The present invention relates to the use of unlicensed radio access networks with cellular communication systems.
Mobile communication systems such as GSM, UTMS or CDMA2000 typically consist of a core network portion and a plurality of base stations connected to the core network portion. Each base station is assigned a specific coverage area, the size of which is determined by the power of the base station, the number of likely users in the area and the terrain in which it is located. A mobile station located within the coverage area of a base station is able to establish a radio connection with the base station using a predetermined radio frequency determined by the appropriate licensing authority and through this communicate with other users of the mobile communication network and of other fixed or mobile networks connected thereto.
Unlicensed-radio access networks provide additional access points to cellular mobile communication systems. These access networks typically comprise an access controller connected to a node of the core network of the cellular mobile communication systems over a conventional network interface (e.g. the A-interface or Gb interface for a GSM network). When viewed from the core network portion, this access controller appears very much like a base station subsystem of a conventional access network. The access controller is connected to a plurality of low-power unlicensed radio transceivers, or access points, each capable of supporting unlicensed radio connections with mobile stations MS. Suitable unlicensed-radio formats include digital enhanced cordless telecommunications (DECT), wireless LAN and Bluetooth. An adapted mobile handset capable of operating over both the standard air interface (e.g. the Um interface) and the unlicensed-radio interface means that the subscriber requires only one phone for all environments. The access links are preferably connected to the access controller via a broadband packet-switched network. Ideally, the access network exploits an already existing broadband network having suitable unlicensed radio access points typically provided to enable a subscriber to access the Internet. A mobile station capable of setting up an unlicensed radio link with an access point can then establish a connection with the access controller via the broadband network. An unlicensed radio access network of this kind is described in European patent application No. 00 125 076.0.
The access points are low power units with a resultant low range and small coverage area. They are intended to be easily installed via a connection to the broadband and if necessary relocated to another point on the same or a connecting broadband network. This flexibility means that access points connected to the same access controller may be positioned at widely spaced locations. A single access controller may thus control access points having neighbouring public mobile network base stations in many different location or routing areas. This complicates the interaction between the unlicensed radio access network and public licensed mobile network since handover requires that the identity of cells be defined in all neighbouring cells. The configuration required in both the public licensed mobile network and the unlicensed radio access network when installing or modifying the unlicensed radio access network is thus considerable. This naturally limits the scale of the unlicensed radio access network despite the ease of installation, which in turn limits the efficiency with which the access controllers can be used.
It is thus a object of the present invention to improve the efficiency of use of the access controller of an unlicensed radio access network.
This and further objects are achieved in an unlicensed radio access network controller and a mobile communications network as defined in the appended claims.
Specifically, an unlicensed radio access network controller is proposed that is adapted to communicate with the core network portion of at least one public licensed mobile communication network. It is connected to a broadband packet-switched network and is adapted to exchange messages with mobile stations communicating via an unlicensed radio interface with access points that are also connected to the broadband packet-switched network. The access controller is furthermore adapted to selectively communicate with a plurality of mobile service switching nodes within the core network portion and comprises a selection module arranged to select an individual one of the plurality of nodes for communicating with a mobile station via said access network controller.
By providing a connection with several mobile service switching nodes (MSCs in the GSM standard) for routing traffic to and from mobile station connected to the unlicensed radio access network the access controller can better distribute traffic over the core network or networks.
In a further advantageous embodiment of the invention, the selection module is adapted to store information relating to the location and/or identity of a mobile station and to select one of the plurality of core network nodes as a function of the mobile station information.
In this way the efficiency of the access network is still further improved, as the access network is able to serve a large number of access points distributed over several location or routing areas defined in the public licensed mobile network and ensure that traffic to and from mobile stations connected to these access points is routed to the most appropriate switching node in the public licensed mobile network core.
By permitting the selection module to use information identifying the mobile station as a selection criteria either in addition to or instead of the location information, it becomes possible to use the unlicensed radio access network with not just one but several public licensed mobile networks, with a core network node being selected that corresponds to the mobile operator identified in the mobile station identification. In this way the efficiency of the access controller is still further improved. The modification of the access network is also greatly facilitated.
