The present invention generally relates to magnetic therapeutic systems. More specifically, the present invention relates to a system for applying a magnetic field to anesthetize a patient, thereby preventing the patient from feeling any pain/pressure during a surgical procedure.
Medical industry today includes various devices and systems for treating patients with different conditions. Among such devices and systems, magnets are used in many therapeutic applications. Magnets are also essential in operation of many medical machines such as MRI machines and in other medical technologies. Another application of magnets is that they can be used mainly in improving nerve functions and alleviation of pain in patients.
Using magnets for anesthetizing patients may facilitate provision of a non-invasive anesthesia means. However, none of the existing solutions disclose a system for anesthetizing a patient using a magnetic field. In addition, none of the existing solutions disclose a system to anesthetize a patient via a changing magnetic field to prevent the patient from experiencing any pain during a surgical procedure.
As such, there is a need for a system for anesthetizing a patient using a magnetic field. Also, there is a need for a system for anesthetizing a patient via a changing the magnetic field to prevent the patient from experiencing any pain during a surgical procedure.
The present invention generally discloses magnetic therapeutic systems. More specifically, the present invention relates to a system for applying a magnetic field to anesthetize a patient, thereby preventing the patient from feeling any pain during the surgical procedure.
According to the present invention, the system is configured to apply the magnetic field when the patient lies on the surgical bed. In one embodiment, the system comprises a first plurality of magnets positioned below a surgical bed/table of the patient to apply the magnetic field when the patient lies on the surgical bed. In one embodiment, the first plurality of magnets includes one or more permanent magnets and one or more electromagnets.
In one embodiment, the permanent magnets may be connected to pistons or other comparable devices to facilitate an off-axis rotational movement or wobbling movement (back and forth movement relative to the long axis of the surgical bed) thereof. In one embodiment, the permanent magnets effectuate the varying magnetic field into the patient's body including the spinal cord and ventral and dorsal roots of the spinal nerves.
In one embodiment, at least one electromagnet is placed at a first end of the surgical bed, and at least one electromagnet is placed at a second end of the surgical bed. In one embodiment, both the electromagnets include various on and off frequencies, which imparts a pulse wave pattern of magnetic field at both a cervical and a lower thoracic or upper lumbar region of the patient present on the surgical bed.
In one embodiment, the system further comprises a second plurality of magnets positioned on either side of or between the plurality of magnets. In one embodiment, the second plurality of magnets includes a plurality of interchangeable pyramidal magnets. In one embodiment, the second plurality of magnets are configured to move towards and away from the patient.
In one embodiment, the system further comprises one or more ultrasound probes that are positioned between the first plurality of magnets to measure the depth of a thoracic spinal cord of the patient. In one embodiment, the second plurality of magnets are coupled to one or more reciprocating units and provided operatively below the surgical bed. In one embodiment, the reciprocating units are configured for facilitating the reciprocal movement of the second plurality of magnets towards and away from the patient's body. In one embodiment, the reciprocal movement of the second plurality of magnets direct a magnetic field of the first plurality of magnets substantially perpendicular to the surface of the surgical bed for entering into the patient's body present in the surface of the surgical bed. In one embodiment, the second plurality of magnets are moved towards and away from the patient's body for facilitating the variation of the magnetic field provided to the patient. The change in the magnetic field induces an electric flux within the spinal cord and/or spinal nerve roots, thereby disrupting neurons in the spinal cord and preventing the patient from feeling any pain during a surgical procedure.
In one embodiment, the permanent magnets are powerful rectangular elongated magnets and also of Halbach design. The magnetic field is emanated from both types of magnets in a predictable and focused manner. In one embodiment, the magnetic field emanating from the magnets is directed toward the central spinal cord tissue and also along the ventral and dorsal root nerves. In one embodiment, the magnetic field emanating outwards has the ability to create an electric field flux within a circuit found within the spinal cord, and/or the spinal cord and spinal nerve roots. In one embodiment, the magnetic field is directed to a desired range of spinal cord including the lower cervical region through the upper thoracic region, or upper thoracic region through the upper lumbar region, etc.
In one embodiment, the system further comprises a first control panel configured to control one or more parameters of the first plurality of magnets and the second plurality of magnets. In one embodiment, the parameters include a speed at which the magnets reciprocate near the surface of the surgical bed. In one embodiment, the system further comprises a second control panel configured to collect one or more parameters of the patient. In one embodiment, the parameters may be the patient's BMI, height, weight, and girth (side to side width).
After the patient's parameters are entered into the second control panel, the ultrasound probe is moved into position. In one embodiment, the ultrasound probe is moved in a position configured to transmit a high-frequency sound wave around the patient's body for determining the depth of the patient's spinal cord. In one embodiment, the determined depth of the patient's spinal cord is compared to the pre-programmed indices that are provided in a memory of the second control panel. In one embodiment, the system further comprises a cooling mechanism. In one embodiment, the cooling mechanism is utilized for cooling the first and second plurality of magnets in order to amplify the power of the permanent magnets. In one embodiment, the cooling mechanism is configured to reduce the heat generated due to the action of repeated and rapid up and down movement or reciprocating movement of the second plurality of magnets. Further, the cooling mechanism is used to cool the first and second plurality of magnets to keep them functioning properly.
