The present disclosure relates generally to a manufacturing system and, more particularly, to a system for additively manufacturing composite structures.
Continuous fiber 3D printing (a.k.a., CF3D®) involves the use of continuous fibers embedded within a matrix discharging from a moveable print head. The matrix can be a traditional thermoplastic, a powdered metal, a liquid resin (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes. Upon exiting the print head, a head-mounted cure enhancer (e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.) is activated to initiate and/or complete curing of the matrix. This curing occurs almost immediately, allowing for unsupported structures to be fabricated in free space. When fibers, particularly continuous fibers, are embedded within the structure, a strength of the structure may be multiplied beyond the matrix-dependent strength. An example of this technology is disclosed in U.S. Pat. No. 9,511,543 that issued to Tyler on Dec. 6, 2016 (“the '543 patent”).
Although CF3D® provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, improvements can be made to the structure and/or operation of existing systems. For example, Applicant has found that greater control over compacting and curing of the reinforcement can improve reinforcement placement, strength, and accuracy. The disclosed additive manufacturing system is uniquely configured to provide these improvements and/or to address other issues of the prior art.
In one aspect, the present disclosure is directed to an additive manufacturing system. The additive manufacturing system may include a support, and an outlet configured to discharge a material. The outlet may be operatively connected to and moveable by the support in a normal travel direction during material discharge. The outlet may include a guide, and a compactor operatively connected to the guide at a trailing location relative to the normal travel direction. The compactor may be moveable in an axial direction of the guide. The outlet may also include at least one cure enhancer mounted to move with the compactor relative to the guide. The at least one cure enhancer may be configured to expose the material to a cure energy.
In another aspect, the present disclosure is directed to another additive manufacturing system. This additive manufacturing system may include a nozzle configured to discharge continuous reinforcement at least partially wetted with a matrix, at least one cure enhancer configured to expose the matrix to a cure energy after discharge from the nozzle, and a compactor configured to apply a pressure to the matrix-wetted continuous reinforcement after discharge from the nozzle. The at least one cure enhancer and the compactor may be mounted to move together relative to the nozzle, in a direction of discharge from the nozzle.
In yet another aspect, the present disclosure is directed to a method of additively manufacturing a structure. The method may include wetting a continuous reinforcement with a liquid matrix inside of a print head, and discharging the matrix-wetted continuous reinforcement through an outlet of the print head. The method may also include pressing a compactor against the matrix-wetted continuous reinforcement after discharging, directing cure energy from at least one cure enhancer toward the matrix-wetted continuous reinforcement after pressing, and moving the at least one cure enhancer with the compactor relative to the outlet in a direction of discharging.
Head 16 may be configured to receive or otherwise contain a matrix (shown as M). The matrix may include any types or combinations of materials (e.g., a liquid resin, such as a zero-volatile organic compound resin, a powdered metal, etc.) that are curable. Exemplary resins include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, and more. In one embodiment, the matrix inside head 16 may be pressurized (e.g., positively and/or negatively), for example by an external device (e.g., by an extruder, a pump, etc.—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown). In another embodiment, however, the pressure may be generated completely inside of head 16 by a similar type of device. In yet other embodiments, the matrix may be gravity-fed into and/or through head 16. For example, the matrix may be fed into head 16, and pushed or pulled out of head 16 along with one or more continuous reinforcements (shown as R). In some instances, the matrix inside head 16 may need to be kept cool and/or dark in order to inhibit premature curing or otherwise obtain a desired rate of curing after discharge. In other instances, the matrix may need to be kept warm and/or illuminated for similar reasons. In either situation, head 16 may be specially configured (e.g., insulated, temperature-controlled, shielded, etc.) to provide for these needs.
The matrix may be used to at least partially coat any number of continuous reinforcements (e.g., separate fibers, tows, rovings, socks, and/or sheets of continuous material) and, together with the reinforcements, make up a portion (e.g., a wall) of composite structure 12. The reinforcements may be stored within or otherwise passed through head 16. When multiple reinforcements are simultaneously used, the reinforcements may be of the same material composition and have the same sizing and cross-sectional shape (e.g., circular, square, rectangular, etc.), or a different material composition with different sizing and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, plastic fibers, metallic fibers, optical fibers (e.g., tubes), etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural (e.g., functional) types of continuous materials that are at least partially encased in the matrix discharging from head 16.
