System for administering a medicament

Information

  • Patent Grant
  • 10754927
  • Patent Number
    10,754,927
  • Date Filed
    Thursday, September 18, 2014
    10 years ago
  • Date Issued
    Tuesday, August 25, 2020
    4 years ago
Abstract
Provided is a system for delivering and recording a dose of a medicament to a patient. Also provided is a method of administering a medicament to a patient. Additionally provided is a method of tracking usage of a medicament by a patient through a pen.
Description
BACKGROUND OF THE INVENTION
(1) Field of the Invention

The invention relates generally to medicament delivery devices and specifically injector pens (“pens”) and the tracking, logging and communication of the doses given thereby. More specifically, the invention provides a pen that may communicate with a companion device, and may be internet enabled and able transmit a dose directly to an internet service via e.g., Wifi, cellular technology or other transmission technology.


(2) Description of the Related Art

Many different diseases and conditions require the patient to self-administer doses of medication. These doses can be administered with either a syringe, or an injector pen (“pen”). Examples of self-administered medicaments include insulin, used to treat diabetes, folistim, used to treat infertility, morphine, for pain, interferon β1a for multiple sclerosis, and Enbrel or Aransep for rheumatoid arthritis. As with the dosing of any medication, it is sometimes hard to remember if a dose has been given. For this reason pill reminders have been developed where the patient places the medication for the day in a cup labeled with that day. Once they take their medication there is no question it has been taken because the pills are no longer in the cup. No acceptable solution to this problem exists for pen based therapies.


Insulin is delivered in three general ways, through syringes, insulin pens and pumps. Insulin pens offer the benefit of simplicity over the other two methods of delivery. Syringes require more steps to deliver a dose and pumps are more complicated to use and require a constant tether to the patient. However, there is no effective automated way to track and communicate the doses given with an insulin (or other medication delivery) pen in a simple manner. The present invention solves this problem.


Additionally, other medications such as expensive fertility drugs come with complicated set of intimidating syringes and are given to people inexperienced with self-injection. The present invention provides a less intimidating solution, and also provides connected features such as dose reminders, delivery tracking, and communication back with the health care provider which can make dose amount changes remotely.


BRIEF SUMMARY OF THE INVENTION

Provided herewith is a system for delivering and recording a dose of a medicament to a patient. The system comprises a pen, the pen comprising a body comprising a vial of the medicament;


a mechanism capable of dispensing the medicament;


a first sensor capable of determining that the pen is being used;


a second sensor capable of detecting the size of the dose being delivered;


a processor capable of processing dose information;


a power source that powers the processor;


a memory capable of storing dose information; and


a wireless transmitter capable of communicating with a separate companion device and/or directly to an internet service.


Also provided is a method of administering a medicament to a patient. The method comprises using the above-described system to administer the medicament.


Additionally provided is a method of tracking usage of a medicament by a patient through a pen, wherein the medicament is administered from the pen in a plurality of boluses over time. The method comprises recording information about the medicament administration and storing the information on a companion device, where the information comprises the quantity and time of each administered bolus of the medicament.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic illustration of the delivery device and its components.



FIG. 2 shows one possible workflow for delivering a dose from the pen.



FIG. 3 shows one possible workflow for receiving a dose recommendation from the companion device.





DETAILED DESCRIPTION OF THE INVENTION

As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Additionally, the use of “or” is intended to include “and/or”, unless the context clearly indicates otherwise.


As used herein, a pen is a device that can be used to inject multiple boluses (doses) of a medicament, where more than one dose can be stored in the device.


As used herein, the terms “sensor” and “switch” are used interchangeably unless a sensor or switch is specifically indicated.


Provided herewith is a system for delivering and recording a dose of a medicament to a patient. The system comprises a pen, where the pen comprises


a body comprising a vial of the medicament;


a mechanism capable of dispensing the medicament;


a first sensor capable of determining that the pen is being used;


a second sensor capable of detecting the size of the dose being delivered;


a processor capable of processing dose information;


a power source that powers the processor;


a memory capable of storing dose information; and


a wireless transmitter capable of communicating with a separate companion device and/or directly to an internet service.



