1. Technical Field
This invention relates to active noise control, and more specifically to active noise control using at least one infinite impulse response filter.
2. Related Art
Active noise control may be used to generate sound waves that destructively interfere with a targeted undesired sound. The destructively interfering sound waves may be produced through a loudspeaker to combine with the targeted undesired sound.
An active noise control system generally includes at least one adaptive finite impulse response (FIR) filter. FIR filters are typically used due to low incidence of system instability. FIR filters generally display longer convergence times as compared to infinite impulse response (IIR) filters. While IIR filters may provide lower convergence times as compared to FIR filters, use of IIR filters may result in more instances of system instability. Therefore, a need exists to control IIR filter stability in active noise control systems.
An active noise control (ANC) system may implement at least one adaptive infinite impulse response (IIR). The IIR filter may receive an input signal representative of an undesired sound. The IIR filter may generate an output signal based on the input signal. The ANC system may generate an anti-noise signal based on the output signal of IIR filter. The anti-noise signal may be used to drive a speaker to generate sound waves to destructively interfere with the undesired sound.
The IIR filter may include a plurality of filter coefficients used to generate the output signal based on the input signal. The ANC system may include an update system to update the filter coefficients of the IIR filter. The update system may generate a plurality of update coefficients based on each sample of the input signal being received by the IIR filter. The update system may determine the stability of the update coefficients. The coefficients of the IIR filter may be replaced with the update coefficients when the update coefficients are determined to be stable.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The system may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
An active noise control system may be configured to generate destructively interfering sound waves. This is accomplished generally by first determining presence of an undesired sound and then generating the destructively interfering sound waves. The destructively interfering sounds wave may be transmitted as a speaker output. A microphone may receive sound waves from the speaker output and the undesired sound. The microphone may generate an error signal based on the sound waves. The active noise control system may include at least one adaptive infinite impulse response (IIR) filter. The output signal of the adaptive IIR filter may be used to generate a signal to drive the speaker to produce the destructively interfering sound waves. An update system may determine update coefficients for the IIR filter. Determination of the update coefficients may be based on the output signal of the IIR filter.
In
A microphone 112 may be positioned within or proximate to the target space 108 to detect sound waves present in the target space 108. In one example, the target space 108 may detect sound waves generated from the combination of the speaker output 106 and the undesired sound 110. The detection of the sound waves by the microphone 112 may cause an output signal to be generated by the microphone 112. The output signal may be used as an error signal 114. An input signal 116 may also be provided to the ANC system 100. The input signal 116 may be representative of the undesired sound 110 emanating from a sound source 118. The ANC system 100 may generate the anti-noise signal 102 based on the input signal 116. The ANC system 100 may use the error signal 114 to adjust the anti-noise signal 102 to more accurately cause destructive interference with the undesired sound 110 in the target space 108.
In one example, the ANC system 100 may include an anti-noise generator 119. The ANC system 100 may be configured to include any number of anti-noise generators 119. The anti-noise generator 119 may be configured to generate the anti-noise signal 102 using at least one adaptive infinite impulse response (IIR) filter 120. In one example, the IIR filter 120 may converge faster than a finite impulse response (FIR) filter may converge when configured for use in the ANC system 100. Convergence speed may contribute to how quickly the anti-noise signal 102 is adapted to accurately cancel the undesired sound 110 in the target space 110. In alternative examples, the ANC system 100 may include additional IIR filters. The adaptive IIR filter 120 may produce an IIR filter output signal 122 used to generate the anti-noise signal 102. The IIR filter 120 may include a plurality of filter coefficients that may be adapted based on the error signal 114 and the input signal 116. The coefficients of the IIR filter 120 may be updated using an update system 124.
The update system 124 may be configured to provide update coefficients 126 to the IIR filter 120. The update system 124 may determine update coefficients 126 based on the error signal 114, the input signal 116, and the IIR filter output signal 122. In one example, update coefficients 126 may be determined for the IIR filter 120 between processing of samples of the input signal 116. Between each sample, the update system 124 may determine the update coefficients 126 and determine the stability of the updated coefficients 126. If the update coefficients 126 are stable, the update coefficients 126 may replace the current coefficients in the IIR filter 120 for subsequent samples of the input signal 116. If the update coefficients 126 are determined to be unstable, the IIR filter 120 may use the current coefficients for the subsequent samples of the input signal 116. The update system 124 may determine update coefficients between each sample of the input signal 116 provided to the anti-noise generator 119. Alternatively, the update system 124 may be configured to operate in parallel with the anti-noise generator 119.
