1. Technical Field
This invention relates to active noise control, and more specifically to active noise control used with an audio system.
2. Related Art
Active noise control may be used to generate sound waves that destructively interfere with a targeted sound. The destructively interfering sound waves may be produced through a loudspeaker to combine with the targeted sound. Active noise control may be desired in a situation in which audio sound waves, such as music, may be desired as well. An audio/visual system may include various loudspeakers to generate audio. These loudspeakers may be simultaneously used to produce destructively interfering sound waves.
An active noise control system generally includes a microphone to detect sound proximate to an area targeted for destructive interference. The detected sound provides an error signal in which to adjust the destructively interfering sound waves. However, if audio is also generated through a common loudspeaker, the microphone may detect the audio sound waves, which may be included in the error signal. Thus, the active noise control may track sounds not desired to be interfered with, such as the audio. This may lead to inaccurately generated destructive interference. Furthermore, the active noise control system may generate sound waves to destructively interfere with the audio. Therefore, a need exists to remove an audio component from an error signal in an active noise control system.
An active noise control (ANC) system may generate an anti-noise signal to drive a speaker to generate sound waves to destructively interfere with an undesired sound present in a target space. The ANC system may generate an anti-noise based on an input signal representative of the undesired sound. The speaker may also be driven to generate sound waves representative of a desired audio signal. A microphone may receive sound waves present in the target space and generate a representative signal. The representative signal may be combined with an audio compensation signal to remove a component representative of the sound waves based on the desired audio signal to generate an error signal. The audio compensation signal may be generated through filtering an audio signal with an estimated path filter. The error signal may be received by the ANC system to adjust the anti-noise signal.
An ANC system may be configured to receive an input signal indicative of an undesired sound having a first sample rate and convert the first sample rate to a second sample rate. The ANC system may also be configured to receive an audio signal having a third sample rate and converting the third sample rate to the second sample rate. The ANC system may also be configured to receive an error signal having the first sample rate and converting the first sample rate to the second sample rate. The ANC system may generate an anti-noise signal at the second sample rate based on the input signal, the audio signal, and the error signal at the second sample. The sample rate of the anti-noise signal may be converted from the second sample rate to the first sample rate.
Other systems, methods, features and advantages of the invention will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims.
The system may be better understood with reference to the following drawings and description. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like referenced numerals designate corresponding parts throughout the different views.
The present disclosure provides a system configured to generate a destructively interfering sound wave with audio compensation. This is accomplished generally by first determining the presence of an undesired sound and generating a destructively interfering sound wave. A destructively interfering signal may be included as part of a speaker output along with an audio signal. A microphone may receive the undesired sound and sound waves from a loudspeaker driven with the speaker output. The microphone may generate an input signal based on the received sound waves. A component related to the audio signal may be removed from the input signal prior to generating an error signal. The error signal may be used to more accurately generate the destructively interfering signal that produces the destructively interfering sound wave.
In
A sensor such as a microphone 108 may be placed in the target space 102. The ANC system 100 may generate an anti-noise signal 110, which in one example may be representative of sound waves of approximately equal amplitude and frequency that are approximately 180 degrees out of phase with the undesired sound 104 present in the target space 102. The 180 degree phase shift of the anti-noise signal may cause desirable destructive interference with the undesired sound in an area in which the anti-noise sound waves and the undesired sound 104 sound waves destructively combine.
In
The microphone 108 may generate a microphone input signal 122 based on detection of the combination of the speaker output 120 and the undesired noise 104, as well as other audible signals within range of being received by the microphone 108. The microphone input signal 122 may be used as an error signal in order to adjust the anti-noise signal 110. The microphone input signal 122 may include a component representative of any audible signal received by the microphone 108 that is remaining from the combination of the anti-noise 110 and the undesired noise 104. The microphone input signal 122 may also contain a component representative of any audible portion of the speaker output 120 resulting from output of a sound wave representative of the audio signal 114. The component representative of the audio signal 114 may be removed from the microphone input signal 108 allowing the anti-noise signal 110 to be generated based upon an error signal 124. The ANC system 100 may remove a component representative of the audio signal 114 from the microphone input signal 122 at summation operation 126, which, in one example, may be performed by inverting the audio signal 114 and adding it to the microphone input signal 122. The result is the error signal 124, which is provided as input to an anti-noise generator 125 of the ANC system 100. The anti-noise generator 125 may produce the anti-noise signal 110 based on the error signal 124 and the sound signal 107.