FIG. 1 shows an embodiment of the pen, as used for insulin injection. The pen comprises a body which contains a drug cartridge, for example an insulin vial, which in some embodiments is replaceable. The pen also comprises a mechanism to deliver the drug (e.g., insulin). In some embodiments, the pen also comprises a mechanism for selecting the dose to be delivered, a sensor or switch (“Switch” in FIG. 1) for determining that the device is being manipulated with the intention of delivering the drug; a sensor for monitoring the dose to be delivered, a processor, a battery or other power source, a memory, and a transmitter. In some embodiments, the battery is rechargeable, in others it is non-rechargeable and non-replaceable, and in others it is non-rechargeable and replaceable by the user.



FIGS. 2 and 3 show examples of workflows for use of various embodiments of the pen.


While the figures exemplify the use of the system pens with insulin, the system can be utilized for administration of any medicament requiring repeated doses. Non-limiting examples include pens for delivery of infertility treatment (e.g., folistim), pain medications (e.g., morphine), multiple sclerosis treatments (e.g., interferon β1a), antiviral treatment (e.g., peginterferon α-2a) or rheumatoid arthritis treatment (e.g., Enbrel or Aransep).


The pen can communicate with one or more companion devices or directly to an internet service, through the transmitter. The invention is not limited to any particular type of transmitter; the skilled artisan could, without undue experimentation, select and utilize a transmitter useful for any particular system. In some embodiments, the transmitter is a transceiver, capable of receiving data from the companion device, or another device. In such embodiments, the system usually has software capable of processing and/or storing the incoming data.


Since the pen contains electronics and a battery or other power source, power efficiency is a primary concern for the system. In some embodiments, the processor is kept in low power mode, and activated at a programmable regular interval to advertise for communication with an external device. In some of those embodiments, this communication interval increases in frequency when the user interacts with the device.


In another embodiment, the communication with a companion device or directly with an internet service is initiated when the user begins to interact with the pen or has completed delivering a dose. For example, the processor may be turned on by a switch or sensor when the pen cap is removed or when a dose is dialed up or delivered. In the case of the pen cap being removed the switch could be a simple normally open or normally closed switch which changes position when the pen cap is removed or a proximity sensor or other electrical or mechanical device capable of detecting when the cap is removed. In the case of a sensor on the dose dial, movement of the dial (e.g., pressing on the dial or rotating the dial) could produce a sensor signal which instructs the processor to turn on. Once the device is on, in some embodiments, the user simply dials in their desired dose and delivers that dose. In other embodiments, the pen turns on when the dose is being delivered. The act of turning on the processor and dialing up the dose could be the same action, and or could utilize the same sensor. The processor then stores the size of the dose along with a time stamp for that dose. The pen can also attempt to transmit the dose and related information to the companion device or directly to the internet service.


In some embodiments, the unread records are read by the companion device from newest to oldest in order to get the most recent data fastest. In other embodiments, the records are read oldest to newest in order to simplify the syncing process.


The external device will need to read all doses since the last communication sync. This can be accomplished through any method known in the art. Nonlimiting examples include 1) the external device tracking the index of the last record read and requesting all records newer than the last read index, 2) the external device tracking the timestamp of the last read dose, and requesting all records newer than the last read timestamp, and 3) the pen marking records as transmitted or not transmitted and sending all records which have not been transmitted.


In some embodiments, the pen has limited memory capability, but the user would like a longer history of doses. In those embodiments, the companion device can store more records than the pen. In another embodiment, the companion device uploads dose information to an internet storage system. In some aspects, the dose information is synced among multiple companion devices and/or shared with health care providers, family members or anyone designated by the user. In various embodiments, the memory can store information such as dose size and time information, e.g., a length of time from when the dose was delivered until the dose was transmitted to the companion device.


The dose sensor can utilize any method of sensing rotary or linear movement known in the art. Non-limiting examples of such sensors include an electromechanical switch operatively coupled to the cap of the pen, rotary and linear encoders such as an electromechanical rotary sensor such as a Hall effect sensor or an optical encoder, or an electromechanical linear sensor such as an optical encoder or a linearly variable displacement transducers (LVDT), etc.


