The present invention relates to systems and methods for actively cooling lighting and, more specifically, to cooling light emitting diode filaments.
Digital lighting technologies such as light-emitting diodes (LEDs) offer significant advantages over incandescent and fluorescent lamps. These advantages include, but are not limited to, better lighting quality, longer operating life, and lower energy consumption. LEDs also are being designed to have more desirable color temperatures than do traditional lamps. Moreover, LEDs do not contain mercury or any other toxic substance. Consequently, a market exists for LED-based lamps as retrofits for legacy lighting fixtures.
A number of design challenges and costs are associated with replacing traditional lamps with LED illumination devices. These design challenges include thermal management, installation ease, and manufacturing cost control.
Thermal management describes a system's ability to draw heat away from an LED. Lighting technology that employs LEDs suffers shortened lamp and fixture life and decreased performance when operating in high-heat environments. Moreover, when operating in a space-limited enclosure with limited ventilation, such as, for example, a can light fixture, the heat generated by an LED and its attending circuitry itself can cause damage to the LED.
Cooling systems for lighting devices have traditionally employed passive cooling technology, such as a heat sink thermally coupled to a lighting device. In some other systems, a fan has also been employed to direct a flow of air through the heat sink, thereby accelerating the dissipation of heat from the heat sink and, therefore, from the lighting device. A heat sink may be used to transfer heat from a solid material to a fluid medium such as, for example, air. One of the challenges in using a heat sink, however, is that of absorbing and dissipating heat at a sufficient rate with respect to the amount of heat being generated by the LED. If the heat sink does not have the optimal amount of capacity, the heat can gradually build up behind the LED and cause damage to the components.
Compared to incandescent and fluorescent lamps, LED-based lighting solutions have relatively high manufacturing and component costs. These costs are often compounded by a need to replace or reconfigure a light fixture that is designed to support incandescent or fluorescent lamps to instead support LEDs. Consequently, the cost of adoption of digital lighting technology, particularly in the consumer household market, is driven by design choices for retrofit LED-based lamps that impact both cost of manufacture and ease of installation.
Traditional cooling systems for lighting devices have also relied upon a supply of air from the environment to blow onto and transfer heat away from the lighting device. As a result, proposed solutions in the prior art have included vents, apertures, or other openings generally in the housing of the lighting device to provide a supply of cool air from the environment.
The introduction of air from the environment into the housing of a lighting device may also result in the introduction of contaminants. Substances carried along with the environmental air can inhibit and impair the operation of the lighting device, causing faulty performance by, or early failure of, the digital device. Moreover, the accumulation of contaminants in the cooling system can result in a reduction in efficacy of the cooling system. Accordingly, there is a need in the art for a cooling system that can operate in a system sealed from the environment, hence without a supply of air external to the sealed system.
Sealed cooling systems are known in the art. As an example, a Peltier device can be used to cool a digital system without a supply of external air. However, Peltier devices are expensive to produce and use electricity inefficiently in comparison to more traditional cooling systems. Accordingly, there is a need for a cooling system in a sealed environment that is inexpensive to produce and is energy efficient.
Other proposed solutions have included the use of a sealed system containing a fluid thermally coupled to a digital device in association with a radiator where fluid warmed by the digital device radiates the heat into the environment. However, these systems require significant amounts of space in order to pipe the fluid between the radiator and the thermal coupling with the digital device. Accordingly, there is a need for a cooling system that can operate in a space-limited sealed system.
This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.
With the above in mind, embodiments of the present invention advantageously provide a cooling system for a lighting device in a sealed environment that is inexpensive to produce and is energy efficient. Embodiments of the present invention also advantageously provide a lighting device that includes a cooling system that can operate in a space-limited sealed system.
These and other objects, features, and advantages according to the present invention are provided by a lighting device that may include a base, a housing, a driver circuit, an optic, a thermally-conductive fluid, a light-emitting diode (LED) filament structure, and a fluid flow generator. The base may have an electrical contact and the housing may be attached to the base at a first end and may have an internal cavity. The driver circuit may be positioned within the internal cavity and may be in electrical communication with the electrical contact. The optic may have an inner surface which may define an optical chamber. The optic may be attached to a second end of the housing. The thermally-conductive fluid and the LED filament structure may be positioned within the optical chamber and the LED filament structure may be in electrical communication with the driver circuit. The fluid flow generator may be positioned in fluid communication with the optical chamber and may be in electrical communication with the driver circuit. The fluid flow generator may be adapted to generate a flow of the thermally-conductive fluid in the direction of the LED filament structure.