Further objects and advantages of the present invention will become apparent from the following description of the preferred embodiments that are given by way of example with reference to the accompanying drawings. In the figures:
The access portion essentially consists of base station subsystems BSS 10, one of which is illustrated in
Turning now to
The Bluetooth standard specifies a two-way digital radio link for short-range connections between different devices. Devices are equipped with a transceiver that transmits and receives in a frequency band around 2.45 GHz. This band is available globally with some variation of bandwidth depending on the country. In addition to data, up to three voice channels are available. Each device has a unique 48-bit address from the IEEE 802 standard. Built-in encryption and verification is also available.
The access network portion 30 is accessed via access points AP 301 that are adapted to communicate across the Bluetooth interface. Only one access point AP 301 is illustrated in
All communication via the access points AP 301 is controlled by an access controller AC 303. The access controller AC 303 provides the connection between the core network 20 and mobile station 1. The joint function of the access point AP 301 and the access controller AC 303 emulates the operation of the BSS 10 towards the core network 20. In other words, when viewed from the nodes of the core network 20, the access network portion 30 constituted by the access points AP 301 and the access controller AC 303 looks like a conventional access network portion 10.
The interface between the access point AP 301 and the access controller AC 303 is provided by a packet-switched broadband network, which may be a fixed network. The access point 301 is intended to be a small device that a subscriber can purchase and install in a desired location such as the home or an office environment to obtain a fixed access to the mobile network. However, access points 301 could also be installed by operators in traffic hotspots. In order to reduce the installation costs on the part of the operator, the interface between the access point 301 and the access controller 303 preferably exploits a connection provided by an already existing network 302. Suitable networks might include those based on ADSL, Ethernet, LMDS, or the like. Home connections to such networks are increasingly available to subscribers while access points to such networks are becoming widespread in public and commercial buildings. Although not shown in
The access point AP 301 may serve as a dedicated access point to the unlicensed-radio access network. In this case the access point AP 301 is capable of communicating independently with the mobile station 10 over the unlicensed-radio interface X or with the access controller 303 over the broadband network interface 302. The access point AP 301 utilises the standard protocols and functions to ascertain to which access controller AC 303 it should connect, and also to establish a connection and register with this access controller AC 303.
In an alternative embodiment, the access point 301 serves as an essentially transparent access point when viewed both from the access controller 303 and the mobile station 1. In other words, this access point relays all information at the IP level and above between the mobile station 1 and the access controller 303. It simply effects the conversion between the OSI reference model layer 1 and 2 unlicensed-radio and terrestrial access layer services. Accordingly, the mobile station 1 establishes a connection with the access controller 303 without recognising the access point as a node in the connection. Similarly the access controller 303 could establish a connection with the mobile station 1 directly.
The link between the mobile station MS 1 and the access controller AC 303 over the broadband IP network 302 is always open, so that this connection is always available without the need for reserving a channel. Specifically, a transport protocol is utilised that maintains a connection state between a mobile station MS 1 and the access controller AC 303. One suitable transport protocol is the Transmission Control Protocol (TCP), however, other protocols such as the User Datagram Protocol (UDP) or the Signalling Control Transfer Protocol could also be used. While the network 302 is preferably an IP-based network, ATM-based networks could also be used. In particular when DSL technologies are used in this network, they could be used directly on top of the ATM layer, since they are based on ATM. Naturally, an ATM based network could also be used to transport IP, serving as a base layer.
The applications that run on the mobile station MS 1 on top of the public mobile network radio interfaces also run on top of Bluetooth radio between the mobile station 1 and the access point AP 301 and over IP to the access controller AC 303.
The access point AP 301 is installed by plugging it in to a port of a suitable modem, such as an ADSL or CATV modem, to access the fixed network 302. Alternatively, the access point AP 301 could be integrated in such a modem. The port is in contact with an intranet that is either bridged or routed on the IP level.
As mentioned above, the access controller AC 303 provides the interface with the core network nodes. However, in accordance with the present invention the access controller AC 303 is not connected to a single mobile services switching center MSC 202 and GPRS switching node SGSN 203, but rather is connected to a plurality of each of these nodes. In
The AC selection module 3031 holds a database of information relating to all MS connected to unlicensed radio access network and uses this information to select the most suitable core network node. This information relates to the location of the mobile station MS 1.