In some embodiments, the first sensor (capable of determining that the pen is being used) and the second sensor (capable of detecting the size of the dose being delivered) are the same sensor. Any such sensor known in the art can be utilized for these two purposes. Nonlimiting examples include suitable encoders as described above.


The delivery mechanism of the pen may be either manually powered or motorized. In either case, a force (either produced by the patient or by an electrical motor as is known in the art) pushes on the plunger of the medicament vial in order to deliver a specific amount of the medicament. In some embodiments, the mechanism can be adjusted to deliver the dose over a different period of time.


In some embodiments, software is provided, which when loaded on a companion device, allows the device to communicate with the injection device. In some of these embodiments, the software allows the patient to select the dose to be administered.


The timestamp referenced above is either the current time (i.e., user time, or UTC) or alternatively a timestamp where a count up timer is used. When the dose information is eventually transmitted to the companion device the time-since-dose is one parameter to be transmitted. In some embodiments, the time of the dose can be determined without the pen having to know the current time. This can simplify operation and setup of the pen. In another embodiment, a user time is initialized on the pen from the companion device and that time is used for dose time tracking. Using this system the companion device can know the time of the dose relative to the current time.


Once the companion device, which is for example a mobile electrical device such as a smartphone or cloud based server, receives the information it stores it in a list of doses. As used herein, the “cloud” refers to hosted internet services. The companion device can then allow the patient to browse a list of previous doses, see an estimate of current insulin active in the patient's body (“insulin on board”) the calculation of which is well known in literature, or utilize a calculation system to help receive information on the size of the next dose to be delivered. For example, the patient could enter carbohydrates to be eaten and current blood sugar, and the companion device would already know insulin on board, based on previous dose history. Using these parameters a suggested insulin dose, calculated by established methods, may be determined. In one embodiment, the companion device would also allow the user to manually enter boluses into the device. This would be useful if the patient was forced to use a syringe or if the battery in the pen device died.


In some embodiments, the pen or companion device receives physiological information such as blood glucose, heart rate, blood pressure, or clinical test data from monitoring devices such as blood glucose meters or continuous glucose monitors, which can be used in the dosing calculations. This information could be manually entered, received wirelessly or through an electrical connection. In addition to being used in the dosing calculations, the most recent blood glucose information could be displayed on the companion device or pen. In instances where not only the current glucose value is known but also the rate at which the blood sugar is rising or falling, the dose calculator can use that information to subtract or add to the recommended dose respectively. Similarly, other information such as exercise, health state, altitude, temperature or other can also be used to add or subtract to the recommended dose.


At the time that the dose is to be calculated, the companion device in some embodiments verifies that it has the most up-to-date dose information by communicating with the pen. In some of those embodiments, if communication with the pen is unavailable then the automated dose calculation features would not function. This is a safety mechanism to ensure that additional insulin has not been given that has not been included in the dose calculation.


In some embodiments, the companion device transmits the calculated dose to the pen for delivery. In some embodiments, the companion device transmits the recommended dose to the pen which then provides a mechanical lock-out that prevents the user from being delivered more medicament than was calculated as a recommended dose. In another embodiment, the lockout can be enabled to prevent double dosing too close in time. In some embodiments, the lockout can be configured to allow a small amount more than the recommended dose. In further embodiments there is a method to override the dose lock out device to give a larger dose if desired, either by the user through approval on the device or on the companion device, or by health care provider, parent or other responsible party either locally or remotely through the internet. These embodiments are not narrowly limited to any particular lockout mechanisms. Nonlimiting examples of suitable lockout mechanisms are biometric, passcode or password, or a simple mental puzzle or question to confirm proper mental cognition of the user prior to allowing a potentially dangerous dose.


In other embodiments, the recommended dose can be indicated on the pen, by methods such as LCD screen, by highlighting the recommended number on the dial or by vibrating and/or sounding when the recommended dose has been reached on the dial. In automatic injection systems, the dose can be set for automatic delivery by the companion device. In some embodiments, where there is no lockout mechanism, there is an indication that the dose dialed in is more or less than the recommended or safe amount calculated. This indication may be, for example, visual through lights, colors or other, vibratory or audible signal. In some instances red indicates doses which are too large, green indicates correct dose and yellow or other indicates warning of too low of a dose, although the color may be adapted per the cultural conventions around the area or disease being treated.