In some embodiments, the LED filament structure may include a plurality of LED dies and the flow of thermally-conductive fluid generated by the fluid flow generator may be directed towards at least one LED die of the LED filament structure. The plurality of LED dies may be arranged so as to define a light-emitting length of the LED filament structure and the flow of thermally-conductive fluid generated by the fluid flow generator may be directed to be incident upon the entire light-emitting length of the LED filament structure. The LED filament structure may also define a longitudinal axis and the flow of thermally-conductive fluid may be in a direction generally perpendicular to the longitudinal axis of the LED filament structure or generally parallel to the longitudinal axis of the LED filament structure.
The optical chamber and the internal cavity may be in fluid communication with each other and the thermally-conductive fluid may be positioned within both the optical chamber and the internal cavity. The fluid flow generator may be positioned so as to generate a flow of the thermally-conductive fluid in the direction of the driver circuit and/or the LED filament structure and the fluid flow generator may be positioned such that the driver circuit may be intermediate the fluid flow generator and the LED filament structure. The fluid flow generator may be positioned generally intermediate the driver circuit and the LED filament structure.
The lighting device may further include a heat sink which may be positioned in thermal communication with the LED filament structure and/or the driver circuit. The fluid flow generator may be positioned to direct the flow of thermally conductive fluid towards the heat sink, the driver circuit, and/or the LED filament structure. The fluid flow generator may be a microblower device. The thermally-conductive fluid may be air, helium, neon, and/or nitrogen. The optical chamber and the internal cavity may combine to define an interior volume and the interior volume may be fluidically sealed.
The LED filament structure may have a curvature that may be approximately equal to a curvature of the inner surface of the optic. The LED filament structure may be configured to generally conform to the curvature of the optic that may conform to a bulb configuration selected from the group consisting of A19, A15, A21, ST19, ST15, S21, S11, C7, G25, G20, PAR30, PAR20, BR30, BR40, and R20. Those skilled in the art will appreciate that any other bulb configuration may be selected and the LED filament structure may be configured to generally conform to the curvature of the optic that may conform to the selected bulb configuration.
The plurality of LED dies and the LED filament structure may also be configured to emit light away from the lighting device semi-hemispherically, hemispherically, or spherically. The lighting device may further include a flow redirection structure which may be configured to redirect fluid flow incident thereupon about the optical chamber and the flow of thermally-conductive fluid which may be generated by the fluid flow generator in the direction of the flow redirection structure. The flow redirection structure may be configured to redirect fluid flow incident thereupon about at least a portion of the optical chamber. The flow redirection structure may be positioned proximate to an apex of the optical chamber and the fluid flow generator may be positioned proximate to a nadir of the optical chamber. The flow redirection structure may also be configured to redirect at least a portion of the fluid flow incident thereupon generally in the direction of the fluid flow generator.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Those of ordinary skill in the art realize that the following descriptions of the embodiments of the present invention are illustrative and are not intended to be limiting in any way. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Like numbers refer to like elements throughout.
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the following embodiments of the invention are set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
In this detailed description of the present invention, a person skilled in the art should note that directional terms, such as “above,” “below,” “upper,” “lower,” and other like terms are used for the convenience of the reader in reference to the drawings. Also, a person skilled in the art should notice this description may contain other terminology to convey position, orientation, and direction without departing from the principles of the present invention.
Furthermore, in this detailed description, a person skilled in the art should note that quantitative qualifying terms such as “generally,” “substantially,” “mostly,” and other terms are used, in general, to mean that the referred to object, characteristic, or quality constitutes a majority of the subject of the reference. The meaning of any of these terms is dependent upon the context within which it is used, and the meaning may be expressly modified.
Referring to
The fluid flow generator 140 may be positioned in fluid communication with the optical chamber 122 and may be in electrical communication with the driver circuit 116. The fluid flow generator 140 may be adapted to generate a flow of the thermally-conductive fluid, and may be positioned such that the flow of thermally conductive fluid generated thereby is in the direction of the LED filament structure 130. The fluid flow generator may be any type of device capable of generating a fluid flow as is known in the art, including, but not limited to, microblowers.