The reinforcements may be at least partially coated with the matrix while the reinforcements are inside head 16, while the reinforcements are being passed to head 16, and/or while the reinforcements are discharging from head 16. The matrix, dry (e.g., unimpregnated) reinforcements, and/or reinforcements that are already exposed to the matrix (e.g., pre-impregnated reinforcements) may be transported into head 16 in any manner apparent to one skilled in the art. In some embodiments, a filler material (e.g., chopped fibers, nano particles or tubes, etc.) and/or additives (e.g., thermal initiators, UV initiators, etc.) may be mixed with the matrix before and/or after the matrix coats the continuous reinforcements.
One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, etc.) 18 may be mounted proximate (e.g., within, on, and/or adjacent) head 16 and configured to enhance a cure rate and/or quality of the matrix as it is discharged from head 16. Cure enhancer 18 may be controlled to selectively expose portions of structure 12 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, etc.) during material discharge and the formation of structure 12. The energy may trigger a chemical reaction to occur within the matrix, increase a rate of the chemical reaction, sinter the matrix, harden the matrix, solidify the matrix, polymerize the matrix, or otherwise cause the matrix to cure as it discharges from head 16. The amount of energy produced by cure enhancer 18 may be sufficient to cure the matrix before structure 12 axially grows more than a predetermined length away from head 16. In one embodiment, structure 12 is at least partially (e.g., completely) cured before the axial growth length becomes equal to an external diameter of the matrix-coated reinforcement.
The matrix and/or reinforcement may be discharged together from head 16 via any number of different modes of operation. In a first example mode of operation, the matrix and/or reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 16 as head 16 is moved by support 14 to create features of structure 12. In a second example mode of operation, at least the reinforcement is pulled from head 16, such that a tensile stress is created in the reinforcement during discharge. In this second mode of operation, the matrix may cling to the reinforcement and thereby also be pulled from head 16 along with the reinforcement, and/or the matrix may be discharged from head 16 under pressure along with the pulled reinforcement. In the second mode of operation, where the matrix is being pulled from head 16 with the reinforcement, the resulting tension in the reinforcement may increase a strength of structure 12 (e.g., by aligning the reinforcements, inhibiting buckling, equally loading the reinforcements, etc.) after curing of the matrix, while also allowing for a greater length of unsupported structure 12 to have a straighter trajectory. That is, the tension in the reinforcement remaining after curing of the matrix may act against the force of gravity (e.g., directly and/or indirectly by creating moments that oppose gravity) to provide support for structure 12.
The reinforcement may be pulled from head 16 as a result of head 16 being moved by support 14 away from an anchor point (e.g., a print bed, an existing surface of structure 12, a fixture, etc.). For example, at the start of structure formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 16, deposited onto the anchor point, and at least partially cured, such that the discharged material adheres (or is otherwise coupled) to the anchor point. Thereafter, head 16 may be moved away from the anchor point, and the relative movement may cause the reinforcement to be pulled from head 16. As will be explained in more detail below, the movement of reinforcement through head 16 may be selectively assisted via one or more internal feed mechanisms, if desired. However, the discharge rate of reinforcement from head 16 may primarily be the result of relative movement between head 16 and the anchor point, such that tension is created within the reinforcement. As discussed above, the anchor point could be moved away from head 16 instead of or in addition to head 16 being moved away from the anchor point.
Head 16 may include, among other things, an outlet 22 and a matrix reservoir 24 located upstream of outlet 22. In one example, outlet 22 is a single-channel outlet configured to discharge composite material having a generally circular, tubular, or rectangular cross-section. The configuration of head 16, however, may allow outlet 22 to be swapped out for another outlet that discharges multiple channels of composite material having different shapes (e.g., a flat or sheet-like cross-section, a multi-track cross-section, etc.). Fibers, tubes, and/or other reinforcements may pass through matrix reservoir 24 (e.g., through one or more internal wetting mechanisms 26 located inside of reservoir 24) and be wetted (e.g., at least partially coated and/or fully saturated) with matrix prior to discharge.