In some embodiments, either the companion device or the pen is provided with a method to warn the user if a dose has been recently taken. This is a safeguard against accidentally double dosing for a meal or taking long acting insulin twice in a day. In some of these embodiments, the alarm is active if a second dose is initiated within a predefined period of time after the previous dose. In other embodiments, the alarm is configurable by the user or health care provider. When the alarm is active, any appropriate signal, e.g., audio, visual, or tactile (vibratory) can be utilized. In other embodiments either the companion device or the pen warns the user of a missed dose. A missed dose could be identified, for example, if a dose has not been given within a certain period of time after a specific time of day or after an average time of bolus. For example, with long acting insulins (for example, lantus) the injections are usually given once a day at a specific time of day. Another example is a schedule of injections of medication such as fertility treatments. The pen or companion device could average the time of the injections given on a daily basis and then give a missed dose alarm if no dose is sensed within predetermined amount of time after that average time, for example 2 hours. In other embodiments, a pattern learning algorithm learns the user's behavior and notifies of deviations. For example the algorithm notices that the user gives injections at one time during the week and at different times during weekends. It could also use location to determine different patterns, for example dosing times while traveling vs. at home.


In various embodiments, the companion device allows the dose history as well as any entered or received blood glucose data to be reviewed by a physician or the patient or other interested party such as an insurance company. This review can be exhibited on the companion devices screen and/or prepared in a report for transmission to a computer, a printer or the cloud. This transmission could occur wirelessly or through a wired interface. Wireless transmission includes upload to cloud based servers, email to a selected address or even being sent directly to a printer, e.g., through a service such as Airprint.


The present invention is also directed to a solution to the problem of the inability with present medicament injection systems to keep track of doses that have been administered. To that end, a method of tracking usage of a medicament by a patient through a pen, where the medicament is administered from the pen in a plurality of boluses over time, is provided. In this method, information is recorded about the medicament administration and the information is stored on a companion device. In these embodiments, the information comprises the quantity and time of each administered bolus of the medicament.


The pen and companion device are used by taking one or more boluses with the pen, the pen automatically storing information associated with each bolus including at a minimum the amount of the bolus and the time at which the bolus was delivered or method to determine the time and transmitting that information at some time to a companion device. In one embodiment of the invention the medicament to be infused is insulin.


The companion device to which the information can be transmitted is either a mobile electronic device, such as a smartphone or iPod touch, a tablet, a laptop, a non-mobile electronic device (for example a communication gateway such as a Qualcomm 2Net hub, computer or other) or could also be the cloud (internet based servers). The transmission could occur through any wireless protocol now known or later discovered. Examples include Bluetooth, Bluetooth low energy, Wi-Fi, zigbee or any other appropriate wireless protocol.


In addition to the dose information uploaded from the pen, in some embodiments additional dose information is entered into the companion device manually. This is to, for example, facilitate dose tracking from devices other than the pen, or when the pen is not communicating (dead battery, broken processor) or when the pen is out of range. In the case where the companion device is the cloud, a web based portal could be provided to allow entry of information.


This dose information can then be displayed to the patient, physician or other interested party. In some embodiments, this display is on the screen of the companion device or through generation and transmission of a report. The transmission of the report could be email, or direct transfer to the cloud, or direct printing or any other method of communicating the information from the device to a method of display to a person. In order to transmit the information, a contact list on the companion device may be used to select a person, address or other destination for the transmitted information to be sent to.


In various embodiments, the pen and companion device are used to generate dose recommendations for the patient. In diabetes specifically, the dose is commonly based on carbohydrates to be eaten, current blood sugar, and current insulin on board. Any or all of this information could be entered into the companion device and the device would generate a dose recommendation that the user could then take using the pen. In some embodiments, the dose recommendation is transmitted to the pen for display or injection. In other embodiments, the patient manually receives the dose recommendation from the companion device and enter it into the pen.


Because dose recommendations are based, in part, on current insulin on board, if the companion device is unaware of recent doses then the recommendation could be wrong. For that reason, in some embodiments the dose calculator does not offer a dose recommendation unless communications with the pen have recently occurred. This will ensure that the insulin on board information is up to date. Once the dose recommendation has been generated it can either be entered into the pen and dosed, or it can be viewed remotely by a third party. The dose could then be remotely approved by the third party. In some aspects, the approval allows the companion device to display the dose suggestion, and/or allow the dose suggestion to be transmitted to the pen device and/or unlock the pen device to allow injection of the dose.


