The present invention relates generally to methods and means for improving the stability and safety of offshore exploration and production systems, and, in a particular, though non-limiting embodiment, to a system for and method of restraining a self-standing casing riser system deployed in conjunction with an adjustable buoyancy chamber, or a functional equivalent thereof.
Innumerable systems and methods have been employed in efforts to find and recover hydrocarbon reserves around the world. At first, such efforts were limited to land operations involving simple but effective drilling methods that satisfactorily recovered reserves from large, productive fields. As the number of known producing fields dwindled, however, it became necessary to search in ever more remote locales, and to move offshore, in the search for new resources. Eventually, sophisticated drilling systems and advanced signal processing techniques enabled oil and gas companies to search virtually anywhere in the world for recoverable hydrocarbons.
Initially, deepwater exploration and production efforts consisted of expensive, large scale drilling operations supported by tanker storage and transportation systems, due primarily to the fact that most offshore drilling sites are associated with difficult and hazardous sea conditions, and thus large scale operations provided the most stable and cost-effective manner in which to search for and recover hydrocarbon reserves. A major drawback to the large-scale paradigm, however, is that explorers and producers have little financial incentive to work smaller reserves, since potential financial recovery is generally offset by the lengthy delay between exploration and production (approximately 3 to 7 years) and the large capital investment required for conventional platforms and related drilling and production equipment. Moreover, complex regulatory controls and industry-wide risk aversion have led to standardization, leaving operators with few opportunities to significantly alter the prevailing paradigm. As a result, offshore drilling operations have traditionally been burdened with long delays between investment and profit, excessive cost overruns, and slow, inflexible recovery strategies dictated by the operational environment.
More recently, deepwater sites have been found in which much of the danger and instability present in such operations is avoided. For example, off the coast of Brazil, West Africa and Indonesia, potential drilling sites have been identified where surrounding seas and weather conditions are relatively mild and calm in comparison to other, more volatile sites such as the Gulf of Mexico and the North Sea. These recently discovered sites tend to have favorable producing characteristics, yield positive exploration success rates, and admit to production using simple drilling techniques similar to those employed in dry land or near-shore operations.
However, since lognormal distributions of recoverable reserves tend to be spread over a large number of small fields, each of which yield less than would normally be required in order to justify the expense of a conventional large-scale operation, these regions have to date been underexplored and underproduced relative to its potential. Consequently, many potentially productive smaller fields have already been discovered, but remain undeveloped due to economic considerations. In response, explorers and producers have adapted their technologies in an attempt to achieve greater profitability by downsizing the scale of operations and otherwise reducing expense, so that recovery from smaller fields makes more financial sense, and the delay between investment and profitability is reduced.
For example, in published Patent Application No. US 2001/0047869 A1 and a number of related pending applications and patents issued to Hopper et al., various methods of drilling deepwater wells are provided in which adjustments to the drilling system can be made so as to ensure a better recovery rate than would otherwise be possible with traditional fixed-well technologies. However, the Hopper system cannot be adjusted during completion, testing and production of the well, and is especially ineffective in instances where the well bore starts at a mud line in a vertical position. The Hopper system also fails to support a variety of different surface loads, and is therefore self-limiting with respect to the flexibility drillers desire during actual operations. The Hopper system also fails to contemplate any significant safety measures to protect the welfare of operating crews or the capital expenditure of investors.
In U.S. Pat. No. 4,223,737 to O'Reilly, a method is disclosed in which the problems associated with traditional, vertically oriented operations are addressed. The method of O'Reilly involves laying out a number of interconnected, horizontally disposed pipes in a string just above the sea floor (along with a blow out preventer and other necessary equipment), and then using a drive or a remote operated vehicle to force the string horizontally into the drilling medium. The O'Reilly system, however, is inflexible in that it fails to admit to practice while the well is being completed and tested. Moreover, the method fails to contemplate functionality during production and workover operations. As would therefore be expected, O'Reilly also fails to teach any systems or methods for improving crew safety or protecting operator investment during exploration and production. In short, the O'Reilly reference is helpful only during the initial stages of drilling a well, and would therefore not be looked to as a systemic solution for safely establishing and maintaining a deepwater exploration and production operation.
