This invention relates to head-worn computing. More particularly, this invention relates to systems and methods for using head-worn computing in connection with vehicles.
Wearable computing systems have been developed and are beginning to be commercialized. Many problems persist in the wearable computing field that need to be resolved to make them meet the demands of the market.
Aspects of the present invention relate to methods and systems for using head-worn computing in connection with vehicles.
In an aspect, a method for providing displayed content to a user of a head-mounted display while operating a vehicle with improved safety may include determining if the user is looking through one of a windshield of the vehicle and an adjacent portion of the vehicle interior adjacent to the windshield, if the user is looking through the windshield, preventing displayed content from being provided for viewing by the user within a display field of view of the head mounted display, and if the user is looking at the adjacent portion of the vehicle interior, providing displayed content for viewing by the user within the display field of view. The adjacent portion of the vehicle interior may be identified and displayed content associated with the identified portion is provided for viewing. The adjacent portion of the vehicle interior may be identified by comparing a gaze direction of the head-mounted display to a motion direction of the head-mounted display. The adjacent portion of the vehicle interior may be identified by analyzing images captured by a camera associated with the head-mounted display to identify objects in the vehicle interior. The adjacent portion of the vehicle interior may be identified by analyzing images captured by an infrared camera to identify one or more infrared targets in the vehicle interior that are associated with the adjacent portion of the vehicle. The method may further include identifying whether the user is looking through the windshield or a side window. The vehicle may be an automobile, an airplane, a ship or a train. The displayed content may be navigational information. The displayed content may be operating information associated with the vehicle. The displayed content may include images from cameras external to the vehicle.
In an aspect, a method for providing assisted safety to an operator of a vehicle using a head-mounted display that provides displayed content and a see-through view of a surrounding environment may include determining whether the operator is looking through the windshield of the vehicle or is not looking through the windshield, if the user is looking through the windshield, preventing displayed content from being provided within a display field of view of the head-mounted display, thereby providing an unencumbered see-through view of the surrounding environment, if the user is not looking through the windshield, providing displayed content for viewing by the user within the display field of view, and if important information relating to the safety of the vehicle is detected by a system associated with the vehicle while the user is looking not looking through the windshield, interrupting the displayed content and providing an alert to the operator. The alert may be a displayed indicator that shows the operator where to look. The alert may be a haptic indicator. The haptic indicator may be a vibration of a portion of the head-worn display that indicates the direction the operator's head should turn. The method may further include determining whether the operator is looking through the windshield or a side window. The important information may be an impending collision detected by a collision avoidance system. The important information may be that the operator is asleep or not paying attention. The operator may be detected to be asleep or not paying attention by analyzing head movements or the time the operator is not looking through the windshield. The displayed content may be provided with a convergence distance or focus distance that is farther away than the internal surfaces of the vehicle. The convergence distance or focus distance may be greater than 15 feet. The convergence distance or focus distance may be selected in correspondence to a speed of the vehicle. The convergence distance or focus distance may be selected in correspondence to a distance to an adjacent vehicle.
These and other systems, methods, objects, features, and advantages of the present invention will be apparent to those skilled in the art from the following detailed description of the preferred embodiment and the drawings. All documents mentioned herein are hereby incorporated in their entirety by reference.
Embodiments are described with reference to the following Figures. The same numbers may be used throughout to reference like features and components that are shown in the Figures:
a illustrate structured eye lighting systems according to the principles of the present invention.
While the invention has been described in connection with certain preferred embodiments, other embodiments would be understood by one of ordinary skill in the art and are encompassed herein.
Aspects of the present invention relate to head-worn computing (“HWC”) systems. HWC involves, in some instances, a system that mimics the appearance of head-worn glasses or sunglasses. The glasses may be a fully developed computing platform, such as including computer displays presented in each of the lenses of the glasses to the eyes of the user. In embodiments, the lenses and displays may be configured to allow a person wearing the glasses to see the environment through the lenses while also seeing, simultaneously, digital imagery, which forms an overlaid image that is perceived by the person as a digitally augmented image of the environment, or augmented reality (“AR”).
HWC involves more than just placing a computing system on a person's head. The system may need to be designed as a lightweight, compact and fully functional computer display, such as wherein the computer display includes a high resolution digital display that provides a high level of immersion comprised of the displayed digital content and the see-through view of the environmental surroundings. User interfaces and control systems suited to the HWC device may be required that are unlike those used for a more conventional computer such as a laptop. For the HWC and associated systems to be most effective, the glasses may be equipped with sensors to determine environmental conditions, geographic location, relative positioning to other points of interest, objects identified by imaging and movement by the user or other users in a connected group, and the like. The HWC may then change the mode of operation to match the conditions, location, positioning, movements, and the like, in a method generally referred to as a contextually aware HWC. The glasses also may need to be connected, wirelessly or otherwise, to other systems either locally or through a network. Controlling the glasses may be achieved through the use of an external device, automatically through contextually gathered information, through user gestures captured by the glasses sensors, and the like. Each technique may be further refined depending on the software application being used in the glasses. The glasses may further be used to control or coordinate with external devices that are associated with the glasses.
Referring to
We will now describe each of the main elements depicted on
The HWC 102 is a computing platform intended to be worn on a person's head. The HWC 102 may take many different forms to fit many different functional requirements. In some situations, the HWC 102 will be designed in the form of conventional glasses. The glasses may or may not have active computer graphics displays. In situations where the HWC 102 has integrated computer displays the displays may be configured as see-through displays such that the digital imagery can be overlaid with respect to the user's view of the environment 114. There are a number of see-through optical designs that may be used, including ones that have a reflective display (e.g. LCoS, DLP), emissive displays (e.g. OLED, LED), hologram, TIR waveguides, and the like. In embodiments, lighting systems used in connection with the display optics may be solid state lighting systems, such as LED, OLED, quantum dot, quantum dot LED, etc. In addition, the optical configuration may be monocular or binocular. It may also include vision corrective optical components. In embodiments, the optics may be packaged as contact lenses. In other embodiments, the HWC 102 may be in the form of a helmet with a see-through shield, sunglasses, safety glasses, goggles, a mask, fire helmet with see-through shield, police helmet with see through shield, military helmet with see-through shield, utility form customized to a certain work task (e.g. inventory control, logistics, repair, maintenance, etc.), and the like.
The HWC 102 may also have a number of integrated computing facilities, such as an integrated processor, integrated power management, communication structures (e.g. cell net, WiFi, Bluetooth, local area connections, mesh connections, remote connections (e.g. client server, etc.)), and the like. The HWC 102 may also have a number of positional awareness sensors, such as GPS, electronic compass, altimeter, tilt sensor, IMU, and the like. It may also have other sensors such as a camera, rangefinder, hyper-spectral camera, Geiger counter, microphone, spectral illumination detector, temperature sensor, chemical sensor, biologic sensor, moisture sensor, ultrasonic sensor, and the like.
The HWC 102 may also have integrated control technologies. The integrated control technologies may be contextual based control, passive control, active control, user control, and the like. For example, the HWC 102 may have an integrated sensor (e.g. camera) that captures user hand or body gestures 116 such that the integrated processing system can interpret the gestures and generate control commands for the HWC 102. In another example, the HWC 102 may have sensors that detect movement (e.g. a nod, head shake, and the like) including accelerometers, gyros and other inertial measurements, where the integrated processor may interpret the movement and generate a control command in response. The HWC 102 may also automatically control itself based on measured or perceived environmental conditions. For example, if it is bright in the environment the HWC 102 may increase the brightness or contrast of the displayed image. In embodiments, the integrated control technologies may be mounted on the HWC 102 such that a user can interact with it directly. For example, the HWC 102 may have a button(s), touch capacitive interface, and the like.
As described herein, the HWC 102 may be in communication with external user interfaces 104. The external user interfaces may come in many different forms. For example, a cell phone screen may be adapted to take user input for control of an aspect of the HWC 102. The external user interface may be a dedicated UI, such as a keyboard, touch surface, button(s), joy stick, and the like. In embodiments, the external controller may be integrated into another device such as a ring, watch, bike, car, and the like. In each case, the external user interface 104 may include sensors (e.g. IMU, accelerometers, compass, altimeter, and the like) to provide additional input for controlling the HWD 104.
As described herein, the HWC 102 may control or coordinate with other local devices 108. The external devices 108 may be an audio device, visual device, vehicle, cell phone, computer, and the like. For instance, the local external device 108 may be another HWC 102, where information may then be exchanged between the separate HWCs 108.
Similar to the way the HWC 102 may control or coordinate with local devices 106, the HWC 102 may control or coordinate with remote devices 112, such as the HWC 102 communicating with the remote devices 112 through a network 110. Again, the form of the remote device 112 may have many forms. Included in these forms is another HWC 102. For example, each HWC 102 may communicate its GPS position such that all the HWCs 102 know where all of HWC 102 are located.
The light that is provided by the polarized light source 302, which is subsequently reflected by the reflective polarizer 310 before it reflects from the DLP 304, will generally be referred to as illumination light. The light that is reflected by the “off” pixels of the DLP 304 is reflected at a different angle than the light reflected by the “on” pixels, so that the light from the “off” pixels is generally directed away from the optical axis of the field lens 312 and toward the side of the upper optical module 202 as shown in
The DLP 304 operates as a computer controlled display and is generally thought of as a MEMs device. The DLP pixels are comprised of small mirrors that can be directed. The mirrors generally flip from one angle to another angle. The two angles are generally referred to as states. When light is used to illuminate the DLP the mirrors will reflect the light in a direction depending on the state. In embodiments herein, we generally refer to the two states as “on” and “off,” which is intended to depict the condition of a display pixel. “On” pixels will be seen by a viewer of the display as emitting light because the light is directed along the optical axis and into the field lens and the associated remainder of the display system. “Off” pixels will be seen by a viewer of the display as not emitting light because the light from these pixels is directed to the side of the optical housing and into a light trap or light dump where the light is absorbed. The pattern of “on” and “off” pixels produces image light that is perceived by a viewer of the display as a computer generated image. Full color images can be presented to a user by sequentially providing illumination light with complimentary colors such as red, green and blue. Where the sequence is presented in a recurring cycle that is faster than the user can perceive as separate images and as a result the user perceives a full color image comprised of the sum of the sequential images. Bright pixels in the image are provided by pixels that remain in the “on” state for the entire time of the cycle, while dimmer pixels in the image are provided by pixels that switch between the “on” state and “off” state within the time of the cycle, or frame time when in a video sequence of images.