Preferred embodiments are described in the following examples. Other embodiments within the scope of the claims herein will be apparent to one skilled in the art from consideration of the specification or practice of the invention as disclosed herein. It is intended that the specification, together with the examples, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims, which follow the examples.


It is intended that the specification, together with the drawings, be considered exemplary only, with the scope and spirit of the invention being indicated by the claims, which follow the drawings.


REFERENCES



  • US Patent Application Publication 2012/0072236

  • US Patent Application Publication 2006/0173417

  • US Patent Application Publication 2011/0313349

  • US Patent Application Publication 2011/0275986

  • US Patent Application Publication 2005/0192494

  • US Patent Application Publication 2003/0065536

  • US Patent Application Publication 2005/0038674

  • US Patent Application Publication 2005/0049179

  • US Patent Application Publication 2007/0239486

  • US Patent Application Publication 2008/0162192

  • US Patent Application Publication 2008/0201169

  • US Patent Application Publication 2008/0235053

  • US Patent Application Publication 2008/0234663

  • U.S. Pat. No. 5,925,021

  • U.S. Pat. No. 6,817,986

  • U.S. Pat. No. 4,950,216

  • U.S. Pat. No. 5,279,586



In view of the above, it will be seen that several objectives of the invention are achieved and other advantages attained.


As various changes could be made in the above methods and compositions without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.


All references cited in this specification are hereby incorporated by reference. The discussion of the references herein is intended merely to summarize the assertions made by the authors and no admission is made that any reference constitutes prior art. Applicants reserve the right to challenge the accuracy and pertinence of the cited references.