The ANC system 100 may allow the anti-noise signal 110 to be dynamically adjusted based on the error signal 124 and the sound signal 107 to more accurately produce the anti-noise signal 110 to destructively interfere with the undesired sound 104 within the targeted space 102. The removal of a component representative of the audio signal 114 may allow the error signal 124 to more accurately reflect any differences between the anti-noise signal 110 and the undesired sound 104. Allowing a component representative of the audio signal 114 to remain included in the error signal input to the anti-noise generator 125 may cause the anti-noise generator 125 to generate an anti-noise signal 110 that includes a signal component to destructively combine with the audio signal 114. Thus, the ANC system 100 may also cancel or reduce sounds associated with the audio system 116, which may be undesired. Also, the anti-noise signal 110 may be undesirably altered such that any generated anti-noise is not accurately tracking the undesired noise 104 due to the audio signal 114 being included. Thus, removal of a component representative of the audio signal 114 to generate the error signal 124 may enhance the fidelity of the audio sound generated by the speaker 118 from the audio signal 114, as well as more efficiently reduce or eliminate the undesired sound 104.
In
Similar to that described in
As similarly discussed in regard to
The microphone input signal 222 may be processed such that a component representative of the audio signal 234 is removed as indicated by a summation operation 226. This may occur by inverting the filtered audio signal at the summation operation 226 and adding the inverted signal to the microphone input signal 222. Alternatively, the filtered audio signal could be subtracted or any other mechanism or method to remove. The output of the summation operation 226 is an error signal 228, which may represent an audible signal remaining after any destructive interference between the anti-noise signal 210 projected through the speaker 216 and the undesired noise x(n). The summation operation 226 removing a component representative of the audio signal 234 from the input signal 222 may be considered as being included in the ANC system 200.
The error signal 228 is transmitted to a learning algorithm unit (LAU) 230, which may be included in the anti-noise generator. The LAU 230 may implement various learning algorithms, such as least mean squares (LMS), recursive least mean squares (RLMS), normalized least mean squares (NLMS), or any other suitable learning algorithm. The LAU 230 also receives as an input the undesired noise x(n) filtered by the filter 224. LAU output 232 may be an update signal transmitted to the adaptive filter 208. Thus, the adaptive filter 208 is configured to receive the undesired noise x(n) and the LAU output 232. The LAU output 232 is transmitted to the adaptive filter 208 in order to more accurately cancel the undesired noise x(n) by providing the anti-noise signal 210.
In
The vehicle 302 may contain various audio/video components. In
In one example, the vehicle 302 may include a plurality of speakers, such as a left rear speaker 326 and a right rear speaker 328, which may be positioned on or within a rear shelf 320. The vehicle 302 may also include a left side speaker 322 and a right side speaker 324, each mounted within a vehicle door 326 and 328, respectively. The vehicle may also include a left front speaker 330 and a right front speaker 332, each mounted within a vehicle door 334, 336, respectively. The vehicle may also include a center speaker 338 positioned within the dashboard 311. In other examples, other configurations of the audio system 310 in the vehicle 302 are possible.
In one example, the center speaker 338 may be used to transmit anti-noise to reduce engine noise that may be heard in a target space 342. In one example, the target space 342 may be an area proximate to a driver's ears, which may be proximate to a driver's seat head rest 346 of a driver seat 347. In
In
In
As previously discussed, the microphone 410 may detect a sound wave and generate an input signal 424 that includes both an audio signal and any signal remaining from destructive interference between undesired noise and the sound wave output of the speaker 406. The microphone input signal 424 may be digitized through an A/D converter 426 having an output signal 428 at a predetermined sample rate. The digitized microphone input signal 428 may be provided to an SRC filter 430 which may filter the output 428 to change the sample rate. Thus, output signal 432 of the SRC filter 430 may be the filtered microphone input signal 428. The signal 432 may be further processed as described later.