The LED filament structure 130 may include an upper bracket 131, a lower bracket 132, and a plurality of LED filaments 133. The plurality of LED filaments 133 may include an LED die 134. The flow of thermally-conductive fluid, which may be generated by the fluid flow generator 140, may be directed towards at least one LED die 134 of the LED filament structure 130. As shown in
The LED filament structure 130 may further include a filament support 138. The filament support 138 may be a separate structure attached to the LED filament structure 130, or it may be integrally formed with the LED filament structure 130. The filament support 138 may be a bracket or a combination of brackets attached to the housing 111, the second end 112, the LED filament structure 130, the upper bracket 131, the lower bracket 132, the intermediate bracket 137, the fluid flow generator 140, and/or the flow redirection structure 150. For example, and without limitation, the filament support 138 may be attached to the second end 113 of the housing 111 and the lower bracket 132. For example, and without limitation, as shown in
Referring to
Referring now additionally to
While incident upon the LED filament structure 130, thermal energy generated by the LED dies 134 or any other heat-generating element of the LED filament structure 130 may be transferred to the thermally-conductive fluid. The thermally conductive fluid may have its temperature elevated from an initial temperature below the temperature of the LED dies 134 to a temperature at or near the present temperature of the LED dies 134. The transfer of thermal energy will reduce the operating temperature of the LED dies 134, thereby reducing the likelihood and/or extent of thermally-induced reduction in operating life of the LED dies 134. Accordingly, the inner surface 121 of the optic 120 may be configured to maximize thermals transfer from the thermally-conductive fluid while still conforming to the geometric requirements of the standard bulb size that the lighting device 100 must conform to.
The LED filament structure 130 and/or the LED filament 133 may also define a longitudinal axis 136 and the flow of thermally-conductive fluid may be in a direction generally perpendicular to the longitudinal axis 136 of the LED filament structure 130 and/or the LED filament 133 or generally parallel to the longitudinal axis 136 of the LED filament structure 130 and/or the LED filament 133. Generally perpendicular to the longitudinal axis 136 is meant to include perpendicular to the longitudinal axis 136 and within 30 degrees of perpendicular to the longitudinal axis 136. Generally parallel to the longitudinal axis 136 is meant to include parallel to the longitudinal axis 136 and within 30 degrees of parallel to the longitudinal axis 136. In the present invention, the flow of thermally-conductive fluid, therefore, may include any flow of thermally-conductive fluid that is directed along a length of the longitudinal axis 136 or along a perpendicular axis to the longitudinal axis 136. Those skilled in the art will appreciate that the plurality of LED dies 134 may include one or more LED dies 134, that the lighting device 100 may include one or more LED filament structures 130, and that the LED filament structures 130 may include one or more LED filaments 133.
Additionally, the LED filament structure 130 may be formed of a thermally conductive material. Accordingly, the LED filament structure 130 may conduct thermal energy away from heat-generating elements thereof, such as the LED dies 134. This may simultaneously reduce the operating temperature of the LED dies 134 while increasing the surface area from which the thermally-conductive fluid may absorb thermal energy, thereby increasing the thermal dissipation capacity of the LED filament structure 130 than if the LED filament structure 130 were formed of non-thermally conductive material. Additionally, in some embodiments, the LED filament structure 130 may be formed of electrically non-conductive material.
For example and without limitation, as shown in
The optical chamber 122 and the internal cavity 114 may be in fluid communication with each other. Additionally, the thermally-conductive fluid may be positioned within both the optical chamber 122 and the internal cavity 114. The lighting device 100 may further include a heat sink which may be positioned in thermal communication with the LED filament structure 130 and/or the driver circuit 116.
In some embodiments, the base 110 and/or the housing 111 may be the heat sink. Additionally, the base 110 and/or the housing 111 may include a fin or a plurality of fins that may be the heat sink, may be a portion of the heat sink, or may be in addition to the heat sink. For example, and without limitation, the heat sink may include a plurality of fins connected to the bottom of the base 110 or the bottom of the housing 111. Furthermore, any portion of the base 110 and/or the housing 111 may be the heat sink.