Claims
  • 1. A method of administering insulin to a patient with a pen, wherein the pen includes a vial of insulin, a dispensing mechanism capable of dispensing the insulin, a sensor capable of determining that the pen is being used and detecting the size of the dose being delivered, a processor capable of processing dose information, a power source that powers the processor, a memory capable of storing dose information, and a wireless transmitter capable of communicating with a separate companion device, the method comprising: (a) determining a blood glucose level of the patient before an administration of insulin via the pen to define a determined blood glucose level;(b) determining a rate at which the blood glucose level of the patient is rising or falling before an administration of insulin to define a determined blood glucose trend, wherein the determined blood glucose trend is derived from a continuous blood glucose monitor that continuously monitors the blood glucose level of the patient;(c) based on the determined blood glucose level of step (a) and the determined blood glucose trend of step (b), automatically calculating, via at least one of the processor of the pen or the separate companion device in wireless communication with the pen, a recommended dose of insulin to be administered to the patient;(d) visually presenting to the patient, via at least one of a display on the pen or a display on the companion device, the recommended dose of insulin to be administered to the patient; and(e) administering insulin to the patient via the pen in an amount equal to the recommended dose of insulin visually presented to the patient in step (d).
  • 2. The method of claim 1, wherein the method comprises identifying a pattern of the patient's use of the pen and generating notifications if deviations occur from the pattern.
  • 3. The method of claim 1, wherein the companion device is a mobile electronic device.
  • 4. The method of claim 1, wherein information about the administered insulin is entered into the companion device automatically or manually.
  • 5. The method of claim 1 wherein the method comprises, prior to administering the insulin to the patient, receiving approval for insulin administration by the pen from a remote third party.
  • 6. The method of claim 1, wherein the display on the pen is capable of displaying information recorded or calculated on the companion device and transmitted to the pen.
  • 7. The method of claim 1, wherein the companion device generates a report of the information recorded or calculated on the companion device, wherein the report can be electronically transferred, printed, emailed to a specified address, and/or uploaded to a remote server.
  • 8. The method of claim 7, wherein the companion device has a contact list to select a contact for transmittal of the report.
  • 9. The method of claim 1, where information about the administered insulin is viewable in real time remotely by a second companion device via sharing of data over a server.
  • 10. The method of claim 1, wherein the method comprises determining an amount of insulin on board of the patient before the administration of insulin to define an insulin on board determination, wherein the calculation of step (c) includes the insulin on board determination in addition to the determined blood glucose level of step (a) and the determined blood glucose trend of step (b).
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a 35 U.S.C. § 317 National Stage application of PCT Application No. PCT/US2014/056336, filed on Sep. 18, 2014, which further claims the benefits and priority to U.S. Provisional Application No. 61/883,163 filed Sep. 26, 2013. The entire disclosures of the above applications are incorporated by reference in their entirety as part of this application.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/056336 9/18/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/047870 4/2/2015 WO A
US Referenced Citations (141)
Number Name Date Kind
4498904 Turner et al. Feb 1985 A
4515584 Abe et al. May 1985 A
4950216 Weder Aug 1990 A
4973318 Holm et al. Nov 1990 A
5279586 Balkwill Jan 1994 A
5626566 Petersen et al. May 1997 A
5681285 Ford et al. Oct 1997 A
5925021 Castellano et al. Jul 1999 A
5984900 Mikkelsen Nov 1999 A
6004297 Steenfeldt-Jensen et al. Dec 1999 A
6042571 Hjertman et al. Mar 2000 A
6235004 Steenfeldt-Jensen et al. May 2001 B1
6302855 Lav et al. Oct 2001 B1
6482185 Hartmann Nov 2002 B1
6817986 Slate et al. Nov 2004 B2
7591801 Brauker et al. Sep 2009 B2
7905833 Brister et al. Mar 2011 B2
7955303 Burren et al. Jun 2011 B2
7976492 Brauker et al. Jul 2011 B2
8221356 Enggaard et al. Jul 2012 B2
8229535 Mensinger et al. Jul 2012 B2
8231531 Brister et al. Jul 2012 B2
RE43834 Steenfeldt-Jensen et al. Nov 2012 E
8460231 Brauker et al. Jun 2013 B2
8565848 Brister et al. Oct 2013 B2
8591455 Mensinger et al. Nov 2013 B2
8663109 Brister et al. Mar 2014 B2