In
An error signal 456 may represent a signal that is the result of destructive interference between anti-noise and undesired sound in the target space 402 absent the sound waves based on an audio signal. The ANC system 400 may include an anti-noise generator 457 that includes an adaptive filter 458 and an LAU 460, which may be implemented to generate an anti-noise signal 462 in a manner as described in regard to
The audio signal 444 may also be provided to an SRC filter 468, which may adjust the sample rate of the audio signal 444. Output signal 470 of the SRC filter 468 may represent the audio signal 444 at a different sample rate. The audio signal 470 may be provided to a delay filter 472. The delay filter 472 may be a time delay of the audio signal 470 to allow the ANC system 400 to generate anti-noise such that the audio signal 452 is synchronized with output from the speaker 406 received by the microphone 410. Output signal 474 of the delay filter 472 may be summed with the anti-noise signal 466 at a summer 476. The combined signal 478 may be provided to a digital-to-analog (D/A) converter 480. Output signal 482 of the D/A converter 480 may be provided to the speaker 406, which may include an amplifier (not shown), for production of sound waves that propagate into the target space 402.
In one example, the ANC system 400 may be instructions stored on a memory executable by a processor. For example, the ANC system 400 may be instructions stored on the memory 440 and executed by the processor 438 of the audio system 408. In another example, the ANC system 400 may be instructions stored on a memory 488 of a computer device 484 and executed by a processor 486 of the computer device 484. In other examples, various features of the ANC system 400 may be stored as instruction on different memories and executed on different processors in whole or in part. The memories 440 and 488 may each be computer-readable storage media or memories, such as a cache, buffer, RAM, removable media, hard drive or other computer readable storage media. Computer readable storage media include various types of volatile and nonvolatile storage media. Various processing techniques may be implemented by the processors 438 and 486 such as multiprocessing, multitasking, parallel processing and the like, for example.
In
The operation may also include a step 506 of determining if an audio signal is currently being generated. If the audio signal is currently being generated, an audio-based signal component may be removed from the microphone input signal at step 508. In one example, step 508 may be performed with a configuration such as that shown in
Once the audio-based signal is removed, a step 510 of generating an anti-noise signal based on the modified microphone input signal may be performed. In one example, step 510 may be performed with the ANC system 400, which may receive an error signal 456 upon which to generate an anti-noise signal 462. The error signal 456 may be based upon the combination of the microphone input signal 432 combined with the audio compensation signal 452.
Upon generation of the anti-noise signal, the operation may include a step 512 of producing a sound wave based on the anti-noise signal and directing the sound wave to a target space. In one example, step 512 may be performed through generation of anti-noise sound waves through a speaker, such as the speaker 406 in
If no audio is being generated as determined by step 506, a step 514 of generating an anti-noise signal based on the input signal may be performed. Upon generation of this anti-noise signal, step 512 may be performed, which produces a sound wave based on the anti-noise signal.
As described in
Similarly, the audio signal 444 may be at an initial sample rate of 48 kHz. The SRC filter 468 may increase the sample rate of the audio signal 444 to 192 kHz. The anti-noise signal 462 may be generated at 4 kHz from the ANC system 400. The sample rate of the signal 462 may be increased by the SRC filter 464 to a sample rate of 192 kHz. The sample rate conversions allow the audio signal 474 and the anti-noise signal 466 to have the same sample rate when combined at the summer 476.
Sample rates of various signals may also be reduced. For example, the digitized undesired noise signal 416 may be reduced from the 192 kHz example to 4 kHz through the SRC filter 418. As a result, the signals 420 and 424 may both be at a 4 kHz sample rate when received by the ANC system 400. The audio signal 444 may be reduced from the 48 kHz example sample rate to 4 kHz through the SRC filter 446. The digitized error microphone input signal 428 may be reduced from 192 kHz to 4 kHz by the SRC filter 430. This allows the audio compensation signal 452 and the microphone input signal 432 to be at the same sample rates at the summer 454.
In one example, the increase in the anti-noise sample rate from 4 kHz to 192 kHz by the SRC 464 occurs within predetermined time parameters to ensure the anti-noise is generated in time to reach the target space 402 to cancel the undesired noise for which the anti-noise was generated. Thus, the SRC filter 464 may require various design considerations to be taken into account. For example, undesired noise may be expected to be in a frequency range of 20-500 Hz. Thus, the anti-noise may be generated in a similar range. The SRC filter 464 may be designed with such considerations in mind.