One or more controllers 28 may be provided and communicatively coupled with support 14 and head 16. Each controller 28 may embody a single processor or multiple processors that are programmed and/or otherwise configured to control an operation of system 10. Controller 28 may include one or more general or special purpose processors or microprocessors. Controller 28 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, tool paths, and corresponding parameters of each component of system 10. Various other known circuits may be associated with controller 28, including power supply circuitry, signal-conditioning circuitry, solenoid driver circuitry, communication circuitry, and other appropriate circuitry. Moreover, controller 28 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
One or more maps may be stored within the memory of controller 28 and used during fabrication of structure 12. Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps may be used by controller 28 to determine movements of head 16 required to produce desired geometry (e.g., size, shape, material composition, performance parameters, and/or contour) of structure 12, and to regulate operation of cure enhancer(s) 18 and/or other related components in coordination with the movements.
As shown in
During discharge of material from head 16, the matrix-wetted reinforcement(s) may pass through one or more features (e.g., channels, grooves, protrusions, etc.) of nozzle 30 that help to maintain desired trajectories (e.g., separation between adjacent reinforcements, straightness, and/or steering onto compactor 32) of the reinforcement(s). Compactor 32 may pass over the matrix-wetted reinforcement(s) discharging from nozzle 30 and thereby urge the reinforcement(s) against an underlying surface with a desired pressure. Cure enhancer(s) 18 may direct cure energy (e.g., UV and/or laser light) through and/or to a point on the discharging material that is immediately behind compactor 32 (e.g., relative to the normal travel direction).
Cure enhancer(s) 18 have been omitted from
In the depicted embodiment, bracket 38 is an elongated plate contained within a groove or channel 46 formed at a back side of nozzle 30 by way of a cover 47. The plate portion of bracket 38 may be disposed at least partially within and allowed to slide axially relative to channel 46, and cover 47 may close off an open side of channel 46 to capture the plate portion of bracket 38 within channel 46. In this configuration, spring 42 may be a tension-spring, configured to extend the plate portion of bracket 38 out of channel 46 by pulling of studs 44 towards each other. It is contemplated, however, that other configurations capable of urging compactor 32 towards the discharging material may also be possible.
Cure enhancers 18 are represented in
It should be noted that, when two cure enhancers 18 are included, the associated optical tubes may be tilted towards each other and/or towards roller 36. For example, the optical tubes may be located at opposing sides of the continuous reinforcement and tilted transversely towards each other at an angle α relative to a normal of the continuous reinforcement at a location of energy exposure. In one embodiment, the tilt angle α may be about 5-60°. The optical tubes may additionally or alternatively be tilted in the normal travel direction of head 16 (e.g., in the direction of arrow 34 towards roller 36) at an angle β relative to the normal of the continuous reinforcement at the location of energy exposure. In one embodiment, the tilt angle β may be about 5-45°. This tilting may help to ensure that the matrix wetting the continuous reinforcement is exposed to energy on multiple sides (e.g., at least two sides and, in some applications three sides) and as close to the tool center point as possible. This exposure may help to quickly tack the reinforcement more accurately at a desired location.
Compactor 32 and cure enhancer(s) 18 may be selectively extended in the axial direction of nozzle 30. For example, a pneumatic piston (not shown) could be located to generate extending forces on bracket 38 (e.g., on stud 44 of bracket 38 and/or nozzle 30). Alternative, a motor/screw arrangement, a solenoid, and/or gravity could be connected to generate these extending forces. Other extending devices could also be utilized. It is contemplated that spring 42 may be omitted in some applications, and the associated extending device further operated to retract compactor 32. For example, a double acting pneumatic cylinder may be utilized to extend and retract compactor 32.
The disclosed system may be used to manufacture composite structures having any desired cross-sectional shape and length. The composite structures may include any number of different fibers of the same or different types and of the same or different diameters, and any number of different matrixes of the same or different makeup. Operation of system 10 will now be described in detail.
At a start of a manufacturing event, information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 28 that is responsible for regulating operations of support 14 and/or head 16). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectories, surface normal, etc.), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), reinforcement selection, matrix selection, discharge locations, severing locations, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired. Based on the component information, one or more different reinforcements and/or matrix materials may be installed and/or continuously supplied into system 10.
To install the reinforcements, individual fibers, tows, and/or ribbons may be passed through matrix reservoir 24 and outlet 22 (e.g., through features of nozzle 30, and under compactor 32). In some embodiments, the reinforcements may also need to be connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to the anchor point). Installation of the matrix material may include filling head 16 (e.g., wetting mechanism 26 of reservoir 24) and/or coupling of an extruder (not shown) to head 16.