Additional details relating to heat sinks incorporated into a lighting device are provided in U.S. patent application Ser. No. 13/107,782 (Attorney No. 221.00002) titled Sound Baffling Cooling System for LED Thermal Management and Associated Methods filed May 13, 2011, U.S. Pat. No. D711,560 (Attorney No. 221.00086) titled Lamp Having a Modular Heat Sink filed Oct. 4, 2012, U.S. Pat. No. D689,633 (Attorney No. 221.00087) titled Lamp with a Modular Heat Sink filed Sep. 10, 2012, U.S. patent application Ser. No. 29/437,877 (Attorney No. 221.00088) titled Lamp Having a Modular Heat Sink filed Nov. 21, 2012, U.S. Pat. No. D691,568 (Attorney No. 221.00089) titled Modular Heat Sink filed Sep. 28, 2012, U.S. patent application Ser. No. 13/832,900 (Attorney No. 221.00090) titled Luminaire with Modular Cooling System and Associated Methods filed Mar. 15, 2013 which, in turn, claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/715,075 titled Lighting Device With Integrally Molded Cooling System and Associated Methods filed Oct. 17, 2012, U.S. patent application Ser. No. 13/875,855 (Attorney No. 221.00119) titled Luminaire Having a Vented Enclosure filed May 2, 2013 which, in turn, claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/642,257 titled Luminaire Having a Vented Enclosure filed May 3, 2012, and U.S. patent application Ser. No. 13/829,832 (Attorney No. 221.00153) titled Luminaire with Prismatic Optic filed Mar. 14, 2013 which, in turn, claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/739,054 titled Luminaire with Prismatic Optic filed Jan. 11, 2013, the entire contents of each of which are incorporated by reference.
In some embodiments, the lighting device 100 may further comprise power circuitry (not shown). The power circuitry may be configured to electrically communicate with an electrical power supply associated with the lighting device 100 through, for example, and without limitation, the electrical contact 115. Such an electrical power supply may be a power grid or a light socket. The power circuitry may be configured to receive electrical power from the electrical power supply and convert, condition, and otherwise alter the electrical power received from the electrical power supply for use by the various electrical elements of the lighting device 100. For example, and without limitation, the power circuitry may be configured to convert AC power to DC power. In some embodiments, the power circuitry may be comprised by a control circuitry, such as the driver circuit 116. The power circuitry may include the electrical contact 115 and/or the driver circuit 116. The power circuitry may be configured to electrically communicate with the the LED filament structure 130, the LED filament 133, the plurality of LED dies 134, and/or the fluid flow generator 140.
The fluid flow generator 140 may be positioned so as to generate a flow of the thermally-conductive fluid in the direction of the driver circuit 116 and/or the LED filament structure 130 and the fluid flow generator 140 may be positioned such that the driver circuit 116 may be intermediate to the fluid flow generator 140 and the LED filament structure 130. Additionally, the fluid flow generator 140 may be positioned generally intermediate the driver circuit 116 and the LED filament structure 130.
The fluid flow generator 140 may be positioned to direct the flow of thermally conductive fluid towards the heat sink, the driver circuit 116, and/or the LED filament structure 130. The fluid flow generator 140 may be a microblower device. Those skilled in the art will appreciate that the lighting device 100 may include any number of fluid flow generators 140. The thermally-conductive fluid may be air, helium, neon, and/or nitrogen. Those skilled in the art will appreciate that thermally-conductive fluid includes any type of fluid.
The optical chamber 122 and the internal cavity 114 may combine to define an interior volume. In some embodiments, the interior volume may be fluidically sealed from the environment surrounding the lighting device 100. The optical chamber 122 and the internal cavity 114 may be fluidically sealed independently from one another. Those skilled in the art will also appreciate that the optical chamber 122 and the internal cavity 114 may be configured so as not to be sealed. This may allow fluid to flow away from the lighting device 100, thereby enhancing the cooling properties thereof.
As shown in
Each LED die 134 may emit light semi-hemispherically, hemispherically, or spherically. Each LED die 134 may emit light so that light is emitted in every direction away from a given point or a center of the optic or every direction except where the housing and the base will not permit the emission of light. In addition, those skilled in the art will appreciate that the position of the plurality of LED dies 134 and/or the LED filaments 133 within the LED filament structure 130 may emit light semi-hemispherically, hemispherically, or spherically. The position of the plurality of LED dies 134 and/or the LED filaments 133 within the LED filament structure 130 may cause light to be emitted in every direction away from a given point or a center of the optic or in every direction except where the housing 111 and/or the base 110 will not permit the emission of light. In addition, the LED filaments 133, the upper bracket 131, and/or the lower bracket 132 may be curved and/or flexible to emit light in more than a hemispherical direction, such as a spherical or semi-spherical direction.
For example and without limitation, referring to
Referring to
Furthermore, the flow redirection structure 160′ may be attached to the optic 120′ through the use of an adhesive, glue, latch, screw, bolt, nail, or any other attachment method as may be understood by those skilled in the art after having had the benefit of this disclosure. The flow redirection structure 160′ may also be an integral part of the optic 120′. In addition, those skilled in the art will appreciate that any number of flow redirection structures 160′ may be used and any number of sizes of the flow redirection structure 160′ may be used. The other features of this embodiment of the lighting device 100′ are similar to those of the first embodiment of the lighting device 100, are labeled with prime notation, and require no further discussion herein.