The configuration illustrated in
The configuration illustrated in
Critical angle=arc−sin(1/n) Eqn 1
Where the critical angle is the angle beyond which the illumination light is reflected from the internal surface when the internal surface comprises an interface from a solid with a higher refractive index (n) to air with a refractive index of 1 (e.g. for an interface of acrylic, with a refractive index of n=1.5, to air, the critical angle is 41.8 degrees; for an interface of polycarbonate, with a refractive index of n=1.59, to air the critical angle is 38.9 degrees). Consequently, the TIR wedge 418 is associated with a thin air gap 408 along the internal surface to create an interface between a solid with a higher refractive index and air. By choosing the angle of the light source 404 relative to the DLP 402 in correspondence to the angle of the internal surface of the TIR wedge 418, illumination light is turned toward the DLP 402 at an angle suitable for providing image light 414 as reflected from “on” pixels. Wherein, the illumination light is provided to the DLP 402 at approximately twice the angle of the pixel mirrors in the DLP 402 that are in the “on” state, such that after reflecting from the pixel mirrors, the image light 414 is directed generally along the optical axis of the field lens. Depending on the state of the DLP pixels, the illumination light from “on” pixels may be reflected as image light 414 which is directed towards a field lens and a lower optical module 204, while illumination light reflected from “off” pixels (generally referred to herein as “dark” state light, “off” pixel light or “off” state light) 410 is directed in a separate direction, which may be trapped and not used for the image that is ultimately presented to the wearer's eye.
The light trap for the dark state light 410 may be located along the optical axis defined by the direction of the dark state light 410 and in the side of the housing, with the function of absorbing the dark state light. To this end, the light trap may be comprised of an area outside of the cone of image light 414 from the “on” pixels. The light trap is typically made up of materials that absorb light including coatings of black paints or other light absorbing materials to prevent light scattering from the dark state light degrading the image perceived by the user. In addition, the light trap may be recessed into the wall of the housing or include masks or guards to block scattered light and prevent the light trap from being viewed adjacent to the displayed image.
The embodiment of
The embodiment illustrated in
The angles of the faces of the wedge set 450 correspond to the needed angles to provide illumination light 452 at the angle needed by the DLP mirrors when in the “on” state so that the reflected image light 414 is reflected from the DLP along the optical axis of the field lens. The wedge set 456 provides an interior interface where a reflective polarizer film can be located to redirect the illumination light 452 toward the mirrors of the DLP 402. The wedge set also provides a matched wedge on the opposite side of the reflective polarizer 450 so that the image light 414 from the “on” pixels exits the wedge set 450 substantially perpendicular to the exit surface, while the dark state light from the “off” pixels 410 exits at an oblique angle to the exit surface. As a result, the image light 414 is substantially unrefracted upon exiting the wedge set 456, while the dark state light from the “off” pixels 410 is substantially refracted upon exiting the wedge set 456 as shown in
By providing a solid transparent matched wedge set, the flatness of the interface is reduced, because variations in the flatness have a negligible effect as long as they are within the cone angle of the illuminating light 452. Which can be f# 2.2 with a 26 degree cone angle. In a preferred embodiment, the reflective polarizer is bonded between the matched internal surfaces of the wedge set 456 using an optical adhesive so that Fresnel reflections at the interfaces on either side of the reflective polarizer 450 are reduced. The optical adhesive can be matched in refractive index to the material of the wedge set 456 and the pieces of the wedge set 456 can be all made from the same material such as BK7 glass or cast acrylic. Wherein the wedge material can be selected to have low birefringence as well to reduce non-uniformities in brightness. The wedge set 456 and the quarter wave film 454 can also be bonded to the DLP 402 to further reduce Fresnel reflections at the DLP interface losses. In addition, since the image light 414 is substantially normal to the exit surface of the wedge set 456, the flatness of the surface is not critical to maintain the wavefront of the image light 414 so that high image quality can be obtained in the displayed image without requiring very tightly toleranced flatness on the exit surface.
A yet further embodiment of the invention that is not illustrated, combines the embodiments illustrated in
The combiner 602 may include a holographic pattern, to form a holographic mirror. If a monochrome image is desired, there may be a single wavelength reflection design for the holographic pattern on the surface of the combiner 602. If the intention is to have multiple colors reflected from the surface of the combiner 602, a multiple wavelength holographic mirror maybe included on the combiner surface. For example, in a three-color embodiment, where red, green and blue pixels are generated in the image light, the holographic mirror may be reflective to wavelengths substantially matching the wavelengths of the red, green and blue light provided by the light source. This configuration can be used as a wavelength specific mirror where pre-determined wavelengths of light from the image light are reflected to the user's eye. This configuration may also be made such that substantially all other wavelengths in the visible pass through the combiner element 602 so the user has a substantially clear view of the surroundings when looking through the combiner element 602. The transparency between the user's eye and the surrounding may be approximately 80% when using a combiner that is a holographic mirror. Wherein holographic mirrors can be made using lasers to produce interference patterns in the holographic material of the combiner where the wavelengths of the lasers correspond to the wavelengths of light that are subsequently reflected by the holographic mirror.
In another embodiment, the combiner element 602 may include a notch mirror comprised of a multilayer coated substrate wherein the coating is designed to substantially reflect the wavelengths of light provided by the light source and substantially transmit the remaining wavelengths in the visible spectrum. For example, in the case where red, green and blue light is provided by the light source to enable full color images to be provided to the user, the notch mirror is a tristimulus notch mirror wherein the multilayer coating is designed to reflect narrow bands of red, green and blue light that are matched to the what is provided by the light source and the remaining visible wavelengths are transmitted through the coating to enable a view of the environment through the combiner. In another example where monochrome images are provided to the user, the notch mirror is designed to reflect a single narrow band of light that is matched to the wavelength range of the light provided by the light source while transmitting the remaining visible wavelengths to enable a see-thru view of the environment. The combiner 602 with the notch mirror would operate, from the user's perspective, in a manner similar to the combiner that includes a holographic pattern on the combiner element 602. The combiner, with the tristimulus notch mirror, would reflect the “on” pixels to the eye because of the match between the reflective wavelengths of the notch mirror and the color of the image light, and the wearer would be able to see with high clarity the surroundings. The transparency between the user's eye and the surrounding may be approximately 80% when using the tristimulus notch mirror. In addition, the image provided by the upper optical module 202 with the notch mirror combiner can provide higher contrast images than the holographic mirror combiner due to less scattering of the imaging light by the combiner.
Light can escape through the combiner 602 and may produce face glow as the light is generally directed downward onto the cheek of the user. When using a holographic mirror combiner or a tristimulus notch mirror combiner, the escaping light can be trapped to avoid face glow. In embodiments, if the image light is polarized before the combiner, a linear polarizer can be laminated, or otherwise associated, to the combiner, with the transmission axis of the polarizer oriented relative to the polarized image light so that any escaping image light is absorbed by the polarizer. In embodiments, the image light would be polarized to provide S polarized light to the combiner for better reflection. As a result, the linear polarizer on the combiner would be oriented to absorb S polarized light and pass P polarized light. This provides the preferred orientation of polarized sunglasses as well.
If the image light is unpolarized, a microlouvered film such as a privacy filter can be used to absorb the escaping image light while providing the user with a see-thru view of the environment. In this case, the absorbance or transmittance of the microlouvered film is dependent on the angle of the light. Where steep angle light is absorbed and light at less of an angle is transmitted. For this reason, in an embodiment, the combiner with the microlouver film is angled at greater than 45 degrees to the optical axis of the image light (e.g. the combiner can be oriented at 50 degrees so the image light from the file lens is incident on the combiner at an oblique angle.
While many of the embodiments of the present invention have been referred to as upper and lower modules containing certain optical components, it should be understood that the image light and dark light production and management functions described in connection with the upper module may be arranged to direct light in other directions (e.g. upward, sideward, etc.). In embodiments, it may be preferred to mount the upper module 202 above the wearer's eye, in which case the image light would be directed downward. In other embodiments it may be preferred to produce light from the side of the wearer's eye, or from below the wearer's eye. In addition, the lower optical module is generally configured to deliver the image light to the wearer's eye and allow the wearer to see through the lower optical module, which may be accomplished through a variety of optical components.
Another aspect of the present invention relates to eye imaging. In embodiments, a camera is used in connection with an upper optical module 202 such that the wearer's eye can be imaged using pixels in the “off” state on the DLP.
In embodiments, the eye imaging camera may image the wearer's eye at a moment in time where there are enough “off” pixels to achieve the required eye image resolution. In another embodiment, the eye imaging camera collects eye image information from “off” pixels over time and forms a time lapsed image. In another embodiment, a modified image is presented to the user wherein enough “off” state pixels are included that the camera can obtain the desired resolution and brightness for imaging the wearer's eye and the eye image capture is synchronized with the presentation of the modified image.