Various filter types may be considered in which to implement the SRC filter 464. In one example, the SRC filter 464 may be a finite impulse response (FIR) filter. The FIR filter may be based on an infinite impulse response (IIR) filter, such as an elliptical filter.
where ε is the ripple factor, Rn is nth-order elliptical rational function, ξ is the selectivity factor, ω is the angular frequency, and ω0 is the cutoff frequency.
In one example, this equation may be used to design the SRC filter 464. The waveform 600 of
Once the filter is selected, a frequency response may be generated, such as the frequency response in
Upon selection of the parameters, a step 806 of determining if a difference between a passband and a stopband is within operation constraints may be performed. If the difference is outside of operating constraints, reselection of filter type may occur at step 802. If the difference is acceptable, a step 808 of determining if a transition band is within operating constraints may be performed. A relatively steep transition band may be desired such as in the design of the SRC filter 464. If the transition band is outside operating constraints reselection of IIR filter type may occur at step 802.
If the transition band is acceptable, a step 810 of generating an impulse response for the selected IIR filter may be performed. Generation of the impulse response may create a waveform such as that shown in
As described in
Once the number N of physical paths is determined at step 902, a step 904 of selecting a first physical path may be performed. The method may include a step 906 of transmitting a test signal through the selected physical path. In one example, Gaussian or “white” noise may be transmitted through a system configured for ANC. Other suitable test signals may be used. For example, in
A step 908 of recording an output that traverses the selected physical path may be performed. This output may be used in a step 910 of the method to compare the recorded output to the transmitted test signal. Returning to the example of the configuration shown in
A step 914 of determining if N paths have been selected may be performed. Once all N physical paths have been selected and transfer functions determined, the operation may end. However, if N paths have not been selected, a step 916 of selecting a next physical path may be performed. Upon selection of the next physical path, the step 906 may be performed, which allows a test signal to be transmitted through the next selected physical path. For example, in
An audio system 1011 may be configured to generate a first channel signal 1020 and a second channel signal 1022. In other examples, any other number of separate and independent channels, such as five, six, or seven channels, may be generated by the audio system 1011. The first channel signal 1020 may be provided to the speaker 1006 and the second channel signal 1022 may be provided to speaker 1008. The anti-noise generator 1013 may generate signals 1024 and 1026. The signal 1024 may be combined with the first channel signal 1020 so that both signals 1020 and 1024 are transmitted as speaker output 1028 of the speaker 1006. Similarly, the signals 1022 and 1026 may be combined so that both signals 1022 and 1026 may be transmitted as speaker output 1030 from the speaker 1008. In other examples, only one anti-noise signal may be transmitted to one or both speakers 1006 or 1008.
Microphones 1002 and 1004 may receive sound waves that include the sound waves output as speaker outputs 1028 and 1030. The microphones 1002 and 1004 may each generate a microphone input signal 1032 and 1034, respectively. The microphone input signals 1032 and 1034 may each indicate sound received by a respective microphone 1002 and 1004, which may include an undesired sound and the audio signals. As described, a component representative of an audio signal may be removed from a microphone input signal. In
In
Similarly the audio signals 1020 and 1022 may be filtered by estimated paths 1040 and 1042, respectively. Estimated path filter 1040 may represent the physical path traversed by the audio signal 1020 from the audio system 1011 to the error microphone 1004. Estimated path filter 1042 represents the physical path traversed by the audio signal 1022 from the audio system 1011 to the microphone 1004. The audio signals 1020 and 1022 may be summed together at summation operation 1052 to form a combined audio signal 1054. The audio signal 1054 may be used to remove a similar signal component present in the microphone input signal 1034 at operation 1056, which results in an error signal 1058. The error signal 1058 may be provided to the ANC system 1000 to generate an anti-noise signal 1026 associated with an undesired sound detected by the sensor 1004.
The estimated path filters 1036, 1038, 1040, and 1042 may be determined in a manner such as that described in regard to
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
This application is a divisional application of, and claims priority under 35 U.S.C. §120 to, U.S. patent application Ser. No. 12/275,118, “SYSTEM FOR ACTIVE NOISE CONTROL WITH AUDIO SIGNAL COMPENSATION” filed Nov. 20, 2008, the entire contents of which are incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12275118 | Nov 2008 | US |
Child | 13418095 | US |