Referring now additionally to
The LED filament structure 130 may have a curvature that may be approximately equal to a curvature of the inner surface 121 of the optic 120. The LED filament structure 130 may be configured to generally conform to the curvature of the optic 120 that may conform to a bulb configuration selected from the group consisting of A19, A15, A21, ST19, ST15, S21, S11, C7, G25, G20, PAR30, PAR20, BR30, BR40, and R20. Those skilled in the art will appreciate that the optic 120 may be formed into any shape desired. The remaining elements of this embodiment of the lighting device 100″ are similar to those of the first embodiment of the lighting device 100, are labeled with double prime notation, and require no further discussion herein.
Referring now additionally to
The plurality of LED filaments 133′″ may also be positioned on the intermediate bracket 137′″ (or in contact with the intermediate bracket). Those skilled in the art will appreciate that the intermediate bracket 137′″ may be square, rectangular, circular, ovular, polygonal, or any combination thereof. Although the fluid flow generator 140′″ is illustrated as being carried by the lower bracket 132′″, those skilled in the art will appreciate that the fluid flow generator may be carried by the intermediate bracket 137′″, or by the upper bracket 131′″. The intermediate bracket 137′″ may be positioned between the upper bracket 131′″ and the lower bracket 132′″. Those skilled in the art will appreciate that the lighting device 100′″ may include any number of intermediate brackets 137′″. In addition, the intermediate bracket 137′″ may be curved and/or flexible to allow light to be emitted in more than a hemispherical direction, such as a spherical or semi-spherical direction. The remaining elements of this embodiment of the lighting device 100′″ are similar to those of the first embodiment of the lighting device 100, are labeled with triple prime notation, and require no further discussion herein.
Some of the illustrative aspects of the present invention may be advantageous in solving the problems herein described and other problems not discussed which are discoverable by a skilled artisan.
While the above description contains much specificity, these should not be construed as limitations on the scope of any embodiment, but as exemplifications of the presented embodiments thereof. Many other ramifications and variations are possible within the teachings of the various embodiments. While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best or only mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
Thus the scope of the invention should be determined by the appended claims and their legal equivalents, and not by the examples given.
This application is a continuation-in-part and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 14/084,118 filed on Nov. 19, 2013 and titled Sealed Electrical Device with Cooling System (Attorney Docket No. 221.00213) which, in turn, is a continuation of U.S. patent application Ser. No. 13/461,333 filed on May 1, 2012, now U.S. Pat. No. 8,608,348 issued on Dec. 17, 2013, and titled Sealed Electrical Device with Cooling System and Associated Methods (Attorney Docket No. 221.00045), which, in turn, is a continuation-in-part of U.S. patent application Ser. No. 13/107,782 filed on May 13, 2011 and titled Sound Baffling Cooling System for LED Thermal Management and Associated Methods (Attorney Docket No. 221.00002), now abandoned, and also incorporated the disclosure of U.S. patent application Ser. No. 12/775,310 filed May 6, 2010, now U.S. Pat. No. 8,201,968 issued on Jun. 19, 2012, titled Low Profile Light, which, in turn, claimed the benefit of U.S. Provisional Patent Application Ser. No. 61/248,665 filed on Oct. 5, 2009, the entire contents of each of which are incorporated herein by reference herein in their entireties except to the extent disclosure therein is inconsistent with disclosure herein. This application is also a continuation-in-part and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 14/338,942 filed on Jul. 23, 2014 and titled Serially-Connected Light Emitting Diodes, Methods of Forming Same, and Luminaires Containing Same (Attorney Docket No. 221.00242) which in turn is a divisional of U.S. patent application Ser. No. 13/739,286 filed Jan. 11, 2013, now U.S. Pat. No. 8,835,945 issued on Sep. 16, 2014, and titled Serially-Connected Light Emitting Diodes, Methods of Forming Same, and Luminaires Containing Same (Attorney Docket No. 221.00135), the entire contents of each of which are incorporated herein by reference herein in their entireties except to the extent disclosure therein is inconsistent with disclosure herein.
Number | Date | Country | |
---|---|---|---|
Parent | 13739286 | Jan 2013 | US |
Child | 14338942 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13461333 | May 2012 | US |
Child | 14084118 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14084118 | Nov 2013 | US |
Child | 14591521 | US | |
Parent | 13107782 | May 2011 | US |
Child | 13461333 | US | |
Parent | 14338942 | Jul 2014 | US |
Child | 13107782 | US |