The eye imaging system may be used for security systems. The HWC may not allow access to the HWC or other system if the eye is not recognized (e.g. through eye characteristics including retina or iris characteristics, etc.). The HWC may be used to provide constant security access in some embodiments. For example, the eye security confirmation may be a continuous, near-continuous, real-time, quasi real-time, periodic, etc. process so the wearer is effectively constantly being verified as known. In embodiments, the HWC may be worn and eye security tracked for access to other computer systems.
The eye imaging system may be used for control of the HWC. For example, a blink, wink, or particular eye movement may be used as a control mechanism for a software application operating on the HWC or associated device.
The eye imaging system may be used in a process that determines how or when the HWC 102 delivers digitally displayed content to the wearer. For example, the eye imaging system may determine that the user is looking in a direction and then HWC may change the resolution in an area of the display or provide some content that is associated with something in the environment that the user may be looking at. Alternatively, the eye imaging system may identify different user's and change the displayed content or enabled features provided to the user. User's may be identified from a database of users eye characteristics either located on the HWC 102 or remotely located on the network 110 or on a server 112. In addition, the HWC may identify a primary user or a group of primary users from eye characteristics wherein the primary user(s) are provided with an enhanced set of features and all other user's are provided with a different set of features. Thus in this use case, the HWC 102 uses identified eye characteristics to either enable features or not and eye characteristics need only be analyzed in comparison to a relatively small database of individual eye characteristics.
Another aspect of the present invention relates to the generation of peripheral image lighting effects for a person wearing a HWC. In embodiments, a solid state lighting system (e.g. LED, OLED, etc), or other lighting system, may be included inside the optical elements of an lower optical module 204. The solid state lighting system may be arranged such that lighting effects outside of a field of view (FOV) of the presented digital content is presented to create an immersive effect for the person wearing the HWC. To this end, the lighting effects may be presented to any portion of the HWC that is visible to the wearer. The solid state lighting system may be digitally controlled by an integrated processor on the HWC. In embodiments, the integrated processor will control the lighting effects in coordination with digital content that is presented within the FOV of the HWC. For example, a movie, picture, game, or other content, may be displayed or playing within the FOV of the HWC. The content may show a bomb blast on the right side of the FOV and at the same moment, the solid state lighting system inside of the upper module optics may flash quickly in concert with the FOV image effect. The effect may not be fast, it may be more persistent to indicate, for example, a general glow or color on one side of the user. The solid state lighting system may be color controlled, with red, green and blue LEDs, for example, such that color control can be coordinated with the digitally presented content within the field of view.
In the embodiment illustrated in
Another aspect of the present invention relates to the mitigation of light escaping from the space between the wearer's face and the HWC itself. Another aspect of the present invention relates to maintaining a controlled lighting environment in proximity to the wearer's eyes. In embodiments, both the maintenance of the lighting environment and the mitigation of light escape are accomplished by including a removable and replaceable flexible shield for the HWC. Wherein the removable and replaceable shield can be provided for one eye or both eyes in correspondence to the use of the displays for each eye. For example, in a night vision application, the display to only one eye could be used for night vision while the display to the other eye is turned off to provide good see-thru when moving between areas where visible light is available and dark areas where night vision enhancement is needed.
In embodiments, an opaque front light shield 1412 may be included and the digital content may include images of the surrounding environment such that the wearer can visualize the surrounding environment. One eye may be presented with night vision environmental imagery and this eye's surrounding environment optical path may be covered using an opaque front light shield 1412. In other embodiments, this arrangement may be associated with both eyes.
Another aspect of the present invention relates to automatically configuring the lighting system(s) used in the HWC 102. In embodiments, the display lighting and/or effects lighting, as described herein, may be controlled in a manner suitable for when an eye cover 1408 is attached or removed from the HWC 102. For example, at night, when the light in the environment is low, the lighting system(s) in the HWC may go into a low light mode to further control any amounts of stray light escaping from the HWC and the areas around the HWC. Covert operations at night, while using night vision or standard vision, may require a solution which prevents as much escaping light as possible so a user may clip on the eye cover(s) 1408 and then the HWC may go into a low light mode. The low light mode may, in some embodiments, only go into a low light mode when the eye cover 1408 is attached if the HWC identifies that the environment is in low light conditions (e.g. through environment light level sensor detection). In embodiments, the low light level may be determined to be at an intermediate point between full and low light dependent on environmental conditions.
Another aspect of the present invention relates to automatically controlling the type of content displayed in the HWC when eye covers 1408 are attached or removed from the HWC. In embodiments, when the eye cover(s) 1408 is attached to the HWC, the displayed content may be restricted in amount or in color amounts. For example, the display(s) may go into a simple content delivery mode to restrict the amount of information displayed. This may be done to reduce the amount of light produced by the display(s). In an embodiment, the display(s) may change from color displays to monochrome displays to reduce the amount of light produced. In an embodiment, the monochrome lighting may be red to limit the impact on the wearer's eyes to maintain an ability to see better in the dark.
Referring to
While the pen 1500 may follow the general form of a conventional pen, it contains numerous technologies that enable it to function as an external user interface 104.
The pen 1500 may also include a pressure monitoring system 1504, such as to measure the pressure exerted on the lens 1502. As will be described in greater detail herein, the pressure measurement can be used to predict the user's intention for changing the weight of a line, type of a line, type of brush, click, double click, and the like. In embodiments, the pressure sensor may be constructed using any force or pressure measurement sensor located behind the lens 1502, including for example, a resistive sensor, a current sensor, a capacitive sensor, a voltage sensor such as a piezoelectric sensor, and the like.
The pen 1500 may also include a communications module 1518, such as for bi-directional communication with the HWC 102. In embodiments, the communications module 1518 may be a short distance communication module (e.g. Bluetooth). The communications module 1518 may be security matched to the HWC 102. The communications module 1518 may be arranged to communicate data and commands to and from the microprocessor 1510 of the pen 1500. The microprocessor 1510 may be programmed to interpret data generated from the camera 1508, IMU 1512, and pressure sensor 1504, and the like, and then pass a command onto the HWC 102 through the communications module 1518, for example. In another embodiment, the data collected from any of the input sources (e.g. camera 1508, IMU 1512, pressure sensor 1504) by the microprocessor may be communicated by the communication module 1518 to the HWC 102, and the HWC 102 may perform data processing and prediction of the user's intention when using the pen 1500. In yet another embodiment, the data may be further passed on through a network 110 to a remote device 112, such as a server, for the data processing and prediction. The commands may then be communicated back to the HWC 102 for execution (e.g. display writing in the glasses display, make a selection within the UI of the glasses display, control a remote external device 112, control a local external device 108), and the like. The pen may also include memory 1514 for long or short term uses.
The pen 1500 may also include a number of physical user interfaces, such as quick launch buttons 1522, a touch sensor 1520, and the like. The quick launch buttons 1522 may be adapted to provide the user with a fast way of jumping to a software application in the HWC system 100. For example, the user may be a frequent user of communication software packages (e.g. email, text, Twitter, Instagram, Facebook, Google+, and the like), and the user may program a quick launch button 1522 to command the HWC 102 to launch an application. The pen 1500 may be provided with several quick launch buttons 1522, which may be user programmable or factory programmable. The quick launch button 1522 may be programmed to perform an operation. For example, one of the buttons may be programmed to clear the digital display of the HWC 102. This would create a fast way for the user to clear the screens on the HWC 102 for any reason, such as for example to better view the environment. The quick launch button functionality will be discussed in further detail below. The touch sensor 1520 may be used to take gesture style input from the user. For example, the user may be able to take a single finger and run it across the touch sensor 1520 to affect a page scroll.
The pen 1500 may also include a laser pointer 1524. The laser pointer 1524 may be coordinated with the IMU 1512 to coordinate gestures and laser pointing. For example, a user may use the laser 1524 in a presentation to help with guiding the audience with the interpretation of graphics and the IMU 1512 may, either simultaneously or when the laser 1524 is off, interpret the user's gestures as commands or data input.
The domed cover lens, or other lens 1608 used to physically interact with the writing surface, will be transparent or transmissive within the active bandwidth of the camera 1602. In embodiments, the domed cover lens 1608 may be spherical or other shape and comprised of glass, plastic, sapphire, diamond, and the like. In other embodiments where low resolution imaging of the surface is acceptable. The pen 1500 can omit the domed cover lens 1608 and the ball lens 1604 can be in direct contact with the surface.
Another aspect of the pen 1500 relates to sensing the force applied by the user to the writing surface with the pen 1500. The force measurement may be used in a number of ways. For example, the force measurement may be used as a discrete value, or discontinuous event tracking, and compared against a threshold in a process to determine a user's intent. The user may want the force interpreted as a ‘click’ in the selection of an object, for instance. The user may intend multiple force exertions interpreted as multiple clicks. There may be times when the user holds the pen 1500 in a certain position or holds a certain portion of the pen 1500 (e.g. a button or touch pad) while clicking to affect a certain operation (e.g. a ‘right click’). In embodiments, the force measurement may be used to track force and force trends. The force trends may be tracked and compared to threshold limits, for example. There may be one such threshold limit, multiple limits, groups of related limits, and the like. For example, when the force measurement indicates a fairly constant force that generally falls within a range of related threshold values, the microprocessor 1510 may interpret the force trend as an indication that the user desires to maintain the current writing style, writing tip type, line weight, brush type, and the like. In the event that the force trend appears to have gone outside of a set of threshold values intentionally, the microprocessor may interpret the action as an indication that the user wants to change the current writing style, writing tip type, line weight, brush type, and the like. Once the microprocessor has made a determination of the user's intent, a change in the current writing style, writing tip type, line weight, brush type, and the like may be executed. In embodiments, the change may be noted to the user (e.g. in a display of the HWC 102), and the user may be presented with an opportunity to accept the change.