Other offshore operators have attempted to solve the problems associated with deepwater drilling by effectively “raising the floor” of an underwater well by disposing a submerged wellhead above a self-contained, rigid framework of pipe casing that is tensioned by means of a gas filled, buoyant chamber. Generally, this type of solution falls in the class of self-standing riser systems, since it typically includes a number of riser segments fixed in a rigid, cage-like structure likely to remain secure or else fail together as a integrated system. For example, as seen in prior U.S. Pat. No. 6,196,322 B1 to Magnussen, the Atlantis Deepwater Technology Holding Group has developed an artificial buoyant seabed (ABS) system, which is essentially a gas filled buoyancy chamber deployed in conjunction with one or more segments of pipe casing disposed at a depth of between 600 and 900 feet beneath the surface of a body of water. After the ABS wellhead is fitted with a blowout preventer during drilling, or with a production tree during production, buoyancy and tension are imparted by the ABS to a lower connecting member and all internal casings. The BOP and riser (during drilling) and production tree (during production), are supported by the lifting force of the buoyancy chamber. Offset of the wellhead is reasonably controlled by means of vertical tension resulting from the buoyancy of the ABS.
The Atlantis ABS system is relatively inefficient, however, in several practical respects. For example, the '322 Magnussen patent specifically limits deployment of the buoyancy chamber to environments where the influence of surface waves is effectively negligible, i.e., at a depth of more than about 500 feet beneath the surface. Those of ordinary skill in the art will appreciate that deployment at such depths can be an expensive and relatively risk-laden solution, given that installation and maintenance can only be carried out by deep sea divers or remotely operated vehicles, and the fact that a relatively extensive transport system must still be installed between the top of the buoyancy chamber and the bottom of an associated recovery vessel in order to initiate production from the well.
The Magnussen system also fails to contemplate multiple anchoring systems, even in instances where problematic drilling environments are likely to be encountered. Moreover, the system lacks any control means for controlling adjustment of either vertical tension or wellhead depth during production and workover operations, and expressly teaches away from the use of lateral stabilizers that could enable the wellhead to be deployed in shallower waters subject to stronger tidal and wave forces. The Magnussen disclosure also fails to contemplate any safety features that would protect the crew and equipment associated with an operation in the event of a sudden, unintended release of the fluid transport cage.
In published Patent Application US 2006/0042800 A1 to Millheim, et al., however, a system and method of establishing an offshore exploration and production system is disclosed in which a well casing is disposed in communication with an adjustable buoyancy chamber and a well hole bored into the floor of a body of water. A lower connecting member joins the well casing and the chamber, and an upper connecting member joins, the adjustable buoyancy chamber and a well terminal member. The chamber's adjustable buoyancy enables an operator to vary the height or depth of the well terminal member, and to vary the vertical tension imparted to drilling and production strings throughout exploration and production operations. Also disclosed is a system and method of adjusting the height or depth of a wellhead while associated vertical and lateral forces remain approximately constant. A variety of well isolation members, lateral stabilizers and anchoring means, as well as several methods of practicing the invention, are also disclosed. There is, however, little detailed discussion of safety features useful in the event of an unintended release of system components.
Thus, presently known offshore exploration and production systems, especially those relying on the so-called self-standing riser type configuration, can be susceptible to a variety of potentially catastrophic system failures that could lead to damage or destruction of the drilling platforms and surface vessels disposed overhead (e.g., a pontoon type drilling rig floating on the surface of the ocean and disposed in communication with the riser system).
For example, casing connections, wellhead connections, buoyancy chambers connected to the riser stack, etc., can all fail, thereby creating an unsafe condition in which buoyancy and tension forces are suddenly released from a submerged captured system toward the surface of the water. When such a release of forces occurs, the components of the system—for example, a buoyancy chamber disposed in communication with several thousand feet of casing riser—are released toward the surface and can impact the rig and/or associated surface vessels servicing an offshore well. For purposes of this disclosure, it should be noted that while many of the detailed embodiments described below relate specifically to a single riser system and its functional equivalents, those of ordinary skill in the art should appreciate that aspects of the present invention are applicable to virtually any type of subsurface exploration and production system insofar as they relate to features drawn to limiting and controlling the deleterious effects of system components suddenly and unexpectedly released from tension.
According to a first aspect of the invention, there is provided a method for restraining and, at least to some degree, controlling the unintended subsurface release of exploration and production riser systems, in which the method comprises the steps of disposing one or more means for anchoring a riser system to either the sea floor or an underwater wellhead system; and disposing a network of associated restraining members in communication with the anchoring means.
Also provided is a system for restraining and controlling the unintended subsurface release of a riser system, the system generally comprising one or more restraining elements disposed along the length of the riser stack at predetermined points along the sea floor or beneath the mud line.
Also disclosed is a system for and method of restraining and controlling the unintended subsurface release of a subsurface riser system, in which a receiving station having one or more means for absorbing or deflecting force carried by an unintentionally released system component is disposed in a fluid transport system.
As seen in the attached
For example, casing connections, wellhead connections, buoyancy chambers connected to a riser stack, etc., can all fail, thereby creating an unsafe condition in which buoyancy and tension forces are suddenly released from a submerged exploration or production system back toward the surface of the water. When such a release occurs, the components of the system—for example, a buoyancy chamber disposed in communication with several thousand feet of casing riser—are released toward the surface and can impact an associated rig or surface vessel servicing the well.