8721585 Mensinger et al. May 2014 B2
8750955 Mensinger et al. Jun 2014 B2
8808228 Brister et al. Aug 2014 B2
8882741 Brauker et al. Nov 2014 B2
8920401 Brauker et al. Dec 2014 B2
8926585 Brauker et al. Jan 2015 B2
9020572 Mensinger et al. Apr 2015 B2
9050413 Brauker et al. Jun 2015 B2
9143569 Mensinger et al. Sep 2015 B2
9155843 Brauker et al. Oct 2015 B2
9446194 Kamath et al. Sep 2016 B2
9672328 Saint Jun 2017 B2
9775543 Brister et al. Oct 2017 B2
9937293 Brauker et al. Apr 2018 B2
9996668 Reihman et al. Jun 2018 B2
10169539 Reihman et al. Jan 2019 B2
10278580 Brister et al. May 2019 B2
20020096543 Juselius Jul 2002 A1
20030065536 Hansen et al. Apr 2003 A1
20040039255 Simonsen et al. Feb 2004 A1
20050038674 Braig et al. Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050182358 Veit Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20060036144 Brister et al. Feb 2006 A1
20060173417 Rosen et al. Aug 2006 A1
20070021715 Kohlbrenner et al. Jan 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070173708 Dobbles et al. Jul 2007 A9
20070186923 Poutiatine et al. Aug 2007 A1
20070239486 Gordon Oct 2007 A1
20080162192 Vonk et al. Jul 2008 A1
20080188813 Miller et al. Aug 2008 A1
20080201169 Galasso et al. Aug 2008 A1
20080234663 Yodfat et al. Sep 2008 A1
20080235053 Ray et al. Sep 2008 A1
20080262469 Brister et al. Oct 2008 A1
20090036771 Fago et al. Feb 2009 A1
20090048561 Burren et al. Feb 2009 A1
20090069742 Larsen Mar 2009 A1
20090163793 Koehler Jun 2009 A1
20090209938 Aalto-Setala Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100081993 O'Connor Apr 2010 A1
20100168661 Veit Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100261987 Kamath et al. Oct 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110009727 Mensinger et al. Jan 2011 A1
20110184343 Veit Jul 2011 A1
20110264033 Jensen et al. Oct 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110275986 Bashan et al. Nov 2011 A1
20110313349 Krulevitch Dec 2011 A1
20110313350 Krulevitch et al. Dec 2011 A1
20120072236 Atkin Mar 2012 A1
20120186581 Brauker et al. Jul 2012 A1
20120190953 Brauker et al. Jul 2012 A1
20120191063 Brauker et al. Jul 2012 A1
20120215201 Brauker et al. Aug 2012 A1
20120220979 Brauker et al. Aug 2012 A1
20120238852 Brauker et al. Sep 2012 A1
20120296311 Brauker et al. Nov 2012 A1
20130035575 Mayou et al. Feb 2013 A1
20130035865 Mayou et al. Feb 2013 A1
20130035871 Mayou et al. Feb 2013 A1
20130171938 Mears et al. Jul 2013 A1
20130184996 Zivitz et al. Jul 2013 A1
20130197445 Schabbach et al. Aug 2013 A1
20130197479 Butler Aug 2013 A1
20130211248 Cowan et al. Aug 2013 A1
20130291116 Homer Oct 2013 A1
20140012117 Mensinger et al. Jan 2014 A1
20140012118 Mensinger et al. Jan 2014 A1
20140012510 Mensinger et al. Jan 2014 A1
20140012511 Mensinger et al. Jan 2014 A1
20140114158 Brister et al. Apr 2014 A1
20140114161 Kamath et al. Apr 2014 A1
20140257065 Brister et al. Sep 2014 A1
20140276531 Walsh Sep 2014 A1
20140288494 Brister et al. Sep 2014 A1
20150351683 Brauker et al. Dec 2015 A1
20160012205 Saint Jan 2016 A1
20160030683 Taylor Feb 2016 A1
20160066843 Mensinger et al. Mar 2016 A1
20160081632 Kamath et al. Mar 2016 A1
20160101232 Kamath et al. Apr 2016 A1
20170068799 Mensinger Mar 2017 A1
20170124272 Reihman et al. May 2017 A1
20170124275 Reihman et al. May 2017 A1
20170124350 Reihman et al. May 2017 A1
20170131993 Salameh et al. May 2017 A1
20170132120 Salameh et al. May 2017 A1
20170185283 Bhavaraju et al. Jun 2017 A1
20170185284 Bhavaraju et al. Jun 2017 A1
20170270276 Saint et al. Sep 2017 A1
20170286194 Morris et al. Oct 2017 A1
20170286614 Morris et al. Oct 2017 A1
20170366617 Mensinger et al. Dec 2017 A1
20170367627 Brister et al. Dec 2017 A1
20180185587 Brauker et al. Jul 2018 A1
20180303417 Mensinger et al. Oct 2018 A1
20180353698 Saint et al. Dec 2018 A1
20190015020 Brister et al. Jan 2019 A1
20190035500 Saint et al. Jan 2019 A1
20190125224 Kamath et al. May 2019 A1
20190132801 Kamath et al. May 2019 A1
20190173885 Kamath et al. Jun 2019 A1
Foreign Referenced Citations (9)
Number Date Country
0298067 Apr 1989 EP
513128 Nov 1992 EP
927057 Jul 1999 EP
2572740 Mar 2013 EP
9638190 Dec 1996 WO
2010052275 May 2010 WO
2011041007 Apr 2011 WO
2013053695 Apr 2013 WO
2014128157 Aug 2014 WO
Non-Patent Literature Citations (4)
Entry
Copenheaver, B. R., Authorized Officer, ISA/U.S. International Search Report and Written Opinion, International Application No. , dated Dec. 31, 2014, 10 pages.
Young, Lee W., ISA/US, Invitation to Pay Additional Fees and Partial Search Report, International Application No. PCT/US15/40069, dated Oct. 1, 2015, 2 pages.
Young, Lee W., ISA/U.S. International Search Report, International Application No. PCT/US15/40069, dated Dec. 22, 2015, 13 pages.
Extended European Search Report for European Patent Application No. 14849422.2, dated May 4, 2017, 11 pages.
Related Publications (1)
Number Date Country
20170068799 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
61883163 Sep 2013 US