While a threshold value may be used to assist in the interpretation of the user's intention, a signature force event trend may also be used. The threshold and signature may be used in combination or either method may be used alone. For example, a single-click signature may be represented by a certain force trend signature or set of signatures. The single-click signature(s) may require that the trend meet a criteria of a rise time between x any y values, a hold time of between a and b values and a fall time of between c and d values, for example. Signatures may be stored for a variety of functions such as click, double click, right click, hold, move, etc. The microprocessor 1510 may compare the real-time force or pressure tracking against the signatures from a signature library to make a decision and issue a command to the software application executing in the GUI.
Generally, in the present disclosure, instrument stroke parameter changes may be referred to as a change in line type, line weight, tip type, brush type, brush width, brush pressure, color, and other forms of writing, coloring, painting, and the like.
Another aspect of the pen 1500 relates to selecting an operating mode for the pen 1500 dependent on contextual information and/or selection interface(s). The pen 1500 may have several operating modes. For instance, the pen 1500 may have a writing mode where the user interface(s) of the pen 1500 (e.g. the writing surface end, quick launch buttons 1522, touch sensor 1520, motion based gesture, and the like) is optimized or selected for tasks associated with writing. As another example, the pen 1500 may have a wand mode where the user interface(s) of the pen is optimized or selected for tasks associated with software or device control (e.g. the HWC 102, external local device, remote device 112, and the like). The pen 1500, by way of another example, may have a presentation mode where the user interface(s) is optimized or selected to assist a user with giving a presentation (e.g. pointing with the laser pointer 1524 while using the button(s) 1522 and/or gestures to control the presentation or applications relating to the presentation). The pen may, for example, have a mode that is optimized or selected for a particular device that a user is attempting to control. The pen 1500 may have a number of other modes and an aspect of the present invention relates to selecting such modes.
As with other examples presented herein, the microprocessor 1510 may monitor the contextual trend (e.g. the angle of the pen over time) in an effort to decide whether to stay in a mode or change modes. For example, through signatures, thresholds, trend analysis, and the like, the microprocessor may determine that a change is an unintentional change and therefore no user interface mode change is desired.
In embodiments, a confirmation selection may be presented to the user in the event a mode is going to change. The presentation may be physical (e.g. a vibration in the pen 1500), through a GUI, through a light indicator, etc.
Use scenario 1900 is a writing scenario where the pen 1500 is used as a writing instrument. In this example, quick launch button 122A is pressed to launch a note application 1910 in the GUI 1908 of the HWC 102 display 1904. Once the quick launch button 122A is pressed, the HWC 102 launches the note program 1910 and puts the pen into a writing mode. The user uses the pen 1500 to scribe symbols 1902 on a writing surface, the pen records the scribing and transmits the scribing to the HWC 102 where symbols representing the scribing are displayed 1912 within the note application 1910.
Use scenario 1901 is a gesture scenario where the pen 1500 is used as a gesture capture and command device. In this example, the quick launch button 122B is activated and the pen 1500 activates a wand mode such that an application launched on the HWC 102 can be controlled. Here, the user sees an application chooser 1918 in the display(s) of the HWC 102 where different software applications can be chosen by the user. The user gestures (e.g. swipes, spins, turns, etc.) with the pen to cause the application chooser 1918 to move from application to application. Once the correct application is identified (e.g. highlighted) in the chooser 1918, the user may gesture or click or otherwise interact with the pen 1500 such that the identified application is selected and launched. Once an application is launched, the wand mode may be used to scroll, rotate, change applications, select items, initiate processes, and the like, for example.
In an embodiment, the quick launch button 122A may be activated and the HWC 102 may launch an application chooser presenting to the user a set of applications. For example, the quick launch button may launch a chooser to show all communication programs (e.g. SMS, Twitter, Instagram, Facebook, email, etc.) available for selection such that the user can select the program the user wants and then go into a writing mode. By way of further example, the launcher may bring up selections for various other groups that are related or categorized as generally being selected at a given time (e.g. Microsoft Office products, communication products, productivity products, note products, organizational products, and the like)
The watchband controller 2000 may have quick launch interfaces 2008 (e.g. to launch applications and choosers as described herein), a touch pad 2014 (e.g. to be used as a touch style mouse for GUI control in a HWC 102 display) and a display 2012. The clip 2018 may be adapted to fit a wide range of watchbands so it can be used in connection with a watch that is independently selected for its function. The clip, in embodiments, is rotatable such that a user can position it in a desirable manner. In embodiments the clip may be a flexible strap. In embodiments, the flexible strap may be adapted to be stretched to attach to a hand, wrist, finger, device, weapon, and the like.
In embodiments, the watchband controller may be configured as a removable and replaceable watchband. For example, the controller may be incorporated into a band with a certain width, segment spacing's, etc. such that the watchband, with its incorporated controller, can be attached to a watch body. The attachment, in embodiments, may be mechanically adapted to attach with a pin upon which the watchband rotates. In embodiments, the watchband controller may be electrically connected to the watch and/or watch body such that the watch, watch body and/or the watchband controller can communicate data between them.
The watchband controller may have 3-axis motion monitoring (e.g. through an IMU, accelerometers, magnetometers, gyroscopes, etc.) to capture user motion. The user motion may then be interpreted for gesture control.
In embodiments, the watchband controller may comprise fitness sensors and a fitness computer. The sensors may track heart rate, calories burned, strides, distance covered, and the like. The data may then be compared against performance goals and/or standards for user feedback.
Another aspect of the present invention relates to visual display techniques relating to micro Doppler (“mD”) target tracking signatures (“mD signatures”). mD is a radar technique that uses a series of angle dependent electromagnetic pulses that are broadcast into an environment and return pulses are captured. Changes between the broadcast pulse and return pulse are indicative of changes in the shape, distance and angular location of objects or targets in the environment. These changes provide signals that can be used to track a target and identify the target through the mD signature. Each target or target type has a unique mD signature. Shifts in the radar pattern can be analyzed in the time domain and frequency domain based on mD techniques to derive information about the types of targets present (e.g. whether people are present), the motion of the targets and the relative angular location of the targets and the distance to the targets. By selecting a frequency used for the mD pulse relative to known objects in the environment, the pulse can penetrate the known objects to enable information about targets to be gathered even when the targets are visually blocked by the known objects. For example, pulse frequencies can be used that will penetrate concrete buildings to enable people to be identified inside the building. Multiple pulse frequencies can be used as well in the mD radar to enable different types of information to be gathered about the objects in the environment. In addition, the mD radar information can be combined with other information such as distance measurements or images captured of the environment that are analyzed jointly to provide improved object identification and improved target identification and tracking. In embodiments, the analysis can be performed on the HWC or the information can be transmitted to a remote network for analysis and results transmitted back to the HWC. Distance measurements can be provided by laser range finding, structured lighting, stereoscopic depth maps or sonar measurements. Images of the environment can be captured using one or more cameras capable of capturing images from visible, ultraviolet or infrared light. The mD radar can be attached to the HWC, located adjacently (e.g. in a vehicle) and associated wirelessly with the HWC or located remotely. Maps or other previously determined information about the environment can also be used in the analysis of the mD radar information. Embodiments of the present invention relate to visualizing the mD signatures in useful ways.
There are several traces 2108 and 2104 presented to the wearer in the embodiment illustrated in
In embodiments, certain user positions may be known and thus identified in the FOV. For example, the shooter of the friendly fire trace 2108 may be from a known friendly combatant and as such his location may be known. The position may be known based on his GPS location based on a mobile communication system on him, such as another HWC 102. In other embodiments, the friendly combatant may be marked by another friendly. For example, if the friendly position in the environment is known through visual contact or communicated information, a wearer of the HWC 102 may use a gesture or external user interface 104 to mark the location. If a friendly combatant location is known the originating position of the friendly fire trace 2108 may be color coded or otherwise distinguished from unidentified traces on the displayed digital content. Similarly, enemy fire traces 2104 may be color coded or otherwise distinguished on the displayed digital content. In embodiments, there may be an additional distinguished appearance on the displayed digital content for unknown traces.
In addition to situationally associated trace appearance, the trace colors or appearance may be different from the originating position to the terminating position. This path appearance change may be based on the mD signature. The mD signature may indicate that the bullet, for example, is slowing as it propagates and this slowing pattern may be reflected in the FOV 2102 as a color or pattern change. This can create an intuitive understanding of wear the shooter is located. For example, the originating color may be red, indicative of high speed, and it may change over the course of the trace to yellow, indicative of a slowing trace. This pattern changing may also be different for a friendly, enemy and unknown combatant. The enemy may go blue to green for a friendly trace, for example.
Another aspect of the present invention relates to mD radar techniques that trace and identify targets through other objects, such as walls (referred to generally as through wall mD), and visualization techniques related therewith.
mD target recognition methods can identify the identity of a target based on the vibrations and other small movements of the target. This can provide a personal signature for the target. In the case of humans, this may result in a personal identification of a target that has been previously characterized. The cardio, heart beat, lung expansion and other small movements within the body may be unique to a person and if those attributes are pre-identified they may be matched in real time to provide a personal identification of a person in the FOV 2202. The person's mD signatures may be determined based on the position of the person. For example, the database of personal mD signature attributes may include mD signatures for a person standing, sitting, laying down, running, walking, jumping, etc. This may improve the accuracy of the personal data match when a target is tracked through mD signature techniques in the field. In the event a person is personally identified, a specific indication of the person's identity may be presented in the FOV 2202. The indication may be a color, shape, shade, name, indication of the type of person (e.g. enemy, friendly, etc.), etc. to provide the wearer with intuitive real time information about the person being tracked. This may be very useful in a situation where there is more than one person in an area of the person being tracked. If just one person in the area is personally identified, that person or the avatar of that person can be presented differently than other people in the area.