Since the coverage areas of access points AP 301 will in most cases be entered through a public licensed network coverage cell—indeed in many cases, the cell 304 defined by an access point AP will be located within one or more public licensed network cells 104—this location information preferably identifies the last public licensed network cell the mobile station MS 1 was registered in. Cells in the GSM cellular system are defined by a cell identifier or Cell Global Identifier CGI. This identifier contains a mobile country code MCC, a mobile network code MNC, a location area code LAC which identifies the location area and a cell identifier, which is unique to the cell. It is the location area identified that defines a single mobile services switching center MSC 202. Similar information is used to identify cells in the packet service network. In this case the identifier includes a routing area code, which is used to identify a single GPRS service node SGSN 203. The selection module 3031 thus holds tables mapping location area information with mobile services switching centers MSC 202 and the routing area information with GPRS service nodes SGSN 203. The access controller 303 thus receives the relevant location area information or routing area information from the mobile station and compares this with the tables held in the selection module 3031 to determine with which core network node 202; 203 a connection should be established for this mobile station.
For those access points AP 301 that are not located within or adjacent a public licensed network cell 104, the identity and location of the access point may be used to select the appropriate core network node. In this case, the database should contain information as to whether GSM coverage is available at the location of the access point AP 301. This information could be combined with the identification and location of the access point AP 301.
Whilst the unlicensed radio access network illustrated in
At event 2, the mobile station sends a connection request to the access sdxcontroller AC. In response, the access controller AC requests location information at event 3. This information includes the last GSM-CGI the mobile station was connected to or a list of the previous neighbouring GSM-CGIs and may also include the access point identifier and possibly also the International Mobile Subscriber Identity of the mobile station. The last two items of information may be communicated to the access controller in other messages and for other reasons. In this case, the access controller need simply supply this information to the selection module 3031 to be used in the selection algorithm. The requested information is transmitted by the mobile station at event 4. At event 5, the selection module uses the information supplied to select the core network node 202 or 203 that is best located to handle the transaction initiated by the mobile station MS. The connection with the core network is then established at event 6. In an alternative procedure, the mobile station MS 1 could provide the various pieces of location information, i.e. a list of GSM-CGIs, the AP-ID and the IMSI unsolicited at event 2. In this case events 3 and 4 in
This signalling diagram represents the case when the access point AP 301 is a transparent access point as discussed above. It will be understood by those skilled in the art that if the access point AP 301 were a dedicated access point, the signalling prior to establishing a connection would be carried out in two stages, the first being between the mobile station MS and access point AP and the second between the access point and the access controller. Furthermore, rather than the mobile station interrogating the access point for its access point identifier, this information would be obtained through an exchange of messages between the access controller AC and the access point AP when the access point initially connects to the unlicensed radio access network or on being rebooted.
Since the mobile station MS 1 is mobile, its location, and consequently the access point AP 103 through which it is connected to the unlicensed radio access network may change. This is signalled to the access controller AC 303 by the mobile station MS 1 using an information update message. Such a message will normally include a new AP-ID corresponding to the new access point AP 103, however, it may alternatively contain GSM cell identification information, such as the GSM-CGI if the mobile station MS 1 is actively scanning on GSM radio also. Any change in the registered mobile station location information may result in the access controller 303, or rather its selection module 3031, directing all further transactions to and from this mobile station to a different core network node 202, 203.
As this arrangement means that any mobile initiated transaction is automatically routed via the most appropriate core network node 202 or 203, handover between the unlicensed radio access network and a public licensed mobile network is greatly facilitated. In particular, the amount of configuration required in the public licensed mobile core network is minimised. The identity of the unlicensed radio access network must of course be defined in each of the core network nodes connected to the access controller AC.
Whilst the arrangement according to the invention has been described with specific reference to the GSM standard, it will be understood by those skilled in the art that this arrangement is applicable to other cellular network systems, notably UTMS or CDMA2000 and will provide the same advantages.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/05158 | 5/13/2004 | WO | 11/10/2006 |