In
The undesired sound 207 may propagate through a physical path that includes a first path 208 and second path 210 to reach a microphone 212 disposed within a target space 214. In
In
The anti-noise signal 218 may be generated based on an output signal 222 of the IIR filter 202. The IIR filter 202 may include a plurality of filters cascaded in series. Each filter may include a respective transfer function. In
Y(z)=H(z)X(z) Eqn. 1
where X(z) may be an input function, Y(z) may be an output function, and H(z) may be a transfer function representing the filter that relates the input and output functions to one another. The transfer function H(z) may also be represented by:
In Eqn. 3, B(z) may be a function of the −qth order and bq may represent each coefficient corresponding to an associated term in B(z). In Eqn. 4, A(z) may be a function of the −pth order and ap represents each coefficient corresponding to an associated term in A(z).
In a finite impulse response (FIR) filter, A(z) is one (=1) resulting in H(z) being B(z) in Eqn. 2. In an IIR filter, A(z) may be a non-zero function, which may create the possibility of instability in an IIR filter using a non-zero A(z) function. In one example, A(z) may be selected such that the denominator of H(z) may be factored into one or more biquadratic equation (“biquad”) sections. Each biquad may be a second-order equation allowing the roots of each second-order equation to be determined. Representing A(z) as one or more biquad sections allows an IIR filter to be represented by a plurality of second-order, cascaded filters, such as the second filter 226 and the third filter 228. Alternatively, A(z) may be selected allowing factorization into one or more biquad sections and a first order equation.
In accordance with Eqn. 3, one of the cascaded filters may include coefficients associated with B(z) such that:
B(z)=b0+b1z−1+b1z−2 Eqn. 5
In
A
1(z)=1+a11z−1+a12z−2 Eqn. 6
and
A
2(z)=1+a21z−1+a22z−2 Eqn. 7
The value of the coefficients of A1(z), a11 and a12, and the coefficients of A2(z), a21 and a22, may be predetermined prior to initial operation of the ANC system 200 and adapted during operation.
The output signal 222 represents the IIR filter 202 attempting to create a signal representative of the undesired sound 207 at the microphone 212, and thus the IIR filter 202 may represent an estimation of F(z). An inverter 230 may receive the output signal 222. The inverter 230 may invert the output signal 222 to produce the anti-noise signal 218. The inversion of the output signal 222 shifts the phase of the output signal 222 by approximately 180 degrees allowing anti-noise to be produced by the speaker 216.
The microphone 212 may detect sound waves resulting from the combination of the anti-noise and the undesired sound (d(n)) 207. The microphone 212 may generate an output signal representative of a portion of the undesired sound (d(n)) 207 not canceled by the anti-noise. The output signal generated by the microphone 212 may be used as an error signal (e1) 232 used by the IIR filter 202 to adjust the accuracy of the anti-noise.
The error signal 232 may be provided to a summation operation 234 in which the error signal 232 is added to a filtered output signal 236. The filtered output signal 236 may be the output signal 222 of the IIR filter 202 filtered by an estimated path filter 238. The estimated path filter 238 represents an estimation of the second path 210. The estimated path filter 238 is represented by Z-domain transfer function Ŝ(z). The sum of the filtered output signal (Ŝ(z)y(n)) 236 and the error signal (e1) 232 may produce an update signal (d*(n)) 240 approximating the undesired sound x(n) at the microphone 212. The update signal may be represented by:
d*(n)=e1+(Ŝ(z)y(n)) Eqn. 8
The update signal 240 may be the actual targeted sound for cancellation since this is the state of the undesired sound x(n) in the target space 214.
In
Coefficients of the adaptive IIR filter 202 may be updated in order to adjust the output signal 222 in order to adjust the accuracy of generated anti-noise. In
The adaptive IIR filter 202 may be updated “offline,” in other words, updated between the input samples being used to generate anti-noise. An update routine implementing backpropagation may be performed using an update system 300 shown in
In
In order to determine the stability of updated filter coefficients to be used for the second adaptive filter portion 304 and third adaptive filter portion 306, a backpropagation routine may be implemented. In
The update system 300 may include a number of update filters 310. The update filters 310 may be serially cascaded as shown in
The second update filter 322 may include a second adaptive update filter portion 326 having a transfer function that is the reciprocal transfer function of the second adaptive filter portion 304. The second update filter 322 may also include an LAU 328 configured provide a first coefficient update signal 329 to the second adaptive update filter portion 326 to update the respective coefficients. The second update filter 322 may generate a second update filter output signal 330. The second update filter output signal 330 may be provided to a second operator 332.
