System for and method of purging/venting a brush arm bearing

Information

  • Patent Grant
  • 6500272
  • Patent Number
    6,500,272
  • Date Filed
    Monday, January 22, 2001
    24 years ago
  • Date Issued
    Tuesday, December 31, 2002
    22 years ago
Abstract
A purge/vent system (10) for and method of purging/venting a brush arm bearing. The purge/vent system includes a driven mechanism (12) and a support member (14) having a first cavity (48) for containing the driven mechanism. A gas supply system (24) is in fluid communication with the first cavity proximate the upper end (18) of the driven mechanism, and an evacuation system (26) is in fluid communication with the first cavity proximate the lower end (20) of the driven mechanism. In operation, the gas supply system supplies a gas to the first chamber and the evacuation system draws the gas from the first chamber. As the evacuation system draws the gas from the first chamber, the gas is drawn across and/or through the driven mechanism to keep the driven mechanism dry and/or remove foreign material from the first chamber.
Description




FIELD OF INVENTION




The present invention relates generally to the field of equipment maintenance. More particularly, the present invention is directed to a system for and method of purging/venting a rotational bearing of a semiconductor wafer-cleaning brush arm assembly to prevent foreign material from fouling the bearing.




BACKGROUND OF THE INVENTION




During the manufacturing of semiconductor devices, substrate wafers are subject to a number of processes that form multiple film layers upon one face of the wafer. These layers are made of one or more materials that, when arranged in a predetermined pattern, form parts of the microelectronic components of the devices. At various stages of wafer processing, the surface of the wafer must be polished to produce a uniformly smooth surface across the entire wafer. This polishing is typically accomplished by chemical mechanical polishing, a process that utilizes a chemical slurry in combination with a mechanical polisher to polish the wafer surface.




Immediately after polishing, the wafer is contaminated with the chemical slurry and other foreign material, such as particles removed from the surface of the wafer during polishing. Before the wafer can undergo further processing, e.g., deposition of another film layer, the wafer must be cleaned of the contaminants. Typically, the wafer is cleaned in a dedicated post-chemical mechanical polishing cleaning machine having a chamber for cleaning the backside of the wafer and a chamber for ultra-cleaning the processed surface of the wafer.




The processed surface cleaning chamber includes a rotating brush mounted on a brush arm. To clean the processed surface of the wafer, the wafer is mounted in a chuck within the cleaning chamber. The brush arm is then moved so that the rotating brush is brought into contact with the processed surface. The brush then makes several passes over the processed surface to remove the contaminants while de-ionized water is sprayed onto the wafer from a plurality of directions.




Generally, the brush arm comprises an elongate body having first and second ends spaced from one another. The rotating brush is located at the first end and a drive shaft for driving the rotating brush is located at the second end. The rotating brush is mounted in a first cavity at the first end of the brush arm via a rotational bearing. A drive belt extends between the drive shaft and the rotational bearing within a second cavity. The first and second cavities are prone to invasion by water and other foreign material from the ambient environment surrounding the brush arm through seals at the drive shaft and the rotational bearing. The first and second cavities are also prone to condensation problems from moist air trapped within them.




Moisture from water invasion and condensation frequently damages the bearings and may cause foreign material, such as particles from worn bearings, to be expelled out of the brush arm, contaminating the cleaning chamber. To avoid detrimental damage to the bearings and contamination of the cleaning chamber, the brush arm is typically changed relatively frequently. Frequent changing of the brush arm, however, causes extensive tool downtime, increases the chance of contaminating the cleaning chambers and increases tool operation and maintenance costs.




SUMMARY OF THE INVENTION




In one aspect, the present invention is directed to a system for purging/venting a driven mechanism with a gas, wherein the driven mechanism has a first portion and a second portion spaced from the first portion. The system comprises a support member for supporting the driven mechanism and defining a first cavity for containing the driven mechanism. The support member has a gas supply port for supplying the gas to the first cavity proximate the first portion of the driven mechanism and an evacuation port for removing the gas from the first cavity proximate the second portion of the driven mechanism. The support member is configured so that the gas does not drive the driven mechanism.




In another aspect, the present invention is directed to a method of purging/venting a driven mechanism located within a cavity of a support member, wherein the driven mechanism having a first portion and a second portion spaced from the first portion. The method comprises the steps of supplying a gas to the cavity proximate the first portion of the driven mechanism and evacuating the gas from the cavity proximate the second portion of the driven mechanism so that said gas does not drive the driven mechanism.











BRIEF DESCRIPTION OF THE DRAWING




For the purpose of illustrating the invention, the drawings show a form of the invention that is presently preferred. However, it should be understood that the present invention is not limited to the precise arrangements and instrumentalities shown in the drawings.





FIG. 1

is a schematic view of a purge/vent system according to the present invention.