The component information may then be used to control operation of system 10. For example, the in-situ wetted reinforcements may be pulled and/or pushed from outlet 22 of head 16 as support 14 selectively moves (e.g., based on known kinematics of support 14 and/or known geometry of structure 12), such that the resulting structure 12 is fabricated as desired.
Operating parameters of support 14, cure enhancer(s) 18, compactor 32, and/or other components of system 10 may be adjusted in real time during material discharge to provide for desired bonding, strength, tension, geometry, and other characteristics of structure 12. Once structure 12 has grown to a desired length, structure 12 may be severed from system 10.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed system. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system. For example, it is contemplated that cure enhancer(s) 18 could additionally move somewhat or completely independent of compactor 32 (e.g., in the axial direction of the material passing through guide 30), at the same time that both of cure enhancer(s) 18 and compactor 32 move independent of guide 30. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
This application is a continuation of U.S. Non-Provisional application Ser. No. 16/752,257 that was filed on Jan. 24, 2020, which is based on and claims the benefit of priority from U.S. Provisional Application No. 62/797,078 that was filed on Jan. 25, 2019, the contents of all of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3286305 | Seckel | Nov 1966 | A |
3809514 | Nunez | May 1974 | A |
3984271 | Gilbu | Oct 1976 | A |
3993726 | Moyer | Nov 1976 | A |
4643940 | Shaw et al. | Feb 1987 | A |
4671761 | Adrian et al. | Jun 1987 | A |
4822548 | Hempel | Apr 1989 | A |
4851065 | Curtz | Jul 1989 | A |
5002712 | Goldmann et al. | Mar 1991 | A |
5037691 | Medney et al. | Aug 1991 | A |
5296335 | Thomas et al. | Mar 1994 | A |
5340433 | Crump | Aug 1994 | A |
5746967 | Hoy et al. | May 1998 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5936861 | Jang et al. | Aug 1999 | A |
6153034 | Lipsker | Nov 2000 | A |
6459069 | Rabinovich | Oct 2002 | B1 |
6501554 | Hackney et al. | Dec 2002 | B1 |
6799081 | Hale et al. | Sep 2004 | B1 |
6803003 | Rigaii et al. | Oct 2004 | B2 |
6934600 | Jang et al. | Aug 2005 | B2 |
7039485 | Engelbart et al. | May 2006 | B2 |
7555404 | Brennan et al. | Jun 2009 | B2 |
7795349 | Bredt et al. | Sep 2010 | B2 |
8221669 | Batchelder et al. | Jul 2012 | B2 |
8962717 | Roth et al. | Feb 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9126367 | Mark et al. | Sep 2015 | B1 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186846 | Mark et al. | Nov 2015 | B1 |
9186848 | Mark et al. | Nov 2015 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9327453 | Mark et al. | May 2016 | B2 |
9370896 | Mark | Jun 2016 | B2 |
9381702 | Hollander | Jul 2016 | B2 |
9457521 | Johnston et al. | Oct 2016 | B2 |
9458955 | Hammer et al. | Oct 2016 | B2 |
9527248 | Hollander | Dec 2016 | B2 |
9539762 | Durand et al. | Jan 2017 | B2 |
9579851 | Mark et al. | Feb 2017 | B2 |
9688028 | Mark | Jun 2017 | B2 |
9694544 | Mark et al. | Jul 2017 | B2 |
9764378 | Peters et al. | Sep 2017 | B2 |