An aspect of the present invention relates to suppression of extraneous or stray light. As discussed herein elsewhere, eyeglow and faceglow are two such artifacts that develop from such light. Eyeglow and faceglow can be caused by image light escaping from the optics module. The escaping light is then visible, particularly in dark environments when the user is viewing bright displayed images with the HWC. Light that escapes through the front of the HWC is visible as eyeglow as it that light that is visible in the region of the user's eyes. Eyeglow can appear in the form of a small version of the displayed image that the user is viewing. Light that escapes from the bottom of the HWC shines onto the user's face, cheek or chest so that these portions of the user appear to glow. Eyeglow and faceglow can both increase the visibility of the user and highlight the use of the HWC, which may be viewed negatively by the user. As such, reducing eyeglow and faceglow is advantageous. In combat situations (e.g. the mD trace presentation scenarios described herein) and certain gaming situations, the suppression of extraneous or stray light is very important.
The disclosure relating to
An example of the source for the faceglow light can come from wide cone angle light associated with the image light incident onto the combiner 602. Where the combiner can include a holographic mirror or a notch mirror in which the narrow bands of high reflectivity are matched to wavelengths of light by the light source. The wide cone angle associated with the image light corresponds with the field of view provided by the HWC. Typically the reflectivity of holographic mirrors and notch mirrors is reduced as the cone angle of the incident light is increased above 8 degrees. As a result, for a a field of view of 30 degrees, substantial image light can pass through the combiner and cause faceglow.
In embodiments, the combiner 602 may include a notch mirror coating to reflect the wavelengths of light in the image light and a notch filter 2620 can be selected in correspondence to the wavelengths of light provided by the light source and the narrow bands of high reflectivity provided by the notch mirror. In this way, image light that is not reflected by the notch mirror is absorbed by the notch filter 2620. In embodiments of the invention the light source can provide one narrow band of light for a monochrome imaging or three narrow bands of light for full color imaging. The notch mirror and associated notch filter would then each provide one narrow band or three narrow bands of high reflectivity and absorption respectively.
We now turn back to a description of eye imaging technologies. Aspects of the present invention relate to various methods of imaging the eye of a person wearing the HWC 102. In embodiments, technologies for imaging the eye using an optical path involving the “off” state and “no power” state, which is described in detail below, are described. In embodiments, technologies for imaging the eye with optical configurations that do not involve reflecting the eye image off of DLP mirrors is described. In embodiments, unstructured light, structured light, or controlled lighting conditions, are used to predict the eye's position based on the light reflected off of the front of the wearer's eye. In embodiments, a reflection of a presented digital content image is captured as it reflects off of the wearer's eye and the reflected image may be processed to determine the quality (e.g. sharpness) of the image presented. In embodiments, the image may then be adjusted (e.g. focused differently) to increase the quality of the image presented based on the image reflection.
For comparison, illuminating light rays 2973 from the light source 2958 are also shown being reflected by the partially reflective layer 2960. Where the angle of the illuminating light 2973 is such that the DLP mirrors, when in the “on” state, reflect the illuminating light 2973 to form image light 2969 that substantially shares the same optical axis as the light from the wearer's eye 2971. In this way, images of the wearer's eye are captured in a field of view that overlaps the field of view for the displayed image content. In contrast, light reflected by DLP mirrors in the “off” state form dark light 2975 which is directed substantially to the side of the image light 2969 and the light from eye 2971. Dark light 2975 is directed toward a light trap 2962 that absorbs the dark light to improve the contrast of the displayed image as has been described above in this specification.
In an embodiment, partially reflective layer 2960 is a reflective polarizer. The light that is reflected from the eye 2971 can then be polarized prior to entering the corrective wedge 2966 (e.g with an absorptive polarizer between the upper module 202 and the lower module 204), with a polarization orientation relative to the reflective polarizer that enables the light reflected from the eye 2971 to substantially be transmitted by the reflective polarizer. A quarter wave retarder layer 2957 is then included adjacent to the DLP 2955 (as previously disclosed in
In a further embodiment illustrated by
Alternately, the “no power” state can be applied to a subset of the DLP mirrors (e.g. 10% of the DLP mirrors) within while another subset is in busy generating image light for content to be displayed. This enables the capture of an eye image(s) during the display of digital content to the wearer. The DLP mirrors used for eye imaging can, for example, be distributed randomly across the area of the DLP to minimize the impact on the quality of the digital content being displayed to the wearer. To improve the displayed image perceived by the wearer, the individual DLP mirrors put into the “no power” state for capturing each eye image, can be varied over time such as in a random pattern, for example. In yet a further embodiment, the DLP mirrors put into the “no power” state for eye imaging may be coordinated with the digital content in such a way that the “no power” mirrors are taken from a portion of the image that requires less resolution.
In the embodiments of the invention as illustrated in
In the embodiment illustrated in
Eye imaging systems where the polarization state of the light from the eye 2971 needs to be opposite to that of the image light 2969 (as shown in
In a further embodiment shown in
In yet another embodiment shown in
In embodiments directed to capturing images of the wearer's eye, light to illuminate the wearer's eye can be provided by several different sources including: light from the displayed image (i.e. image light); light from the environment that passes through the combiner or other optics; light provided by a dedicated eye light, etc.
In an embodiment of the eye imaging system, the lens for the camera is designed to take into account the optics associated with the upper module 202 and the lower module 204. This is accomplished by designing the camera to include the optics in the upper module 202 and optics in the lower module 204, so that a high MTF image is produced, at the image sensor in the camera, of the wearer's eye. In yet a further embodiment, the camera lens is provided with a large depth of field to eliminate the need for focusing the camera to enable sharp image of the eye to be captured. Where a large depth of field is typically provided by a high f/# lens (e.g. f/#>5). In this case, the reduced light gathering associated with high f/# lenses is compensated by the inclusion of a dedicated eye light to enable a bright image of the eye to be captured. Further, the brightness of the dedicated eye light can be modulated and synchronized with the capture of eye images so that the dedicated eye light has a reduced duty cycle and the brightness of infrared light on the wearer's eye is reduced.
In a further embodiment,
An aspect of the present invention relates to controlling the HWC 102 through interpretations of eye imagery. In embodiments, eye-imaging technologies, such as those described herein, are used to capture an eye image or series of eye images for processing. The image(s) may be process to determine a user intended action, an HWC predetermined reaction, or other action. For example, the imagery may be interpreted as an affirmative user control action for an application on the HWC 102. Or, the imagery may cause, for example, the HWC 102 to react in a pre-determined way such that the HWC 102 is operating safely, intuitively, etc.
In embodiments, the digital content that is in line with the virtual target line may not be displayed in the FOV until the eye position is in the right position. This may be a predetermined process. For example, the system may be set up such that a particular piece of digital content (e.g. an advertisement, guidance information, object information, etc.) will appear in the event that the wearer looks at a certain object(s) in the environment. A virtual target line(s) may be developed that virtually connects the wearer's eye with an object(s) in the environment (e.g. a building, portion of a building, mark on a building, gps location, etc.) and the virtual target line may be continually updated depending on the position and viewing direction of the wearer (e.g. as determined through GPS, e-compass, IMU, etc.) and the position of the object. When the virtual target line suggests that the wearer's pupil is substantially aligned with the virtual target line or about to be aligned with the virtual target line, the digital content may be displayed in the FOV 3704.
In embodiments, the time spent looking along the virtual target line and/or a particular portion of the FOV 3708 may indicate that the wearer is interested in an object in the environment and/or digital content being displayed. In the event there is no digital content being displayed at the time a predetermined period of time is spent looking at a direction, digital content may be presented in the area of the FOV 3708. The time spent looking at an object may be interpreted as a command to display information about the object, for example. In other embodiments, the content may not relate to the object and may be presented because of the indication that the person is relatively inactive. In embodiments, the digital content may be positioned in proximity to the virtual target line, but not in-line with it such that the wearer's view of the surroundings are not obstructed but information can augment the wearer's view of the surroundings. In embodiments, the time spent looking along a target line in the direction of displayed digital content may be an indication of interest in the digital content. This may be used as a conversion event in advertising. For example, an advertiser may pay more for an add placement if the wearer of the HWC 102 looks at a displayed advertisement for a certain period of time. As such, in embodiments, the time spent looking at the advertisement, as assessed by comparing eye position with the content placement, target line or other appropriate position may be used to determine a rate of conversion or other compensation amount due for the presentation.
An aspect of the invention relates to removing content from the FOV of the HWC 102 when the wearer of the HWC 102 apparently wants to view the surrounding environments clearly.
Another aspect of the present invention relates to determining a focal plane based on the wearer's eye convergence. Eyes are generally converged slightly and converge more when the person focuses on something very close. This is generally referred to as convergence. In embodiments, convergence is calibrated for the wearer. That is, the wearer may be guided through certain focal plane exercises to determine how much the wearer's eyes converge at various focal planes and at various viewing angles. The convergence information may then be stored in a database for later reference. In embodiments, a general table may be used in the event there is no calibration step or the person skips the calibration step. The two eyes may then be imaged periodically to determine the convergence in an attempt to understand what focal plane the wearer is focused on. In embodiments, the eyes may be imaged to determine a virtual target line and then the eye's convergence may be determined to establish the wearer's focus, and the digital content may be displayed or altered based thereon.
An aspect of the present invention relates to controlling the HWC 102 based on events detected through eye imaging. A wearer winking, blinking, moving his eyes in a certain pattern, etc. may, for example, control an application of the HWC 102. Eye imaging (e.g. as described herein) may be used to monitor the eye(s) of the wearer and once a pre-determined pattern is detected an application control command may be initiated.