In practice, the floating unit 1 may comprise any number of vessels or structures used as surface stations for receiving hydrocarbons produced from offshore wells. In addition to a mobile offshore drilling unit (or “MODU”), some other examples of receiving station members include: ships or other sea vessels; temporary or permanent exploration and production structures such as rigs and the like; rig pontoons; tankers; a floating production, storage and offtake (“FPSO”) vessel; a floating production unit (“FPU”); and other representative receiving units as would be known to one of ordinary skill in the art.
It should be appreciated that upper riser 2 may comprise any number of structural or functional equivalents having a purpose of facilitating hydrocarbon transfer from casing riser stack 6 to the receiving station. For example, riser 2 may comprise flexible drill tubing, casing, a string of rigid pipe, etc., either contained within the interior of an outer pipe or sheath, or instead serving as a direct hydrocarbon transfer means. For purposes of this application, all such fluid communication means will generally be referred to as a “riser.”
Like upper riser 2, self-standing riser system 4 also facilitates connection of one or more wellheads to one or more subsurface wells, and/or to a riser stack, a buoyancy member, etc., as dictated by operational requirements. The riser system 4 can comprise any of a number of structural or functional equivalents having a purpose of facilitating the transfer of fluids from a well to a surface or near-surface receiving station, which in some embodiments is self-standing and disposed under essentially continuous buoyant tension. The riser stack is typically made up of one or more known fluid communication devices, for example, casing riser or another suitable connecting member, such as a tubular, a length of coiled tubing, or a conventional riser pipe assembly. The buoyancy member is typically submerged in the sea, and may comprise a buoyancy chamber located in an upper portion of the riser stack. The relative buoyancy of the buoyancy member applies tension to the riser stack, thereby establishing a submerged platform of sorts from which a wellhead, blowout preventer, riser stack, etc., connected to the receiving station member may be assembled or affixed.
In the alternative, or in combination, other points of failure may occur, such as, for example, failure at points 14 and/or 14′. As those of ordinary skill in the art will readily recognize, such failures can occur as a result of mechanical failure, material decomposition attributable to corrosion, etc., or in response to bending forces applied to casing stack 6. Lateral forces, such as those resulting from cross currents associated with particular water depths, can also cause bending or breakage, and may also cause lateral deviation or inclination of the angle at which the otherwise upwardly directed forces occur in practice. As seen, a riser 6′ so inclined or laterally deviated could impact a pontoon or a cross-brace, thereby creating an impact point 13′ and severely damaging the receiving station member 1′ and/or other floating units such as workboats or floating transmission lines.
As seen in the example embodiments of
Referring now to the specific, non-limiting embodiment of the invention depicted in
For example, one or more means for anchoring are illustrated by anchor points 100 through 109. In this particular embodiment, anchoring is disposed on the casing riser, buoyancy member, and bottom portions of the riser system 4. Anchor points 101 through 106 are shown in this instance as disposed on the riser stack 6 portion of the riser system 4. Anchor points 100 are disposed on the buoyancy device 5, and anchor points 107 are disposed on the wellhead member 7. Redundant or alternative anchoring may also be deployed on the sea floor, such as by connection to a template or a weighted mass, or into the sea floor or mud line using suction anchors, etc., as illustrated by anchor points 109. Additional or alternative anchoring may also be deployed on well casing member 8, as illustrated by anchor points 108.
Restraining members may be formed from any of several previously known components and materials, depending on the specific engineering, environmental, and weight bearing requirements dictated by the operational environment. Examples include, but are not necessarily limited to, chains, cable, rope, elastic cord, extension springs, and limited travel extension springs, etc. In any event, the various restraining members are attached between anchor points such that one end of a restraining member is attached to a first anchor point, while the other end of the restraining member is connected to a second anchor point. A plurality of restraining members 200 through 209 connects various portions of riser stack 6 from wellhead member 7 to buoyancy device 5, thereby affecting a network of restraining members tying points along the riser system together.
The aforementioned network of restraining members can be variably deployed in a variety of configurations. As shown in the example embodiment of
Continuing with reference to
In a still further embodiment,
In short, the modified riser system, once secured by one or more networks of restraining members, prevents the unintentional, projectile-like release of a buoyancy device and associated casing riser, thereby preventing release toward the surface and avoiding possible impact with a receiving station, or with an associated rig or proximately disposed sea vessel.