As the d*(k) sample 307 is provided to the first update filter 314, the associated input signal sample x(k) 301 may be input into the update system 300. The input signal sample (x(k)) 301 may be provided to the estimated path filter 238. The filtered input signal sample 334 is provided to the first filter 224 including the first adaptive filter portion 302 and the LAU 308. The first filter 224 may generate a first intermediate output signal 336 based on the filtered input sample 334. The first intermediate output signal 336 may be provided to the second filter 226 and to the second operator 332. The second filter 226 may generate a second intermediate output signal 338 based on the first intermediate output signal 336. The second intermediate output signal 338 may be provided to the third filter 228 and the first operator 324. The third filter 228 may generate a filter output signal 340. The filter output signal 340 may be disregarded in the update system 300.
Processing of the signal samples 301 and 307 and the intermediate output signals 320, 330, 336, and 338 by the respective filters may allow intermediate error signals to be generated. For example, a first intermediate error signal 342 may be generated at the second operator 332 by subtracting the first intermediate output signal 336 from the second update filter output signal 330. The first intermediate error signal 342 may be provided to the first filters 224 and the second update filter 322. The first filter 224 and the second update filter 332 may use the first intermediate error signal 342 to update the respective coefficients through the LAUs 308 and 328, respectively. Similarly, a second intermediate error signal 344 may be generated at the first operator 324 by subtracting the second intermediate output signal 338 from the first update filter output signal 320. The second intermediate error signal 344 may be provided to the LAU 318 of the first update filter 314 to update the coefficients of the first adaptive update filter portion 316. The LAU 308 may use the intermediate error signals 342, as well as the filtered input signal 334 to generate an update signal 309. The LAUs 318 and 328 may use the intermediate error signals 344 and 342, respectively, and the intermediate output signals 320 and 330, respectively, to generate an update signal 319 and 329, respectively, which is provided to the respective filter portions 316 and 326.
Upon updating the coefficients for the second filter portion 316 and the second adaptive update filter portion 326, stability determinations may be made for the coefficients. In one example, the coefficients for the adaptive update filter portions 316 and 326 may be checked for stability by determining a region of stability for each set of coefficients for the corresponding update filter 316 and 326. For example, the stability may be determined through the following equations:
1+ai1−ai2>0 Eqn. 9
1+ai1+ai2>0 Eqn. 10
1+ai2>0 Eqn. 11
where ai1 and ai2 are the set of coefficients for each biquad. If Eqns. 9-11 are true for a set of biquad coefficients, then the coefficients are stable. If any one of the Eqns. 9-11 is false, the coefficients are unstable.
If the update coefficients of both filter portions 316 and 326 are determined to be stable, the corresponding adaptive filter portions 306 and 304, respectively, may each have the coefficients updated to include the update coefficients. For example, if the update coefficients of the adaptive update filter portions 316 and 326 are determined to be stable, the third adaptive filter portion 306 may be updated with the update coefficients of the first adaptive update filter portion 316 and the coefficients of the second adaptive filter portion 304 may be updated with the coefficients of the second adaptive update filter portion 326.
If any of the update coefficients of the update filters 314 and 322 are determined to be unstable, none of the coefficients may be used to update a corresponding filter. For example, in
The operation may include a step 402 of generating an error signal sample based on the output signal sample. In the ANC system 200, the error signal 232 may be an output signal generated by the microphone 212. The error signal 232 may be received by the ANC system 200. The error signal 232 may represent sound waves detected by the microphone 212 resulting from the combination at the microphone 212 of speaker output representing anti-noise and the undesired sound (d(n)) 207 proximate to the microphone 212. A sample of the error signal 232 may be corresponding to a sample of the output signal 222.