9770876 | Farmer et al. | Sep 2017 | B2 |
9782926 | Witzel et al. | Oct 2017 | B2 |
20020009935 | Hsiao et al. | Jan 2002 | A1 |
20020062909 | Jang et al. | May 2002 | A1 |
20020113331 | Zhang et al. | Aug 2002 | A1 |
20020165304 | Mulligan et al. | Nov 2002 | A1 |
20030044539 | Oswald | Mar 2003 | A1 |
20030056870 | Comb et al. | Mar 2003 | A1 |
20030160970 | Basu et al. | Aug 2003 | A1 |
20030186042 | Dunlap et al. | Oct 2003 | A1 |
20030236588 | Jang et al. | Dec 2003 | A1 |
20050006803 | Owens | Jan 2005 | A1 |
20050061422 | Martin | Mar 2005 | A1 |
20050104257 | Gu et al. | May 2005 | A1 |
20050109451 | Hauber et al. | May 2005 | A1 |
20050230029 | Vaidyanathan et al. | Oct 2005 | A1 |
20070003650 | Schroeder | Jan 2007 | A1 |
20070228592 | Dunn et al. | Oct 2007 | A1 |
20080085335 | Soccard | Apr 2008 | A1 |
20080176092 | Owens | Jul 2008 | A1 |
20090095410 | Oldani | Apr 2009 | A1 |
20110011538 | Hamlyn | Jan 2011 | A1 |
20110032301 | Fienup et al. | Feb 2011 | A1 |
20110143108 | Fruth et al. | Jun 2011 | A1 |
20120060468 | Dushku et al. | Mar 2012 | A1 |
20120159785 | Pyles et al. | Jun 2012 | A1 |
20120231225 | Mikulak et al. | Sep 2012 | A1 |
20120247655 | Erb et al. | Oct 2012 | A1 |
20130149491 | Wakeman | Jun 2013 | A1 |
20130164498 | Langone et al. | Jun 2013 | A1 |
20130209600 | Tow | Aug 2013 | A1 |
20130233471 | Kappesser et al. | Sep 2013 | A1 |
20130292039 | Peters et al. | Nov 2013 | A1 |
20130337256 | Farmer et al. | Dec 2013 | A1 |
20130337265 | Farmer | Dec 2013 | A1 |
20140034214 | Boyer et al. | Feb 2014 | A1 |
20140061974 | Tyler | Mar 2014 | A1 |
20140159284 | Leavitt | Jun 2014 | A1 |
20140232035 | Bheda | Aug 2014 | A1 |
20140268604 | Wicker et al. | Sep 2014 | A1 |
20140291886 | Mark et al. | Oct 2014 | A1 |
20150136455 | Fleming | May 2015 | A1 |
20150343713 | Engel | Dec 2015 | A1 |
20160012935 | Rothfuss | Jan 2016 | A1 |
20160031155 | Tyler | Feb 2016 | A1 |
20160046082 | Fuerstenberg | Feb 2016 | A1 |
20160052208 | Debora et al. | Feb 2016 | A1 |
20160082641 | Bogucki et al. | Mar 2016 | A1 |
20160082659 | Hickman et al. | Mar 2016 | A1 |
20160107379 | Mark et al. | Apr 2016 | A1 |
20160114532 | Schirtzinger et al. | Apr 2016 | A1 |
20160136885 | Nielsen-Cole et al. | May 2016 | A1 |
20160144565 | Mark et al. | May 2016 | A1 |
20160144566 | Mark et al. | May 2016 | A1 |
20160192741 | Mark | Jul 2016 | A1 |
20160200047 | Mark et al. | Jul 2016 | A1 |
20160243762 | Fleming et al. | Aug 2016 | A1 |
20160263806 | Gardiner | Sep 2016 | A1 |
20160263822 | Boyd | Sep 2016 | A1 |
20160263823 | Espiau et al. | Sep 2016 | A1 |
20160271876 | Lower | Sep 2016 | A1 |
20160297104 | Guillemette et al. | Oct 2016 | A1 |
20160311165 | Mark et al. | Oct 2016 | A1 |
20160325491 | Sweeney et al. | Nov 2016 | A1 |
20160332369 | Shah et al. | Nov 2016 | A1 |
20160339633 | Stolyarov et al. | Nov 2016 | A1 |
20160346998 | Mark et al. | Dec 2016 | A1 |
20160361869 | Mark et al. | Dec 2016 | A1 |
20160368213 | Mark | Dec 2016 | A1 |
20160368255 | Witte et al. | Dec 2016 | A1 |
20170007359 | Kopelman et al. | Jan 2017 | A1 |
20170007360 | Kopelman et al. | Jan 2017 | A1 |
20170007361 | Boronkay et al. | Jan 2017 | A1 |
20170007362 | Chen et al. | Jan 2017 | A1 |