FIG. 2

is an isometric view of one embodiment of a brush arm according to the present invention usable with the purge/vent system of FIG.


1


.





FIG. 3

is an enlarged cross-sectional view of the brush arm as taken along line


3





3


of FIG.


2


.











DETAILED DESCRIPTION OF THE INVENTION




Referring now to the drawings, wherein like numerals indicate like elements,

FIG. 1

shows in accordance with the present invention a purge/vent system, which is indicated generally by the numeral


10


. Purge/vent system


10


includes a driven mechanism


12


engaged with and supported by a support member


14


. Purge/vent system


10


supplies a gas (the direction of gas flow being indicated by arrows


16


) adjacent the upper end


18


of driven mechanism


12


and draws the gas away from the driven mechanism adjacent the lower end


20


of the driven mechanism. In this manner, driven mechanism


12


may be kept free of foreign material, such as moisture and other contaminants from the ambient environment


22


surrounding support member


14


, by evacuating foreign material from inside the support member and particularly from in and/or around the driven mechanism. In addition, depending upon the application, purge/vent system


10


can prevent condensation within support member


14


by supplying a gas, such as air, at a predetermined temperature, that is above the temperature at which condensation would otherwise occur.




In the embodiment illustrated, purge/vent system


10


is adapted for use with a semiconductor wafer cleaning machine (not shown), such as post-chemical mechanical polishing cleaner model no. SP-W813-AS, available from Dainippon Screen Manufacturing Company, Ltd., Kyoto, Japan. Accordingly, driven mechanism


12


shown is a rotational bearing for supporting a rotatable brush (not shown) and support member


14


shown is a brush arm. However, purge/vent system


10


of the present invention may be used with other types of equipment, such as drill presses, circular and reciprocating saws, among others, having driven mechanisms that may be subject to contaminants from the ambient operating environment surrounding the drive mechanisms and/or contaminants from within the support member. In this connection, driven mechanism


12


may be a rotating bearing, an electric motor or a reciprocating mechanism, among others, and support member


14


may be any member capable of supporting and at least partially housing the driven mechanism, such as a motor and/or bearing housing or a tool support armature.




Purge/vent system


10


further includes a gas supply system


24


and an evacuation system


26


. Gas supply system


24


comprises a gas source


28


, such as a compressor or a pressurized storage tank, among others, for supplying gas to the driven mechanism


12


. Preferably, the gas is air that has been dried to remove substantially all moisture in the air. However, another gas, e.g., another drying gas such as nitrogen or a chlorofluorocarbon, among others, may be used. The gas flows from gas source


28


to support member


14


through a supply conduit


30


. The pressure and flow of gas may be controlled by a regulator


32


located in supply conduit


30


, which may be any suitable conduit, such as plastic or metal tubing. One skilled in the art will recognize that regulator


32


may be part of gas source


28


or may be located at any location between the gas source and driven mechanism


12


.




Evacuation system


26


includes a vacuum source


34


, such as a vacuum pump or a chamber having an internal pressure lower than the pressure of the gas at driven mechanism


12


, among others, for drawing the gas supplied from gas source


28


across and/or through the driven mechanism. The gas flows from support member


14


to vacuum source


34


through a vacuum conduit


36


, which may be any suitable conduit, such as plastic or metal tubing. Preferably, the tubing is made of a translucent material, such a polycarbonate plastic, to aid visual inspection of the contents of the gas evacuated from support member


14


. Evacuation system


26


may further include a regulator


38


located in vacuum conduit


36


for regulating the pressure and flow of the gas through the evacuation system. One skilled in the art will recognize that regulator


38


may be part of vacuum source


34


or may be located at any location between driven mechanism


12


and the vacuum source.




Evacuation system


26


preferably includes a flow meter


40


for measuring the gas flow through purge/vent system


10


. One skilled in the art will recognize that flow meter


40


may be any flow meter suitable for measuring the anticipated flow through purge/vent system


10


. In a preferred embodiment, evacuation system


26


also includes a monitoring device


42


for monitoring the contents of the gas drawn away from driven mechanism


12


by the evacuation system to determine whether or not any foreign material is present in the evacuated gas. In one embodiment, monitoring device


42


is a glass trap that allows a human operator to visually inspect its contents for the presence of foreign material captured thereby. Supply conduit


30


may optionally include a vent


44


for venting excess gas not drawn away from driven mechanism


12


by evacuation system


26


. If the gas supplied by gas source


28


is air, vent


44


may vent the excess air to ambient environment


22


. Otherwise, the excess gas may be captured, e.g., in a storage tank (not shown).




