Bergonzoni et al., Characterization of a biologically active extracellular domain of fibroblast growth factor receptor 1 expressed in Escherichia coli, Eur. J. Biochem, 210, 823-829 (1992). |
Sambrook et al., Molecular Cloning, Second Edition, vol. 3, p. 16.3, 1989, Cold Spring Harbor Laboratory Press. |
Flanagan, et al. "The kit ligand: a cell surface molecule altered in steel mutant fibroblasts"Cell, 63:185-194 (1990). |
Azizkhan et al., Mast Cell Heparin Stimulates Migration of Capillary Endothelial Cells In Vitro, J. Exp. Med. 152:931-944, 1980. |
Baird et al., Receptor-and Heparin-binding Domains of Basic Fibroblast Growth Factor, Proc. Natl. Acad. Sci. USA 85:2324-2328, 1988. |
Bashkin et al., Basic Fibroblast Growth Factor Binds to Subendothelial Extracellular Matrix and is Released by Heparitinase and Heparin-like Molecules, Biochemistry 28L1737-1743, 1989. |
Dietrich et al., Cell Recognition and Adhesiveness: A Possible Biological Role for the Sulfated Mucopolysaccharides, Biochemical and Biophysical Research Communications 75:329-336, 1977. |
Dionne et al., Cloning and Expression of Two Distinct High-affinity Receptors Cross-reacting with Acidic and Basic Fibroblast Growth Factors, EMBO J. 9:2685-2692, 1990. |
Esko et al., Tumor Formation Dependent on Proteoglycan Biosynthesis, Science 241:1092-1096, 1988. |
Folkman et al., A Heparin-binding Angiogenic Protein--Basic Fibroblast Growth Factor--Is Stored within Basement Membrane, American Journal of Pathology 130:393-400, 1988. |
Folkman et al., Angiogenic Factors, Science 235:442-447, 1987. |
Gordon et al., Extracellular Matrix Heparan Sulfate Proteoglycans Modulate the Mitogenic Capacity of Acidic Fibroblast Growth Factor, J. Cellular Physiology 140:584-592, 1989. |
Gospodarowicz and Cheng, Heparin Protects Basic and Acidic FGF from Inactivation, J. Cellular Physiology 128:475-484, 1986. |
Kaner et al., Fibroblast Growth Factor Receptor is a Portal of Cellular Entry for Herpes Simplex Virus Type 1, Science 248:1410-1413, 1990. |
Klagsbrun, The Fibroblast Growth Factor Family: Structural and Biological Properties, Progress in Growth Factor Research 1:207-235, 1989. |
Klagsbrun and Shing, Heparin Affinity of Anionic and Cationic Capillary Endothelial Cell Growth Factors: Analysis . . . Growth Factors and Fibroblast Growth Factors, Proc. Natl. Acad. Sci. USA 82:805-809, 1985. |
Kornbluth et al., Novel Tyrosine Kinase Identified by Phosphotyrosine Antibody Screening of cDNA Libraries, Molecular and Cellular Biology 8:5541-5544, 1988. |
Lee et al., Purification and Complementary DNA Cloning of a Receptor for Basic Fibroblast Growth Factor, Science 245:57-60, 1989. |
Mansukhani et al., A Murine Fibroblast Growth Factor (FGF) Receptor Expressed in CHO Cells is Activated by Basic FGF and Kaposi FGF, Proc. Natl. Acad. Sci. USA 87:4378-4382, 1990. |
Moscatelli, Metabolism of Receptor-bound and Matrix-bound Basic Fibroblast Growth Factor by Bovine Capillary Endothelial Cells, J. Cell Biology 107:753-759, 1988. |
Moscatelli, High and Low Affinity Binding Sites for Basic Fibroblast Growth Factor on Cultured Cells: Absence . . . Activator Production by Bovine Capillary Endothelial Cells, J. Cell. Physiology 131:123-130, 1987. |
Mueller et al., Stabilization by Heparin of Acidic Fibroblast Growth Factor Mitogenicity for Human Endothelial Cells In Vitro, J. Cellular Physiology 140:439-448, 1989. |
Neufeld and Gospodarowicz, Basic and Acidic Fibroblast Growth Factors Interact with the Same Cell Surface Receptors, J. Biol. Chem. 261:5631-5637, 1986. |
Pasquale and Singer et al., Identification of a Developmentally Regulated Protein-tyrosine Kinase by Using Anti-phosphotyrosine Antibodies . . . cDNA Expression Library, Proc. Natl. Acad. Sci. USA 86:5449-5453, 1989. |
Rifkin and Moscatelli, Recent Developments in the Cell Biology of Basic Fibroblast Growth Factor, J. Cell Biology 109:1-6, 1989. |
Ruta et al., A Novel Protein Tyrosine Kinase Gene Whose Expression is Modulated During Endothelial Cell Differentiation, Oncogene 3:9-15, 1988. |
Safran et al., The Murine flg Gene Encodes a Receptor for Fibroblast Growth Factor, Oncogene 5:635-43, 1990. |
Saksela et al., Endothelial Cell-derived Heparan Sulfate Binds Basic Fibroblast Growth Factor and Protects it from Proteolytic Degradation, J. Cell Biology 107:743-751, 1988. |
Seno et al., Carboxyl-terminal Structure of Basic Fibroblast Growth Factor Significantly Constributes to its Affinity for Heparin, Eur. J. Biochem. 188:239-245, 1990. |
Shing et al., Heparin Affinity: Purification of a Tumor-derived Capillary Endothelial Cell Growth Factor, Science 223:1296-1299, 1984. |
Taylor and Folkman, Protamine is an Inhibitor of Angiogenesis, Nature 297:307-312, 1982. |
Thornton et al., Human Endothelial Cells: Use of Heparin in Cloning and Long-term Serial Cultivation, pp. 623-625, 1983. |
Vlodavsky et al., Endothelial Cell-derived Basic Fibroblast Growth Factor: Synthesis and Deposition into Subendothelial Extracellular Matrix, Proc. Natl. Acad. Sci. USA 84:2292-2296, 1987. |
WuDunn and Spear, Initial Interaction of Herpes Simplex Virus with Cells is Binding to Heparan Sulfate, J. Virology 63:52-58, 1989. |
Yayon et al., Cell Surface, Heparin-like Molecules are Required for Binding of Basic Fibroblast Growth Factor to its High Affnity Receptor, Cell 64:941-848, 1991. |