An aspect of the invention relates to monitoring the health of a person wearing a HWC 102 by monitoring the wearer's eye(s). Calibrations may be made such that the normal performance, under various conditions (e.g. lighting conditions, image light conditions, etc.) of a wearer's eyes may be documented. The wearer's eyes may then be monitored through eye imaging (e.g. as described herein) for changes in their performance. Changes in performance may be indicative of a health concern (e.g. concussion, brain injury, stroke, loss of blood, etc.). If detected the data indicative of the change or event may be communicated from the HWC 102.
Aspects of the present invention relate to security and access of computer assets (e.g. the HWC itself and related computer systems) as determined through eye image verification. As discussed herein elsewhere, eye imagery may be compared to known person eye imagery to confirm a person's identity. Eye imagery may also be used to confirm the identity of people wearing the HWCs 102 before allowing them to link together or share files, streams, information, etc.
A variety of use cases for eye imaging are possible based on technologies described herein. An aspect of the present invention relates to the timing of eye image capture. The timing of the capture of the eye image and the frequency of the capture of multiple images of the eye can vary dependent on the use case for the information gathered from the eye image. For example, capturing an eye image to identify the user of the HWC may be required only when the HWC has been turned ON or when the HWC determines that the HWC has been put onto a wearer's head, to control the security of the HWC and the associated information that is displayed to the user. Wherein, the orientation, movement pattern, stress or position of the earhorns (or other portions of the HWC) of the HWC can be used to determine that a person has put the HWC onto their head with the intention to use the HWC. Those same parameters may be monitored in an effort to understand when the HWC is dismounted from the user's head. This may enable a situation where the capture of an eye image for identifying the wearer may be completed only when a change in the wearing status is identified. In a contrasting example, capturing eye images to monitor the health of the wearer may require images to be captured periodically (e.g. every few seconds, minutes, hours, days, etc.). For example, the eye images may be taken in minute intervals when the images are being used to monitor the health of the wearer when detected movements indicate that the wearer is exercising. In a further contrasting example, capturing eye images to monitor the health of the wearer for long-term effects may only require that eye images be captured monthly. Embodiments of the invention relate to selection of the timing and rate of capture of eye images to be in correspondence with the selected use scenario associated with the eye images. These selections may be done automatically, as with the exercise example above where movements indicate exercise, or these selections may be set manually. In a further embodiment, the selection of the timing and rate of eye image capture is adjusted automatically depending on the mode of operation of the HWC. The selection of the timing and rate of eye image capture can further be selected in correspondence with input characteristics associated with the wearer including age and health status, or sensed physical conditions of the wearer including heart rate, chemical makeup of the blood and eye blink rate.
In embodiments, the sensor that assesses the wearer's movements may be a GPS sensor, IMU, accelerometer, etc. The content position may be shifted from a neutral position to a position towards a side edge of the field of view as the forward motion increases. The content position may be shifted from a neutral position to a position towards a top or bottom edge of the field of view as the forward motion increases. The content position may shift based on a threshold speed of the assessed motion. The content position may shift linearly based on the speed of the forward motion. The content position may shift non-linearly based on the speed of the forward motion. The content position may shift outside of the field of view. In embodiments, the content is no longer displayed if the speed of movement exceeds a predetermined threshold and will be displayed again once the forward motion slows.
In embodiments, the content position may generally be referred to as shifting; it should be understood that the term shifting encompasses a process where the movement from one position to another within the see-through FOV or out of the FOV is visible to the wearer (e.g. the content appears to slowly or quickly move and the user perceives the movement itself) or the movement from one position to another may not be visible to the wearer (e.g. the content appears to jump in a discontinuous fashion or the content disappears and then reappears in the new position).
Another aspect of the present invention relates to removing the content from the field of view or shifting it to a position within the field of view that increases the wearer's view of the surrounding environment when a sensor causes an alert command to be issued. In embodiments, the alert may be due to a sensor or combination of sensors that sense a condition above a threshold value. For example, if an audio sensor detects a loud sound of a certain pitch, content in the field of view may be removed or shifted to provide a clear view of the surrounding environment for the wearer. In addition to the shifting of the content, in embodiments, an indication of why the content was shifted may be presented in the field of view or provided through audio feedback to the wearer. For instance, if a carbon monoxide sensor detects a high concentration in the area, content in the field of view may be shifted to the side of the field of view or removed from the field of view and an indication may be provided to the wearer that there is a high concentration of carbon monoxide in the area. This new information, when presented in the field of view, may similarly be shifted within or outside of the field of view depending on the movement speed of the wearer.
Another aspect of the present invention relates to identification of various vectors or headings related to the HWC 102, along with sensor inputs, to determine how to position content in the field of view. In embodiments, the speed of movement of the wearer is detected and used as an input for position of the content and, depending on the speed, the content may be positioned with respect to a movement vector or heading (i.e. the direction of the movement), or a sight vector or heading (i.e. the direction of the wearer's sight direction). For example, if the wearer is moving very fast the content may be positioned within the field of view with respect to the movement vector because the wearer is only going to be looking towards the sides of himself periodically and for short periods of time. As another example, if the wearer is moving slowly, the content may be positioned with respect to the sight heading because the user may more freely be shifting his view from side to side.
Another aspect of the present invention relates to damping a rate of content position change within the field of view. As illustrated in
Another aspect of the present invention relates to simultaneously presenting more than one content in the field of view of a see-through optical system of a HWC 102 and positioning one content with the sight heading and one content with the movement heading.
Embodiments provide a process for determining the display heading that takes into account the way a user moves through an environment and provides a display heading that makes it easy for the user to find the displayed information while also providing unencumbered see-through views of the environment in response to different movements, speed of movement or different types of information being displayed.
In an embodiment, the display heading is determined based on speed of movement. At low speeds, the display heading may be substantially the same as the sight heading while at high speed the display heading may be substantially the same as the movement heading. In embodiments, as long as the user remains stationary, the displayed information is presented directly in front of the user and HWC. However, as the movement speed increases (e.g. above a threshold or continually, etc.) the display heading becomes substantially the same as the movement heading regardless of the direction the user is looking, so that when the user looks in the direction of movement, the displayed information is directly in front of the user and HMD and when the user looks to the side the displayed information is not visible.
Rapid changes in sight heading can be followed by a slower change in the display heading to provide a damped response to head rotation. Alternatively, the display heading can be substantially the time averaged sight heading so that the displayed information is presented at a heading that is in the middle of a series of sight headings over a period of time. In this embodiment, if the user stops moving their head, the display heading gradually becomes the same as the sight heading and the displayed information moves into the display field of view in front of the user and HMD. In embodiments, when there is a high rate of sight heading change, the process delays the effect of the time averaged sight heading on the display heading. In this way, the effect of rapid head movements on display heading is reduced and the positioning of the displayed information within the display field of view is stabilized laterally.
In another embodiment, display heading is determined based on speed of movement where at high-speed, the display heading is substantially the same as the movement heading. At mid-speed the display heading is substantially the same as a time averaged sight heading so that rapid head rotations are damped out and the display heading is in the middle of back and forth head movements.
In yet another embodiment, the type of information being displayed is included in determining how the information should be displayed. Augmented reality information that is connected to objects in the environment is given a display heading that substantially matches the sight heading. In this way, as the user rotates their head, augmented reality information comes into view that is related to objects that are in the see-through view of the environment. At the same time, information that is not connected to objects in the environment is given a display heading that is determined based on the type of movements and speed of movements as previously described in this specification.
In yet a further embodiment, when the speed of movement is determined to be above a threshold, the information displayed is moved downward in the display field of view so that the upper portion of the display field of view has less information or no information displayed to provide the user with an unencumbered see-through view of the environment.
In embodiments, the content may be positioned with respect to other types of sensors. For example, a sensor may detect an environmental condition that may be of interest and this may effect the position of the content in the display. For example, the sensor may be a chemical sensor, fire sensor, mechanical sensor, electrical sensor, audio sensor, biologic sensor, etc. and the sensor may detect the presence of danger or other condition that causes the wearer to want to view the surroundings in a clear view so the content may then shift in or out of the field of view, as described herein. In embodiments, the sensor(s) may be mounted on/in the HWC 102, local to the HWC 102, remote from the HWC 102, or otherwise located. In embodiments, the sensor input may cause content to be presented in the field of view and then the sensor input, from the same or a different sensor or combination of sensors, may cause the content to be re-positioned.
In a further embodiment, in an operating mode such as when the user is moving in an environment, digital content is presented at the side of the user's see-through FOV so that the user can only view the digital content by turning their head. In this case, when the user is looking straight ahead, such as when the movement heading matches the sight heading, the see-through view FOV does not include digital content. The user then accesses the digital content by turning their head to the side whereupon the digital content moves laterally into the user's see-through FOV. In another embodiment, the digital content is ready for presentation and will be presented if an indication for its presentation is received. For example, the information may be ready for presentation and if the sight heading or predetermined position of the HWC 102 is achieved the content may then be presented. The wearer may look to the side and the content may be presented. In another embodiment, the user may cause the content to move into an area in the field of view by looking in a direction for a predetermined period of time, blinking, winking, or displaying some other pattern that can be captured through eye imaging technologies (e.g. as described herein elsewhere).
In yet another embodiment, an operating mode is provided wherein the user can define sight headings wherein the associated see-through FOV includes digital content or does not include digital content. In an example, this operating mode can be used in an office environment where when the user is looking at a wall digital content is provided within the FOV, whereas when the user is looking toward a hallway, the FOV is unencumbered by digital content. In another example, when the user is looking horizontally digital content is provided within the FOV, but when the user looks down (e.g. to look at a desktop or a cellphone) the digital content is removed from the FOV.