The operation may include a step 404 of generating an update signal sample d*(k) based on the error signal sample 232 and a filtered output signal sample 236. In one example, the update signal sample d*(k) may be generated by summing an error signal sample and an output signal sample of the IIR filter 202 filtered by the estimated path filter 238, as shown in the ANC system 200. In the ANC system 200, a sample y(k) of the output signal 222 of the anti-noise generator filter 202 is filtered by the estimated path filter 238 and summed with a corresponding sample e1(k) of the error signal 232 at the summation operator 234. The resulting signal is the update signal 240 representing the estimated undesired sound d*(n) at the corresponding sample index k. In
The operation may include a step 406 of determining updated filter coefficients based on the update signal sample d*(k) and a filtered input signal sample. Step 406 may be performed in the ANC system 200 using the update system 300 in
Between each sample of the input signal 204 provided to the ANC system 200, the current input signal sample, x(k), may be filtered by the estimated path filter 238. The filtered signal 334 may be provided to the IIR filter 202. The update signal sample (d*(k)) 307 may be provided to the first update filter 314. A backpropagation configuration may be implemented to update the coefficients of the filters 224, 226, and 228. The transfer function of the second filter 226 and third filter 228 may each represent a biquad section of the IIR filter 202. The form of the transfer function allows the possibility of system instability to occur based on the selected coefficients. Each update filter 314 and 322 may have the update coefficients of the adaptive update filter portions 316 and 326, respectively, determined based using the update system 300.
At step 408, the update coefficients determined for the update filters 314 and 322 may be checked for stability. In one example, this may be performed using Eqn. 9-11. The operation of
The ANC system 500 may be implemented to generate anti-noise to destructively interfere with an undesired sound 508 in a target space 510. The undesired sound 508 may emanate from a sound source 512. At least one sensor 514 may detect the undesired sound 508. The sensor 514 may be various forms of detection devices depending on a particular ANC implementation. For example, the ANC system 500 may be configured to generate anti-noise in a vehicle to destructively interfere with engine noise. The sensor 514 may be an accelerometer or vibration monitor configured to generate a signal based on the engine noise. The sensor 514 may also be a microphone configured to receive the engine noise as a sound wave in order to generate a representative signal for use by the ANC system 500. In other examples, any other undesirable sound may be detected within a vehicle, such as fan or road noise. The sensor 514 may generate an analog-based signal 516 representative of the undesired sound that may be transmitted through an electrical connection 518 to an analog-to-digital (A/D) converter 520. The A/D converter 520 may digitize the signal 516 and transmit the digitized signal 522 to the computer device 502 through a connection 523. In an alternative example, the A/D converter 520 may be instructions stored on the memory 506 that are executable by the processor 504.
The ANC system 500 may generate an anti-noise signal 524 that may be transmitted through a connection 525 to a digital-to-analog (D/A) converter 526. The D/A converter 526 may generate an analog-based anti-noise signal 528 that may be transmitted through an electrical connection 530 to a speaker 532 to drive the speaker to produce anti-noise sound waves as speaker output 534. The speaker output 534 may be transmitted to the target space 510 to destructively interfere with the undesired sound 508. In an alternative example, the D/A converter 526 may be instructions stored on the memory 506 and executed by the processor 504.
A microphone 536 or other sensing device may be positioned within the target space 510 to detect sound waves present within or proximate to the target space 510. The microphone 536 may detect sound waves remaining after occurrence of destructive interference between the speaker output 534 of anti-noise and the undesired sound 508. The microphone 536 may generate a signal 538 representative of the detected sound waves. The signal 538 may be transmitted through a connection 540 to an A/D converter 542 where the signal may be digitized as signal 544 and transmitted through a connection 546 to the computer 502. The signal 544 may represent an error signal similar to that discussed in regard to
As shown in
The IIR filter 550 may receive the input signal 522 indicative of the undesired sound 508 and generate an output signal 552. The output signal 552 may be provided to an inverter 554 to generate the anti-noise signal 524. As discussed with regard to
In one example, the filters 556 and 558 of the IIR filter 550 may be updated when the ANC system is offline, as indicated by the arrow 560. The term “offline” may refer to the time between samples of the input signal 522 provided to the IIR filter 550. The processor 304 and memory 306 may be configured to execute the update system 501 of the ANC system 500 between samples being provided to the IIR filter 550. In one example, the update system 501 may be configured to receive each sample of the input signal 522 received by the IIR filter 550. The input signal sample may be provided to an estimated path filter 562 represented in
The update system 501 may include the filters present in the IIR filter 550. A filtered input signal 564 of the estimated path filter 562 may be provided to the IIR filter 550 in the update system 501. Similar to the update system 300 of
The coefficient update system 501 may include a plurality of update filters 570, designated individually as “A(z)1” through “A(z)N”, with each one corresponding to one of the filters 558 and being configured to include the reciprocal of the transfer function of a corresponding filter 558. Similar to the update system 300 of
The update coefficients of the filters 570 may be checked for stability using Eqns. 9-11. If all update coefficients of the filters 570 are determined to be stable, each filter 558 may be updated with the update coefficients of a corresponding filter 570. If any one of the update coefficients is determined to be unstable, none of the filters 556 and 558 may be updated and the filters 556 and 558 may use the current coefficients for the next input signal sample.