As seen in
In an alternate example, hydraulic springs 300 are disposed at an approximate angle of between thirty and forty-five degrees measured relative to the direction of likely riser impact. In this example, likely riser impact is approximately measured from a vertical location situated directly beneath the overhead floating production unit 1′, as the wellhead member 7 in this example is directly beneath overhead floating unit F. Hydraulic springs 300 are therefore disposed on the underside of overhead floating production unit 1′ at an angle of approximately thirty to forty-five degrees measured relative to the vertical, longitudinal axis of the subsurface riser stacks 2, 6. It should be appreciated, however, that a wellhead member 7 or an associated riser system 4 may also be laterally displaced from a receiving station member, and the direction of likely riser impact to a particular receiving station member may well originate from various other released system component ascension angles.
Still further means may be employed to reduce or eliminate upward, projectile-like forces in the event of a sudden, unintended riser system release. For example, a mechanical means for directly stabilizing an unintentionally released buoyancy member will help to constrain the angular sweep of potential impact locations, and reduce the incoming projectile-like forces prior to impact. Such means, when disposed in communication with either a means disposed on the receiving station member for absorbing impact or a network of restraining members disposed on the riser network, or both, will cumulatively reduce the chance for serious damage from failure or unintended release of the riser system.
One means for stabilization of the buoyancy member comprises a means to reduce rotation of the buoyancy member in the event of inadequate anchoring or the unintended projectile-like motion of the buoyancy member. In one example, a plurality of baffling members (not shown) is disposed around the periphery of the cylindrical outer surfaces of buoyancy device 5. In another example, a plurality of fin-like planes are disposed on and extend outwardly from the outer surfaces of buoyancy device 5. In one particular example, a plurality of plane-like or curved fin members are disposed around the periphery of the cylindrical surfaces of buoyancy device 5, thereby providing resistance to otherwise uncontrolled rotational forces, which can result in excessive stress forces on the restraining members 200 through 209 (see
Yet another means for stabilizing the unintended release of a buoyancy chamber comprises a means for swamping the buoyancy member upon detection of release of the riser system. In one example, a series of pressure sensitive latches are disposed on the upper surfaces of the buoyancy member. The latches collapse when pressure outside the buoyancy member greatly exceeds the pressure inside the buoyancy member, as would be the case when a riser system having a buoyancy member is suddenly released toward the surface in an uncontrolled manner. In this embodiment, seawater swamps the buoyancy member and retards the buoyant force with which the released riser system approaches the surface of the water. The means for facilitating the swamping of the chamber can function either directly (for example, in the case where latches are formed from a material sufficiently weaker than the surrounding chamber materials that the latches will collapse during the normal course of sudden release) or indirectly (as when collapse of the latches is initiated by a differential pressure sensor or the like).
The foregoing specification is provided for illustrative purposes only, and is not intended to describe all possible aspects of the present invention. Moreover, while the invention has been shown and described in detail with respect to several exemplary embodiments, those of ordinary skill in the pertinent arts will appreciate that changes to the description, and various other modifications, omissions and additions may also be made without departing from either the spirit or scope thereof.
The present application is a continuation of U.S. Non-Provisional application Ser. No. 11/511,162 filed Aug. 28, 2006 now abandoned, which claims the benefit of prior U.S. Provisional Application No. 60/772,078, filed Feb. 10, 2006.
Number | Name | Date | Kind |
---|---|---|---|
2988144 | Conrad | Jun 1961 | A |
3525388 | McClintock | Aug 1970 | A |
3572041 | Graaf | Mar 1971 | A |
3708811 | Flory | Jan 1973 | A |
3855656 | Blenkarn | Dec 1974 | A |
4065822 | Wilbourn | Jan 1978 | A |
4099560 | Fischer et al. | Jul 1978 | A |
4223737 | O'Reilly | Sep 1980 | A |
4234047 | Mott | Nov 1980 | A |
4448266 | Potts | May 1984 | A |
4645467 | Pollack | Feb 1987 | A |
5046896 | Cole | Sep 1991 | A |
5657823 | Kogure et al. | Aug 1997 | A |
6027286 | Pollack | Feb 2000 | A |
6193441 | Fisher | Feb 2001 | B1 |
6196768 | Allen et al. | Mar 2001 | B1 |
6210075 | Korloo | Apr 2001 | B1 |
6244785 | Richter et al. | Jun 2001 | B1 |
6296421 | Fisher | Oct 2001 | B2 |
6394702 | Fisher | May 2002 | B2 |
6564741 | Nelson | May 2003 | B2 |
6622793 | Rylov et al. | Sep 2003 | B1 |
7458425 | Millheim et al. | Dec 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20100181074 A1 | Jul 2010 | US |
Number | Date | Country | |
---|---|---|---|
60772078 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11511162 | Aug 2006 | US |
Child | 12750275 | US |