The above summary contains simplifications, generalizations and omissions of detail and is not intended as a comprehensive description of the claimed subject matter but, rather, is intended to provide a brief overview of some of the functionality associated therewith. Other systems, methods, functionality, features and advantages of the claimed subject matter will be or will become apparent to one with skill in the art upon examination of the following figures and detailed written description.
The description of the illustrative embodiments can be read in conjunction with the accompanying figures. It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements. Embodiments incorporating teachings of the present disclosure are shown and described with respect to the figures presented herein, in which:
A description of embodiments of the present invention will now be given with reference to the Figures. It is expected that the present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive.
Referring to
In one embodiment, at least one electromagnet 104 is placed at a first end 112 of the surgical bed 110, and at least one electromagnet 104 is placed at a second end 114 of the surgical bed 110. In one embodiment, both the electromagnets 104 have various on and off frequencies, which impart a pulse wave pattern of magnetic field 128 at both a cervical and a lower thoracic or upper lumbar region of the patient 118 present on the surgical bed 110. The magnetic flux pattern provided by the at least one electromagnet 104 is different from the waveform pattern of the magnetic flux imposed upon the tissue via the permanent magnets 102. The interaction of the magnetic fields generated by the permanent magnet 102 and the electromagnet 104 facilitates the variation in the magnetic field provided to the patient 118 in a manner similar to the variation in a magnetic field provided by a permanent magnet to an object while the permanent magnet is in oscillation (moves towards and away) with respect to the object. In one embodiment, an on/off of frequency of the electricity to the electromagnets 104 facilitates provision of the pulse wave pattern of the magnetic field. In one embodiment, the on/off frequency of the electromagnets 104 may be “ramped up and down” for facilitating the variation of magnetic field provided to the patient 118.
In one embodiment, the system 100 further comprises a second plurality of magnets 106 positioned on either side of or between the first plurality of magnets (102 and 104). In one embodiment, the second plurality of magnets 106 include a plurality of interchangeable pyramidal magnets. In one embodiment, the second plurality of magnets 106 are permanent magnets. In one embodiment, the second plurality of magnets 106 are configured to move towards and away from the first plurality of magnets (102 and 104) for varying the magnetic field provided by the first plurality of magnets (102 and 104) to the patient on present on the surgical bed.
In one embodiment, the system 100 further comprises one or more ultrasound probes 116 positioned between the first plurality of magnets (102 and 104) to measure the depth of a thoracic spinal cord of the patient 118. In one embodiment, the second plurality of magnets 106 are coupled to one or more reciprocating units 108 and provided operatively below the surgical bed 110. In one embodiment, the reciprocating units 108 are configured for facilitating the reciprocal movement of the second plurality of magnets 106. In one embodiment, the reciprocal movement of the second plurality of magnets 106 directs the magnetic field of the first plurality of magnets (102 and 104) substantially perpendicular to the surface 111 of the surgical bed 110 for entering into the patient's body 118 present on the surface 111 of the surgical bed 110. In one embodiment, the second plurality of magnets 106 are moved towards and away from the patient's body 118 for facilitating the variation of the magnetic field provided to the patient 118. The change in the magnetic field 128 induces an electric flux within the spinal cord 120 and/or spinal nerve roots that disturbs the neurons in the spinal cord 120, thereby preventing the patient 118 from feeling any pain during a surgical procedure.
Referring to
Referring to
In one embodiment, the permanent magnets 102 may be elongated rectangular-shaped bar magnets that may be arranged along the para-median axis 124. In one embodiment, the permanent magnets 102 may rotate by themselves for a few degrees off their long axis, so that the varying flow of magnetic field 128 is directed either perfectly perpendicular to the surface 111 of the surgical bed 110 or angled a few degrees cephalad (toward the head or anterior end of the body) or caudad (toward the tail or posterior end of the body) and/or lateral or medial. In one embodiment, the permanent magnets 102 wobbles (back and forth movement) relative to the long axis of the surgical bed 110. Thus, the varying magnetic field 128 can be at any one time or another, within a parameter of influence, similar to the “clouds of patterns” in which electrons move.
Referring to
In one embodiment, the permanent magnets 102 are powerful rectangular elongated magnets and also of Halbach design. The magnetic field 128 is emanated from both types of magnets in a predictable and focused manner. The magnetic field 128 emanating outwards has the ability to create an electric field flux within a circuit found within the spinal cord 120, and/or the spinal cord 120 and spinal nerve roots.
In one embodiment, the first plurality of magnets (102 and 104) may provide the magnetic field to the patient 118 in an area corresponding to a cervical region all the way down to the beginning of Corda equine, i.e., actual spinal cord ends around lower thoracic/upper lumbar region.
Referring to
Referring to
Referring to
Referring to
Referring to
Advantageously, the system of the present invention comprises both electromagnets and permanent magnets that are positioned so that their combined magnetic field is applied along the spine of the patient. The system is configured to provide a change in the applied combined magnetic field that disrupts the neurons in the spinal cord. The disruption of the neurons prevents the patient from feeling pain/pressure from the surgical procedure.
While the disclosure has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications may be made to adapt a particular system, device or component thereof to the teachings of the disclosure without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed for carrying out this disclosure, but that the disclosure will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope of the disclosure. The described embodiments were chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.