JP
2018516107 Jun 2018 JP
2018-114283 Jul 2018 JP
2018523516 Aug 2018 JP
2018-202156 Dec 2018 JP
2021-25802 Feb 2021 JP
2021025802 Feb 2021 JP
03007198 Jan 2003 WO
2005039417 May 2005 WO
2009092164 Jul 2009 WO
2009126953 Oct 2009 WO
2011128766 Oct 2011 WO
2012050634 Apr 2012 WO
2013114823 Aug 2013 WO
2013118047 Aug 2013 WO
2013192598 Dec 2013 WO
2014010760 Jan 2014 WO
2014062890 Apr 2014 WO
2014139023 Sep 2014 WO
2015023665 Feb 2015 WO
2015052718 Apr 2015 WO
2015061638 Apr 2015 WO
2015079775 Jun 2015 WO
2015142762 Sep 2015 WO
201613049 Jan 2016 WO
2016087539 Jun 2016 WO
2016114834 Jul 2016 WO
2016152255 Sep 2016 WO
2016154557 Sep 2016 WO
2016170372 Oct 2016 WO
2017221257 Feb 2017 WO
2017127202 Jul 2017 WO
2017147596 Aug 2017 WO
2017186799 Nov 2017 WO
2017204832 Nov 2017 WO
2017221257 Dec 2017 WO
2018075784 Apr 2018 WO
2018165767 Sep 2018 WO
2018183461 Oct 2018 WO
2019193775 Oct 2019 WO
Non-Patent Literature Citations (7)
Entry
US 8,231,638 B2, 07/2012, Swarup et al. (withdrawn)
Alk et al., “Smart Device Assisted Method for Rod Length and Rod Radius Measurement in Percutaneious Pedicle Screw Surgery”, Prizeglad Elektrotechniczny, vol. 3, Mar. 5, 2016, pp. 30-33.
Markelj et al.: “A review of 3D/2D registration methods for image-guided interventions”, Medical Image Analysis, Oxford University Press, Oxford, GB, vol. 16, No. 3,pp. 642-661, Apr. 1, 2012.
Gong Ren Hui etal.: “Interactive initialization of 2D/3D rigid registration”, Medical Physics, AIP, Melville, NY, US, vol. 40, No. 12, 14 pages, Dec. 2013.
Dumenil A et al.: “A versatile intensity-based 3D/2D rigid registration compatible with mobile C-arm for endovascular treatment of abdominal aortic aneurysm”, International Journal of Computer Assisted Radiology and Surgery, Springer, DE, vol. 11, No. 9, pp. 1713-1729, May 26, 2016.
Marintschev et al.: “Navigation of vertebro-pelvic fixations based on CT-fluoro macthing”, European Spine Journal, Springer, Berlin, DE, vol. 19, No. 11, pp. 1921-1927, Jun. 16, 2010.
Andreas Alk et al: “Smart Device Assisted Method for Rod Length and Rod Radius Measurement in Percutaneous Pedicle Screw Surgery”, Przeglad Elektrotechniczny, vol. 3, Mar. 5, 2016 (Mar. 5, 2016), pp. 30-33, XP055668769, PO ISSN: 0033-2097, DOI: 10.15199/48.2016.03.07.
Related Publications (1)
Number Date Country
20190269467 A1 Sep 2019 US
Provisional Applications (3)
Number Date Country
62608188 Dec 2017 US
61800527 Mar 2013 US
61662702 Jun 2012 US
Continuation in Parts (5)
Number Date Country
Parent 15448670 Mar 2017 US
Child 16226770 US
Parent 15157444 May 2016 US
Child 15448670 US
Parent 15095883 Apr 2016 US
Child 15157444 US
Parent 14062707 Oct 2013 US
Child 15095883 US
Parent 13924505 Jun 2013 US
Child 14062707 US