The ANC system 600 may include a first and second error microphone 622 and 624. Each error microphone 622 and 624 may be disposed in a space targeted to reduce or eliminate an undesired sound. Each error microphone 622 and 624 may receive anti-noise from both speakers 618 and 620. Secondary path S11 may represent a path traversed by sound waves produced by the first speaker 618 to the first error microphone 622. Secondary path S21 may represent a path traversed by sound waves produced by the first speaker 618 to the second error microphone 624. Secondary path S22 may represent a path traversed by sound waves produced by the second speaker 620 to the second error microphone 624. Secondary path S12 may represent a path traversed by sound waves produced by the second speaker 620 to the first error microphone 622.
In
The first and second filter update sub-systems 702 and 704 may operate in a manner similar to that described with regard to the filter update system 300, however, the sub-systems 702 and 704 may include multi-stage updating to account for the multi-channel configuration of the ANC system 600.
In
The first stage of the update sub-system 702 may operate in a similar manner as the update system 300 in updating coefficients in the IIR filter 606. Each first stage update filter 708 is configured to include the reciprocal transfer function of a corresponding biquad section filter of the IIR filter 606. For example, one biquad section filter 628 of the first IIR filter 606 may be include a transfer function of 1/A11(z), with A11(z) having a form similar to Eqn. 6. One of the first stage update filters 708 may include a corresponding filter having a transfer function of A11(z) in the same form as Eqn. 6. If the update coefficients determined with regard to the update filters 708 are stable, the coefficients associated with each update filter 708 may be used to update a corresponding biquad section filter 628. The updated coefficients may be determined through an arrangement involving intermediate output signals and intermediate error signals as shown in
The second update sub-system 704 may operate in substantially the same manner as the first update sub-system 702. The second update sub-system 704 may receive the undesired sound sample (x(k)) 701 and filter the sample x(k) with a second estimated path filter 710, represented by Z-domain transfer function S22(z). The second estimated path filter 710 may represent a transfer function estimate of the physical path between second speaker 620 and the second error microphone 624, as well as components associated with the second speaker 620 and the second error microphone 624. The second update sub-system 704 may include a number of first stage update filters 712. The first stage update filters 712 may be configured in manner similar to the first stage update filters 708. The end update filter 712, represented as A2P(z), may receive a second estimated undesired sound signal (d2*(k)) 713. The second estimated undesired sound signal d2*(k) may represent the state of the undesired sound sample x(k) at the error microphone 624. The biquad section filters 632 may be updated in a manner similar to that described with regard to the first update sub-system 702. If any updated coefficient of first stage update filters 712 are determined to be unstable, none of the filters 630 and 632 are updated and the current coefficients may be maintained. The filters 626 and 630 and each of the first update filters 708 and 712 may include a filter portion and an LAU, similar to the update system 300 as similarly shown in
Upon completion of the filter coefficient updates of the IIR filters 606 and 608 in the first stage, a second update stage may be implemented to account for the multi-channel arrangement. In
The second stage of the update sub-system 702 may also operate in a similar manner as the update system 300 in updating coefficients in the IIR filter 606. In
The second stage of the second update sub-system 704 may operate in substantially the same manner as the second stage of the first update sub-system 702. The second update sub-system 704 may receive the undesired sound sample 701 (x(k)) and filter the sample x(k) with a fourth estimated path filter 804, represented by Z-domain transfer function Ŝ12(z). The fourth estimated path filter 804 may represent a transfer function estimate of the physical path between second speaker 620 and the first error microphone 622, as well as components associated with the second speaker 620 and the first error microphone 622. Similar to the second stage of the update sub-system 702, in the second stage of the update sub-system 704, the transfer function of each filter 632 is designated as “1/A*21(z) through 1/A*2P(Z), where the “*” indicates that the filters 632 have been through the first stage. The second update sub-system 704 may include a number of second stage update filters 806. The second stage update filters 806 may be configured in manner similar to the second stage update filters 802. The end update filter 806, represented as A*2P(Z), may receive the first estimated undesired sound signal (d1*(k)) 703. The biquad section filters 632 may be updated in manner similar to that described with regard to the first update sub-system 702. If any updated coefficient of second stage update filters 806 are determined to be unstable, none of the filters 630 and 632 are updated and the current coefficients will be used for the next input signal sample x(k+1). The second stage update filters 802 and 806 may include a filter portion and an LAU, similar to the update system 300 shown in
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.