In a preferred embodiment, regulator


32


of gas supply system


24


and regulator


38


of evacuation system


26


are adjusted so that the pressure within support member


14


is generally neutral or slightly negative, i.e., the pressure within the support member is generally equal to or less than the pressure of ambient environment


22


surrounding the support member. When the pressure is neutral, water and/or other contaminants generally will not infiltrate into support member


14


from ambient environment


22


, and, conversely, foreign material inside the support member generally will not be forced into the ambient environment. Similarly, a slight negative pressure relative to the pressure in ambient environment


22


will prevent foreign material present inside support member


14


from being forced into the ambient environment. Although it is desirable to maintain a generally neutral or negative pressure within support member


14


, support member may contain a positive pressure relative to the pressure in ambient environment


22


.




If a positive pressure within support member


14


is desired, vacuum source


34


may be eliminated and replaced with a collection tank if the gas must be collected or may be vented to ambient environment


22


if air is used. If a negative pressure is desired and the gas used is ambient air, gas supply system


24


may be eliminated. One skilled in the art will recognize the various arrangements of gas supply system


24


and evacuation system


26


that may be made in accordance with the present invention depending upon the desired pressure within support member


14


.





FIGS. 2 and 3

show a particular embodiment of support member


14


that is presently preferred. An mentioned above, this embodiment is a brush arm of a wafer cleaning machine (not shown). Support member


14


comprises an elongate body


46


that forms a first cavity


48


and a second cavity


50


. Body


46


includes a lower member


52


and an upper member


54


that may be removably secured to the lower member, e.g., by threaded fasteners (not shown), for accessing first cavity


48


and second cavity


50


. However, one skilled in the art will recognize that upper member


54


may be secured to lower member


52


by any of a number of means, such as welding, adhesive bonding or clips, among others. Lower member


52


and upper member


54


may be made of any suitable material, such as metal, plastic or a combination of metal and plastic, among others.




First cavity


48


receives a driven mechanism (not shown), such as a rotational bearing for driving a rotatable tool (not shown), e.g., a rotatable brush. First cavity


48


generally comprises three generally cylindrical portions


56


A-C having diameters different from one another. First cavity


48


opens into second cavity


50


, which generally extends along the length of body


46


and contains, e.g., a drive belt (not shown) and a sheave (not shown) for driving driven mechanism


12


and thus the rotatable tool. Lower member


52


includes an aperture


57


that receives a drive shaft (not shown) for driving the driven mechanism


12


.




Support member


14


further includes a connection block


58


having a gas supply port and evacuation port


62


for connecting the support member to gas supply system


24


and evacuation system


26


of

FIG. 1

, respectively. Connection block


58


may be molded integrally with lower member


52


or may be formed separately and attached to the lower member by, e.g., welding, adhesive bonding or mechanical fasteners. In addition, connection block


58


may be located elsewhere on support member


14


or may be eliminated, in which case gas supply system


24


and evacuation system


26


may be connected, respectively, to a gas supply port located on body


46


upstream of the driven mechanism and an evacuation port located generally downstream of the driven mechanism.




Gas supply port


60


is in fluid communication with second cavity


50


via an aperture (not shown) in sidewall


64


of lower member


52


. Evacuation port


62


is in fluid communication with a vacuum conduit


66


formed by a generally C-shaped channel hermetically secured to lower member


52


, e.g., by welding. Vacuum conduit


66


is in fluid communication with first cavity


48


via an aperture


68


in lower member


52


. To aid the collection of foreign material within support member and to aid the flow of gas and any collected foreign material through first cavity


48


, which in operation would be substantially filled with a driven mechanism, a groove


70


is provided in a portion of second cavity


50


and in cylindrical portions


56


A,


56


B of the first cavity


48


.




In operation, gas, e.g., from gas supply system


24


of

FIG. 1

, flows into second cavity


50


through gas supply port


60


, and evacuation port


62


is in fluid communication with an evacuation system, such as evacuation system


26


of FIG.


1


. Evacuation system


26


draws the gas supplied via gas supply port


60


through second cavity


50


and through at least a portion of first cavity


48


, which contains a driven mechanism. Foreign material that may be present in second cavity


50


can flow into the portion of groove


70


within the second cavity, then into the portion of groove


70


within first cavity


48


and then out of the first cavity via aperture


68


. As evacuation system


26


evacuates the gas from first cavity


48


, the gas is drawn across and/or through the driven mechanism, keeping it dry and removing any foreign material that may be present within the first cavity. The portion of groove


70


at cylindrical portions


56


A,


56


B of first cavity


48


also aids the collection and removal of foreign material from the first cavity.




Although the structure and function of support member


14


have been described with respect to a particular brush arm embodiment, one skilled in the art will appreciate the numerous and diverse forms support member


14


may have, a few of which have been mentioned above.




While the present invention has been described in connection with a preferred embodiment, it will be understood that it is not so limited. On the contrary, it is intended to cover all alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined in the appended claims.