20170007363 | Boronkay | Jan 2017 | A1 |
20170007365 | Kopelman et al. | Jan 2017 | A1 |
20170007366 | Kopelman et al. | Jan 2017 | A1 |
20170007367 | Li et al. | Jan 2017 | A1 |
20170007368 | Boronkay | Jan 2017 | A1 |
20170007386 | Mason et al. | Jan 2017 | A1 |
20170008333 | Mason et al. | Jan 2017 | A1 |
20170015059 | Lewicki | Jan 2017 | A1 |
20170015060 | Lewicki et al. | Jan 2017 | A1 |
20170021565 | Deavilie | Jan 2017 | A1 |
20170028434 | Evans et al. | Feb 2017 | A1 |
20170028588 | Evans et al. | Feb 2017 | A1 |
20170028617 | Evans et al. | Feb 2017 | A1 |
20170028619 | Evans et al. | Feb 2017 | A1 |
20170028620 | Evans et al. | Feb 2017 | A1 |
20170028621 | Evans et al. | Feb 2017 | A1 |
20170028623 | Evans et al. | Feb 2017 | A1 |
20170028624 | Evans et al. | Feb 2017 | A1 |
20170028625 | Evans et al. | Feb 2017 | A1 |
20170028627 | Evans et al. | Feb 2017 | A1 |
20170028628 | Evans et al. | Feb 2017 | A1 |
20170028633 | Evans et al. | Feb 2017 | A1 |
20170028634 | Evans et al. | Feb 2017 | A1 |
20170028635 | Evans et al. | Feb 2017 | A1 |
20170028636 | Evans et al. | Feb 2017 | A1 |
20170028637 | Evans et al. | Feb 2017 | A1 |
20170028638 | Evans et al. | Feb 2017 | A1 |
20170028639 | Evans et al. | Feb 2017 | A1 |
20170028644 | Evans et al. | Feb 2017 | A1 |
20170030207 | Kittleson | Feb 2017 | A1 |
20170036403 | Ruff et al. | Feb 2017 | A1 |
20170050340 | Hollander | Feb 2017 | A1 |
20170057164 | Hemphill et al. | Mar 2017 | A1 |
20170057165 | Waldrop et al. | Mar 2017 | A1 |
20170057167 | Tooren et al. | Mar 2017 | A1 |
20170057181 | Waldrop et al. | Mar 2017 | A1 |
20170064840 | Espalin et al. | Mar 2017 | A1 |
20170066187 | Mark et al. | Mar 2017 | A1 |
20170087768 | Bheda | Mar 2017 | A1 |
20170106565 | Braley et al. | Apr 2017 | A1 |
20170120519 | Mark | May 2017 | A1 |
20170129170 | Kim et al. | May 2017 | A1 |
20170129171 | Gardner et al. | May 2017 | A1 |
20170129176 | Waatti et al. | May 2017 | A1 |
20170129182 | Sauti et al. | May 2017 | A1 |
20170129186 | Sauti et al. | May 2017 | A1 |
20170144375 | Waldrop et al. | May 2017 | A1 |
20170151728 | Kunc et al. | Jun 2017 | A1 |
20170157828 | Mandel et al. | Jun 2017 | A1 |
20170157831 | Mandel et al. | Jun 2017 | A1 |
20170157844 | Mandel et al. | Jun 2017 | A1 |
20170157851 | Nardiello et al. | Jun 2017 | A1 |
20170165908 | Pattinson et al. | Jun 2017 | A1 |
20170173868 | Mark | Jun 2017 | A1 |
20170182712 | Scribner et al. | Jun 2017 | A1 |
20170210074 | Ueda et al. | Jul 2017 | A1 |
20170217088 | Boyd et al. | Aug 2017 | A1 |
20170232674 | Mark | Aug 2017 | A1 |
20170259502 | Chapiro et al. | Sep 2017 | A1 |
20170259507 | Hocker | Sep 2017 | A1 |
20170266876 | Hocker | Sep 2017 | A1 |
20170274585 | Armijo et al. | Sep 2017 | A1 |
20170284876 | Moorlag et al. | Oct 2017 | A1 |
20180126639 | Tyler | May 2018 | A1 |
20190001562 | Stockett et al. | Jan 2019 | A1 |
20190315059 | Budge | Oct 2019 | A1 |
20200086565 | Hambling | Mar 2020 | A1 |
20200376759 | Stranberg | Dec 2020 | A1 |
Number | Date | Country |
---|---|---|
4102257 | Jul 1992 | DE |
2589481 | Jan 2016 | EP |
3219474 | Sep 2017 | EP |
100995983 | Nov 2010 | KR |
101172859 | Aug 2012 | KR |
2013017284 | Feb 2013 | WO |
2016088042 | Jun 2016 | WO |