Another aspect of the present invention relates to collecting and using eye position and sight heading information. Head-worn computing with motion heading, sight heading, and/or eye position prediction (sometimes referred to as “eye heading” herein) may be used to identify what a wearer of the HWC 102 is apparently interested in and the information may be captured and used. In embodiments, the information may be characterized as viewing information because the information apparently relates to what the wearer is looking at. The viewing information may be used to develop a personal profile for the wearer, which may indicate what the wearer tends to look at. The viewing information from several or many HWC's 102 may be captured such that group or crowd viewing trends may be established. For example, if the movement heading and sight heading are known, a prediction of what the wearer is looking at may be made and used to generate a personal profile or portion of a crowd profile. In another embodiment, if the eye heading and location, sight heading and/or movement heading are known, a prediction of what is being looked at may be predicted. The prediction may involve understanding what is in proximity of the wearer and this may be understood by establishing the position of the wearer (e.g. through GPS or other location technology) and establishing what mapped objects are known in the area. The prediction may involve interpreting images captured by the camera or other sensors associated with the HWC 102. For example, if the camera captures an image of a sign and the camera is in-line with the sight heading, the prediction may involve assessing the likelihood that the wearer is viewing the sign. The prediction may involve capturing an image or other sensory information and then performing object recognition analysis to determine what is being viewed. For example, the wearer may be walking down a street and the camera that is in the HWC 102 may capture an image and a processor, either on-board or remote from the HWC 102, may recognize a face, object, marker, image, etc. and it may be determined that the wearer may have been looking at it or towards it.
The eye imaging system can also be used for the assessment of aspects of health of the user. In this case, information gained from analyzing captured images of the iris 5012 is different from information gained from analyzing captured images of the retina 5014. Where images of the retina 5014 are captured using light 5357 that illuminates the inner portions of the eye including the retina 5014. The light 5357 can be visible light, but in an embodiment, the light 5357 is infrared light (e.g. wavelength 1 to 5 microns) and the camera 3280 is an infrared light sensor (e.g. an InGaAs sensor) or a low resolution infrared image sensor that is used to determine the relative amount of light 5357 that is absorbed, reflected or scattered by the inner portions of the eye. Wherein the majority of the light that is absorbed, reflected or scattered can be attributed to materials in the inner portion of the eye including the retina where there are densely packed blood vessels with thin walls so that the absorption, reflection and scattering are caused by the material makeup of the blood. These measurements can be conducted automatically when the user is wearing the HWC, either at regular intervals, after identified events or when prompted by an external communication. In a preferred embodiment, the illuminating light is near infrared or mid infrared (e.g. 0.7 to 5 microns wavelength) to reduce the chance for thermal damage to the wearer's eye. In another embodiment, the polarizer 3285 is antireflection coated to reduce any reflections from this surface from the light 5357, the light 2969 or the light 3275 and thereby increase the sensitivity of the camera 3280. In a further embodiment, the light source 5355 and the camera 3280 together comprise a spectrometer wherein the relative intensity of the light reflected by the eye is analyzed over a series of narrow wavelengths within the range of wavelengths provided by the light source 5355 to determine a characteristic spectrum of the light that is absorbed, reflected or scattered by the eye. For example, the light source 5355 can provide a broad range of infrared light to illuminate the eye and the camera 3280 can include: a grating to laterally disperse the reflected light from the eye into a series of narrow wavelength bands that are captured by a linear photodetector so that the relative intensity by wavelength can be measured and a characteristic absorbance spectrum for the eye can be determined over the broad range of infrared. In a further example, the light source 5355 can provide a series of narrow wavelengths of light (ultraviolet, visible or infrared) to sequentially illuminate the eye and camera 3280 includes a photodetector that is selected to measure the relative intensity of the series of narrow wavelengths in a series of sequential measurements that together can be used to determine a characteristic spectrum of the eye. The determined characteristic spectrum is then compared to known characteristic spectra for different materials to determine the material makeup of the eye. In yet another embodiment, the illuminating light 5357 is focused on the retina 5014 and a characteristic spectrum of the retina 5014 is determined and the spectrum is compared to known spectra for materials that may be present in the user's blood. For example, in the visible wavelengths 540 nm is useful for detecting hemoglobin and 660 nm is useful for differentiating oxygenated hemoglobin. In a further example, in the infrared, a wide variety of materials can be identified as is known by those skilled in the art, including: glucose, urea, alcohol and controlled substances.
Another aspect of the present invention relates to collecting and using eye position and sight heading information. Head-worn computing with motion heading, sight heading, and/or eye position prediction (sometimes referred to as “eye heading” herein) may be used to identify what a wearer of the HWC 102 is apparently interested in and the information may be captured and used. In embodiments, the information may be characterized as viewing information because the information apparently relates to what the wearer is looking at. The viewing information may be used to develop a personal profile for the wearer, which may indicate what the wearer tends to look at. The viewing information from several or many HWC's 102 may be captured such that group or crowd viewing trends may be established. For example, if the movement heading and sight heading are known, a prediction of what the wearer is looking at may be made and used to generate a personal profile or portion of a crowd profile. In another embodiment, if the eye heading and location, sight heading and/or movement heading are known, a prediction of what is being looked at may be predicted. The prediction may involve understanding what is in proximity of the wearer and this may be understood by establishing the position of the wearer (e.g. through GPS or other location technology) and establishing what mapped objects are known in the area. The prediction may involve interpreting images captured by the camera or other sensors associated with the HWC 102. For example, if the camera captures an image of a sign and the camera is in-line with the sight heading, the prediction may involve assessing the likelihood that the wearer is viewing the sign. The prediction may involve capturing an image or other sensory information and then performing object recognition analysis to determine what is being viewed. For example, the wearer may be walking down a street and the camera that is in the HWC 102 may capture an image and a processor, either on-board or remote from the HWC 102, may recognize a face, object, marker, image, etc. and it may be determined that the wearer may have been looking at it or towards it.
In embodiments, sight headings may be used in conjunction with eye headings or eye and/or sight headings may be used alone. Sight headings can do a good job of predicting what direction a wearer is looking because many times the eyes are looking forward, in the same general direction as the sight heading. In other situations, eye headings may be a more desirable metric because the eye and sight headings are not always aligned. In embodiments herein examples may be provided with the term “eye/sight” heading, which indicates that either or both eye heading and sight heading may be used in the example.
In embodiments, the process involves collecting eye and/or sight heading information from a plurality of head-worn computers that come into proximity with an object in an environment. For example, a number of people may be walking through an area and each of the people may be wearing a head-worn computer with the ability to track the position of the wearer's eye(s) as well as possibly the wearer's sight and movement headings. The various HWC wearing individuals may then walk, ride, or otherwise come into proximity with some object in the environment (e.g. a store, sign, person, vehicle, box, bag, etc.). When each person passes by or otherwise comes near the object, the eye imaging system may determine if the person is looking towards the object. All of the eye/sight heading information may be collected and used to form impressions of how the crowd reacted to the object. A store may be running a sale and so the store may put out a sign indicating such. The storeowners and managers may be very interested to know if anyone is looking at their sign. The sign may be set as the object of interest in the area and as people navigate near the sign, possibly determined by their GPS locations, the eye/sight heading determination system may record information relative to the environment and the sign. Once, or as, the eye/sight heading information is collected and associations between the eye headings and the sign are determined, feedback may be sent back to the storeowner, managers, advertiser, etc. as an indication of how well their sign is attracting people. In embodiments, the sign's effectiveness at attracting people's attention, as indicated through the eye/sight headings, may be considered a conversion metric and impact the economic value of the sign and/or the signs placement.
In embodiments, a map of the environment with the object may be generated by mapping the locations and movement paths of the people in the crowd as they navigate by the object (e.g. the sign). Layered on this map may be an indication of the various eye/sight headings. This may be useful in indicating wear people were in relation to the object when then viewed they object. The map may also have an indication of how long people looked at the object from the various positions in the environment and where they went after seeing the object.
In embodiments, the process involves collecting a plurality of eye/sight headings from a head-worn computer, wherein each of the plurality of eye/sight headings is associated with a different pre-determined object in an environment. This technology may be used to determine which of the different objects attracts more of the person's attention. For example, if there are three objects placed in an environment and a person enters the environment navigating his way through it, he may look at one or more of the objects and his eye/sight heading may persist on one or more objects longer than others. This may be used in making or refining the person's personal attention profile and/or it may be used in connection with other such people's data on the same or similar objects to determine an impression of how the population or crowd reacts to the objects. Testing advertisements in this way may provide good feedback of its effectiveness.
In embodiments, the process may involve capturing eye/sight headings once there is substantial alignment between the eye/sight heading and an object of interest. For example, the person with the HWC may be navigating through an environment and once the HWC detects substantial alignment or the projected occurrence of an upcoming substantial alignment between the eye/sight heading and the object of interest, the occurrence and/or persistence may be recorded for use.
In embodiments, the process may involve collecting eye/sight heading information from a head-worn computer and collecting a captured image from the head-worn computer that was taken at substantially the same time as the eye/sight heading information was captured. These two pieces of information may be used in conjunction to gain an understanding of what the wearer was looking at and possibly interested in. The process may further involve associating the eye/sight heading information with an object, person, or other thing found in the captured image. This may involve processing the captured image looking for objects or patterns. In embodiments, gaze time or persistence may be measured and used in conjunction with the image processing. The process may still involve object and/or pattern recognition, but it may also involve attempting to identify what the person gazed at for the period of time by more particularly identifying a portion of the image in conjunction with image processing.
In embodiments, the process may involve setting a pre-determined eye/sight heading from a pre-determined geospatial location and using them as triggers. In the event that a head-worn computer enters the geospatial location and an eye/sight heading associated with the head-worn computer aligns with the pre-determined eye/sight heading, the system may collect the fact that there was an apparent alignment and/or the system may record information identifying how long the eye/sight heading remains substantially aligned with the pre-determined eye/sight heading to form a persistence statistic. This may eliminate or reduce the need for image processing as the triggers can be used without having to image the area. In other embodiments, image capture and processing is performed in conjunction with the triggers. In embodiments, the triggers may be a series a geospatial locations with corresponding eye/sight headings such that many spots can be used as triggers that indicate when a person entered an area in proximity to an object of interest and/or when that person actually appeared to look at the object.