Claims
  • 1. A system for preventing foreign material formation on a rotational bearing with a gas, the rotational bearing having a first portion and a second portion spaced from the first portion, the system comprising:a. a support member for supporting the rotational bearing and defining a first cavity for containing the rotational bearing, said support member having: i. a gas supply port for supplying the gas to said first cavity proximate the first portion of the rotational bearing; and ii. an evacuation port for evacuating the gas from said first cavity proximate the second portion of the rotational bearing; b. wherein said support member is configured so that the gas does not drive the rotational bearing.
  • 2. The system according to claim 1, wherein said support member is a brush arm.
  • 3. The system according to claim 1, wherein said support member defines a second cavity in fluid communication with said first cavity, said gas supply port being in fluid communication with said second cavity and said evacuation port being in fluid communication with said first cavity.
  • 4. The system according to claim 1, further comprising a gas delivery system that includes a gas source and a gas supply conduit, said gas source in fluid communication with said gas supply port via said gas supply conduit.
  • 5. The system according to claim 4, wherein the gas delivery system further comprises a vent for venting excess gas from the gas delivery system.
  • 6. The system according to claim 4, further comprising an evacuation system that includes a vacuum source and a vacuum conduit, said vacuum source in fluid communication with said evacuation port via said vacuum conduit.
  • 7. The system according to claim 6, wherein said evacuation system further comprises a monitoring device for monitoring contents of the evacuated gas.
  • 8. The system according to claim 7, wherein said monitoring device is a trap that allows for visual inspection of foreign material trapped in said trap.
  • 9. The system according to claim 1, further comprising an evacuation system that includes a vacuum source and a vacuum conduit, said vacuum source in fluid communication with said evacuation port via said vacuum conduit.
  • 10. The system according to claim 9, wherein said evacuation system further comprises a regulator for regulating the pressure in said evacuation system.
  • 11. A cleaning system comprising:a. a support member defining a cavity, said support member for supporting a rotatable cleaning tool; b. a rotational bearing for allowing rotation of the cleaning tool, said rotational bearing disposed in said cavity and having a first portion and a second portion spaced from said first portion; c. a gas supply pot for supplying a gas to said cavity, said gas supply port in fluid communication with said cavity proximate said first portion of said rotational bearing; and d. an evacuation port for evacuating the gas from said cavity, said evacuation port in fluid communication with said cavity proximate said second portion of said rotational bearing; e. wherein said support member is configured so that the gas does not drive the rotatable cleaning tool.
  • 12. The cleaning system according to claim 11, further comprising an evacuation system external to said cavity and fluidly coupled to said evacuation port.
  • 13. The cleaning system according to claim 11, further comprising a monitoring device fluidly coupled to said evacuation port for monitoring contents of the gas evacuated from said cavity.
  • 14. The cleaning system according to claim 11, wherein the rotatable cleaning tool is a wafer cleaning brush.
  • 15. The cleaning system according to claim 11, further comprising a gas supply system external to said cavity and in fluid communication with said gas supply port.
  • 16. The cleaning system according to claim 11, wherein the gas comprises dry air.
  • 17. A method for preventing foreign material formation on a rotational bearing comprising the steps of:a. providing the rotational bearing located within a cavity of a support member, the rotational bearing having a first portion and a second portion spaced from the first portion; b. supplying a gas to the cavity proximate the first portion of the rotational bearing; and c. evacuating said gas from the cavity proximate the second portion of the rotational bearing in a manner such that said gas does not drive the rotational bearing; d. wherein foreign material is prevented from forming on the rotational bearing.
  • 18. The method according to claim 17, wherein said gas is supplied using a gas supply system and evacuated using an evacuation system and the support member has an exterior surface exposed to an ambient pressure, the method further comprising:e. adjusting at least one of said gas supply system and said evacuation system so that the gas in the cavity has a pressure no greater than said ambient pressure.
  • 19. The method according to claim 17, further comprising the step of monitoring the contents of said gas evacuated from said cavity for the presence of foreign material.
US Referenced Citations (14)
Number Name Date Kind
2269483 Replogle Jan 1942 A
2467652 Beede Apr 1949 A
2568466 Scott Sep 1951 A
4205412 Weber Jun 1980 A
4300261 Woodward et al. Nov 1981 A
5187972 DeFriez Feb 1993 A
5375291 Tateyama et al. Dec 1994 A
5487376 Yabe et al. Jan 1996 A
5577293 Meredith et al. Nov 1996 A
5634236 Darsey Jun 1997 A
5834642 Decain et al. Nov 1998 A
5866186 Bazan Feb 1999 A
5974868 Decain et al. Nov 1999 A
6090220 Kim et al. Jul 2000 A