2016088048 | Jun 2016 | WO |
2016110444 | Jul 2016 | WO |
2016159259 | Oct 2016 | WO |
2016196382 | Dec 2016 | WO |
2017006178 | Jan 2017 | WO |
2017006324 | Jan 2017 | WO |
2017051202 | Mar 2017 | WO |
2017081253 | May 2017 | WO |
2017085649 | May 2017 | WO |
2017087663 | May 2017 | WO |
2017108758 | Jun 2017 | WO |
2017122941 | Jul 2017 | WO |
2017122942 | Jul 2017 | WO |
2017122943 | Jul 2017 | WO |
2017123726 | Jul 2017 | WO |
2017124085 | Jul 2017 | WO |
2017126476 | Jul 2017 | WO |
2017126477 | Jul 2017 | WO |
2017137851 | Aug 2017 | WO |
2017142867 | Aug 2017 | WO |
2017150186 | Sep 2017 | WO |
Entry |
---|
A. Di. Pietro & Paul Compston, Resin Hardness and Interlaminar Shear Strength of a Glass-Fibre/Vinylester Composite Cured with High intensity Ultraviolet (UV) Light, Journal of Materials Science, vol. 44, pp. 4188-4190 (Apr. 2009). |
A. Endruweit, M. S. Johnson, & A. C. Long, Curing of Composite Components by Ultraviolet Radiation: A Review, Polymer Composites, pp. 119-128 (Apr. 2006). |
C. Fragassa, & G. Minak, Standard Characterization for Mechanical Properties of Photopolymer Resins for Rapid Prototyping, 1st Symposium on Multidisciplinary Studies of Design in Mechanical Engineering, Bertinoro, Italy (Jun. 25-28, 2008). |
Hyouk Ryeoi Choi and Se-gon Roh, In-pipe Robot with Active Steering Capability for Moving inside of Pipelines, Bioinspiration and Robotics: Walking and Climbing Robots, Sep. 2007, p. 544, I-Tech, Vienna, Austria. |
International Search Report dated May 18, 2020 for PCT/US2020/015125 to Continuous Composites Inc., Filed Jan. 25, 2020. |
Kenneth C. Kennedy II & Robert P. Kusy, UV-Cured Pultrusion Processing of Glass-Reinforced Polymer Composites, Journal of Vinyl and Additive Technology, vol. 1, Issue 3, pp. 182-186 (Sep. 1995). |
M. Martin-Gallego et al., Epoxy-Graphene UV-Cured Nanocomposites, Polymer, vol. 52, Issue 21, pp. 4664-4669 (Sep. 2011). |
P. Compston, J. Schiemer, & A. Cvetanovska, Mechanical Properties and Styrene Emission Levels of a UV-Cured Glass-Fibre/Vinylester Composite, Composite Structures, vol. 86, pp. 22-26 (Mar. 2008). |
S Kumar & J.-P. Kruth, Composites by Rapid Prototyping Technology, Materials and Design, (Feb. 2009). |
S. L. Fan, F. Y. C. Boey, & M. J. M. Abadie, UV Curing of a Liquid Based Bismaleimide-Containing Polymer System, eXPRESS Polymer Letters, vol. 1, No. 6, pp. 397-405 (2007). |
T. M. Llewelly-Jones, Bruce W. Drinkwater, and Richard S. Trask; 3D Printed Components With Ultrasonically Arranged Microscale Structure, Smart Materials and Structures, 2016, pp. 1-6, vol. 25, IOP Publishing Ltd., UK. |
Vincent J. Lopata et al., Electron-Beam-Curable Epoxy Resins for the Manufacture of High-Performance Composites, Radiation Physics and Chemistry, vol. 56, pp. 405-415 (1999). |
Yugang Duan et al., Effects of Compaction and UV Exposure on Performance of Acrylate/Glass-Fiber Composites Cured Layer by Layer, Journal of Applied Polymer Science, vol. 123, Issue 6, pp. 3799-3805 (May 15, 2012). |
Number | Date | Country | |
---|---|---|---|
20220184882 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62797078 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16752257 | Jan 2020 | US |
Child | 17654033 | US |