This invention relates to LED luminaires for replacing fluorescent light sources. The present invention relates generally to electrical lighting devices and systems, and more particularly to a lighting device comprising a series of light emitting diodes (LEDs) incorporated within a clear or translucent tube or rod configured for installation in a conventional fluorescent light fixture.
Fluorescent light fixtures are widely used in industrial, commercial, retail, institutional and office applications. One way to reduce the high operating and maintenance costs associated with older model fluorescent light fixtures is simply to replace them with newer, more efficient models. However, given the number of fixtures that would ordinarily require replacement, this solution is not be cost effective over time. The cost associated with the replacement of older fluorescent light fixtures can be reduced through retrofitting. Retrofitting involves replacing only certain parts of an existing fluorescent lighting fixture, while retaining the remainder of the fixture housing.
A conventional retrofit oftentimes require the conversion of lamp fixtures and typically involves; installing an electronic ballast into the fixture, wiring the ballast to each of the sockets, installing each socket into individual socket brackets, screwing the socket brackets into the fixture, connecting the power supply, installing reflector covers, and installing a ballast cover. Retrofit kits are widely available for this purpose and other types of conversions. However, these retrofit kits include a variety of issues such as high costs associated with the kit itself, retaining the services of an electrician, and time.
Accordingly, it is an object of the present invention to provide an LED retrofit unit that converts light fixtures utilizing conventional fluorescent lamps and ballasts to energy efficient LED lighting and not connecting to existing fixtures, ballasts, and tombstones. It is another object of the present invention to provide an LED light unit, which can be installed without the requirement of an electrician and in a time effective and simple procedure.
It is another object of the present invention to provide an LED unit that dissipates heat effectively and provides substantially more light than conventional lighting utilizing Fresnel lens technology. The present invention to provides an LED unit that comprises minimal components, which will be described in detail in this application.
High-power Light Emitting Diodes (LEDs) provide significant advantages over traditional sources of lighting. For instance, incandescent bulbs are substantially less efficient than LEDs and as a result systems that rely on LEDs as a light source consume less power than an equivalent system, which uses incandescent bulbs. As the industry addresses environmentally safer technologies the usage of LEDs are preferable to lighting such as compact fluorescent lamps (CFLs), which contain mercury. Another advantage to the use of LEDs is simply that solid-state devices which utilize LEDs possess longevity and are significantly more durable and therefore can endure much greater stress than other alternatives in the market today such as incandescent, metal halide, sodium vapor lamps or CFLs.
The expense of redesigning lighting to incorporate LEDs is significant. Thus, it is preferable to retrofit existing luminaries with a device that uses LEDs lighting to utilize the optimum advantages of LED technology. Therefore, there is a current need for a device that can be easily inserted to existing lighting hence replacing not only the inefficient lighting with more efficient technology but also replacing the existing technology with lighting that does not need to be replaced or serviced nearly as frequently and thus lowers maintenance costs as well.
This invention is directed to retrofitting lighting fixture wherein fluorescent light sources are replaced by light emitting diodes (LED) light sources or the like. In one embodiment, a magnetize surface is utilized to form this connection. Also, the LED light sources can be used with magnetized strips in order to enhance the retrofit efficiency and desirability.
This invention is directed to a retrofit kit or lighting unit, which permits LED units to replace fluorescent lighting in conventional down-light style fixtures or surface mounted cylindrical lighting fixtures of the square or round shape. The unit includes a magnetic LED unit to fit into the existing fixture. The unit also includes wires that can connect with existing wires and a faceted lens for increasing illumination.
The invention has a built-in heat-sink, that keeps the lamp temperature within lamp specifications.
A lighting device is described having one or more high flux LEDs mounted on a heat sink within a Fresnel-like lens. The heat sink serves to transfer heat from the LEDs to the outside environment. (The safety light further includes a diffuser located between the LEDs and the outer lens.)
One aspect of the present invention is a lighting device comprising: (a) a plurality of LEDs disposed in an array; and (b) a surface having each LED mounted on a surface thereof, the surface made of a thermally conductive material to conduct heat away from the LEDs.
Another aspect of the present invention is a lighting device comprising: (a) a LED lighting unit having (a) a plurality of equispaced LEDs, each LED mounted on a surface of the heat sink, and (b) a Fresnel lens surrounding the lighting unit; whereby light emanating from the LEDs passes through the diffuser and the uniformly patterned Fresnel lens to provide a substantially uniform horizontal plane of light.
Yet another aspect of the present invention is a lighting assembly comprising: (a) a plurality of equispaced high flux LEDs; (b) a heat sink for transferring heat from the LEDs, wherein each LED is secured to the heat sink via a track on the noninterfacing surface; and (d) a lens surrounding the LEDs having a roughened surface with a random pattern of microfaceted angles on the surface, wherein the microfaceted angles diffuse the light emitted from the LEDs.
The material of construction of the LED light unit is typically a metal and engineered printed circuit board having a high thermal conductivity. Metals are typically selected from aluminum, copper, brass, bronze, iron and steel. Aluminum is particular attractive for its high thermal conductivity, light-weight, availability, and low cost. The shaped outer surface of the LED lamp device provides proper fitting of the LED lamp assembly into the lighting fixture, and provides a heat-transferring interface over substantially the entire outer surface to dissipate heat away from the LED unit. The present disclosure provides various embodiments of a retrofitted device that can be mounted into existing light fixtures. The current invention addresses a variety of concerns and improvements in the lighting industry. The current invention provides mounting ease through it magnetized outer wall and in one embodiment utilizes a plurality of recessed magnets. Another issue this invention addresses is heat dissipation where heat is effectively conducted away from a LED lights. Further this invention provides a simple means of wiring the retrofitted device into the existing electric supply of the existing fixture via common wire fasteners. The wiring from the existing fixture is couple to the LED unit via a step down ballast and a conventional male/female plug.
The foregoing has outlined rather broadly several aspects of the present invention in order that the detailed description of the invention that follows may be better understood and thus is not intended to narrow or limit in any manner the appended claims which define the invention. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and the specific embodiment disclosed may be readily utilized as a basis for modifying or designing of the structures for carrying out the same purposes as the invention. It should be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.
The invention will be better understood upon reading the following Detailed Description in conjunction with the Drawing in which:
Various embodiments of the present invention are described below, including certain embodiments relating particularly to the LED lighting unit of the present invention. It should be appreciated, however, that the present invention is not limited to any particular manner of implementation, and that the various embodiments discussed explicitly herein are primarily for purposes of illustration. For example, the various concepts discussed herein may be suitably implemented in a variety of environments involving light sources, other types of light sources not including LEDs, environments that involve both LEDs and other types of light sources in combination, and environments that involve non-lighting-related devices alone or in combination with various types of light sources.
In
In
In
In
What has been described here and above is the preferred embodiment of the invention those skilled in the art will recognize that numerous changes may be made without departing from the spirit and scope of the invention.