In embodiments, eye imaging may be used to capture images of both eyes of the wearer in order to determine the amount of convergence of the eyes (e.g. through technologies described herein elsewhere) to get an understanding of what focal plane is being concentrated on by the wearer. For example, if the convergence measurement suggests that the focal plane is within 15 feet of the wearer, than, even though the eye/sight headings may align with an object that is more than 15 feet away it may be determined that the wearer was not looking at the object. If the object were within the 15 foot suggested focal plane, the determination may be that the wearer was looking at the object.
An aspect of the present invention relates to providing tactile feedback in a HWC 102. In embodiments, the tactile feedback is indicative of a sensor system output. The sensor may be in the HWC 102, associated with the HWC 102, associated with another device or system, etc. In embodiments, the HWC 102 is worn by a person in a vehicle (e.g. a car, truck, motorcycle, etc.) and the sensor system in the vehicle feeds information to the HWC 102 and the HWC 102 responds by providing tactile feedback (e.g. a vibration in the HWC 102).
In embodiments, the HWC 102 may have a vibration system that vibrates to alert the wearer of certain sensed conditions. In embodiments, the vibration system (e.g. an actuator that moves quickly to cause vibration in the HWC 102) may be mounted in a side arm (e.g. the temple portion 304, or ear horn 308), in the top mount 312, etc. In embodiments, the vibration system may be capable of causing different vibration modes that may be indicative of different conditions. For example, the vibration system may include a multi-mode vibration system, piezoelectric vibration system, variable motor, etc, that can be regulated through computer input and a processor in the HWC 102 may send control signals to the vibration system to generate an appropriate vibration mode. In embodiments, the HWC 102 may be associated with other devices (e.g. through Bluetooth, WiFi, etc.) and the vibratory control signals may be associated with sensors associated with the other device. For example, the HWC 102 may be connected to a car through Bluetooth such that sensor(s) in the car can cause activation of a vibration mode for the vibration system. The car, for example, may determine that a risk of accident is present (e.g. risk of the driver falling asleep, car going out of its lane, a car in front of the wearer is stopped or slowing, radar in the car indicates a risk, etc.) and the car's system may then send a command, via the Bluetooth connection, to the HWC 102 to cause a vibratory tone to be initiated in the HWC 102.
The HWC 102 may detect the wearer's heart rate and provide tactile or visual alerts based on same. For example, the HWC 102 may have a heart monitor in one or both ear-horns, nose-bridge or other point that contacts the skin. The HWC 102 may check heart rate or blood pressure through eye imaging technologies, such as those described herein elsewhere. The HWC 102 may have imaging capabilities (e.g. an IR light and IR camera that is positioned to monitor blood flow through the skin of the wearer's forehead or other area proximate the HWC 102. The heart rate, pressure or other detected heath indication may produce a tactile or visual (e.g. through the HWC 102 display) during the automotive experience.
In embodiments, eye imaging and tracking technologies (e.g. those described herein elsewhere) may be used in connection with the automotive experience. For example, eye imaging may be used to understand if the driver is getting tired or falling asleep. This may be done by imaging and interpreting images relating to the eye lids, color (e.g. redness) of the sclera, pupil dilation, etc. Eye imaging may also be used to interpret blood toxicity level, blood alcohol level, blood drug level, driving under the influence, which may involve comparison to a standard, etc. Eye imaging may also be used to understand where the user is looking and/or focusing. In the event that the HWC 102 interprets the eye imaging as an indication that the driver is not looking at the road or otherwise distracted (e.g. based on eye direction, focal plane being too close, eye movement pattern, etc.) a tactile or visual alert may be initiated. In embodiments, a prediction of driver distraction may cause other sensor alerts to be adjusted. For example, if it is predicted that the driver is distracted, a collision alert may be initiated earlier or it may come more intensely than if it seemed that the driver was paying attention.
In embodiments, the HWC 102 may predict whether the HWC 102 is being worn by a driver, front seat passenger, or back seat passenger. For example, the HWC may use an integrated camera to capture an image in front of the wearer and then interpret the image looking for certain identifying objects. The driver is in front of driver controls (e.g. steering wheel, speedometer, other instruments, etc.) and the driver is in a certain position with respect to the vehicle (e.g. on the left side in the front in the U.S.). The HWC 102 may deploy certain functions differently for the driver. For example, content displayed may be displayed only in certain limited situations and it may be presented towards the sides of the displays to reduce driver distraction. The HWC 102 tactile feedback from the vehicle systems may only be for the driver because the driver is the only one that can control the vehicle. However, in embodiments a passenger may also or alternatively receive an alert from a sensor system to assist to the driver. For example, the passenger may receive a tactile or visual indication of driver sleepiness, distraction, erratic driving, etc. so the passenger is alerted to help or stop interacting with the driver (e.g. stop talking or otherwise distracting the driver).
User identification (e.g. through eye imaging, or HWC 102 personal settings/user login information, etc.) and seat position may also be used to set the vehicle's systems. For example, if it is determined that a HWC 102 is being worn by a driver and the personal vehicle preferences for the driver are known, the vehicle preferences may be set automatically. This may cause the seat, steering wheel, driving mode, mirror positions, lighting system, locking preferences, etc, to be set automatically based on the user identification and seat position.
In embodiments, vehicle sensor information may be visual displayed in proximity to the vehicle's mirrors or other natural view-point for the type of information the driver may be interested in. For example, since the driver normally looks at the vehicle's mirrors to look for other vehicles and objects other sensor feedback information (e.g. blind spot alert) may be displayed only when the wearer can view a mirror through the see through display and then the content may be virtually connected to the mirror such that the driver perceives the information to be connected to the mirror (e.g. by using the mirror, portion of the mirror, edge of the mirror, etc. as a marker for the content position in the FOV of the HWC 102). In embodiments, the displayed content may augment the view of the mirror or replace what the driver can see in the mirror. The augmented view may cause the mirror to appear larger than normal so additional imagery or other content can be displayed in connection with the mirror to the driver.
In embodiments, the vehicle's image capture process may be initiated when the driver looks in a particular pre-determined direction (e.g. as determined by his sight heading or HWC compass heading, eye imaging, etc.). Several cameras may initiate capture when the driver looks in a particular direction and the camera images may be stitched together for presentation in the HWC 102 displays.
In embodiments, displayed content may be positioned proximate or over the top of controls or gauges. For example, the vehicle may have a gauge cluster and augmented content may be positioned to appear when the user is looking at the gauge cluster (e.g. as determined through eye imaging).
In embodiments, sensors in the HWC 102 may be used to record events that occurred in a vehicle. For example, if the vehicle gets into an accident the sensors may record the wearer's head speed, camera images, etc. The sensors may also be used to establish traffic or roadway conditions and the information may be communicated to a server through a network connection.
In embodiments, the HWC 102 may be used to visualize customizable features of a vehicle. For example, in a car showroom, a wearer may augment the view of a vehicle to illustrate the exterior (e.g. color, wheels, tires, custom parts, etc.) or interior (seat type, fabric types, covering types, colors, etc.). In embodiments, the view may not be an augmented view; it may be a virtual view where the entire vehicle or portion thereof is presented as digital content and the wearer can select various customizable portions for alteration.
In embodiments, a system may compare the HWC 102 compass heading to the vehicle's compass heading, or the GPS heading, and adjust the auto-driving system (e.g. auto braking or collision avoidance) or auto-alert system (e.g. collision warning) accordingly. For example, if the driver is looking out the side window, the auto-driving system may be configured to be more sensitive and/or respond quicker because the fact that the two compass headings do not align may be interpreted as an indication that the driver is distracted. This may result in the car's cameras being operated at a faster frame rate, the threshold time to take action may be shorter, the action may be more aggressive, etc.
In embodiments, a GPS destination may be indicated to the user by an augmented reality marker that is visible in the glasses. The augmented reality marker may then highlight where the destination is before the user gets there even if the user has to turn their head to see it.
In embodiments, the display(s) in the HWC 102 may be turned off when the car is moving and turned back on when the car stops. This may be done for the driver only (e.g. in a situation where the driver is identified as the driver through technologies described herein). In embodiments, the information that would have otherwise been displayed while the driver was driving may be selectable or otherwise displayable after the vehicle stops (e.g. as determined by a vehicle feedback system or the HWC sensors). For example, a smart email manager could present a summarized view of email or other information when stopped to make it easier to scan what has come in while driving. This may also save on battery life since the display would be off much of the time.
In embodiments, the vehicle or the HWC 102 may have a thermal camera facing forward and information from the thermal camera may be presented visually (e.g. augmented reality indicating the area of interest, a content message, etc.) or through tactile feedback (e.g. as illustrated herein). This may be used to identify hot spots such as animals or people near the road. It can also be used to identify cold spots, which can be very important when near freezing to help identify potential areas of black ice on the road such as on bridges. This may include special settings on the thermal camera (e.g. cooling the thermal camera to below freezing). In embodiments, this would be done when the ambient conditions are near freezing to avoid condensation on the cover glass of the thermal camera. This may be used to increase sensitivity near freezing.
In embodiments, the HWC 102 may communicate wirelessly with the vehicle's self-monitoring system to identify performance measurements, settings, fluid measurements, faults, problems, etc. In embodiments, as the driver walks around looking at the car, the areas of interest may be highlighted (e.g. through an augmented reality image, content message, etc.). In embodiments, a description of problems and suggested courses of action may be included. For example, the tire pressure light may be on, and the HWC 102 display may show which tire is low. Another example is where the coolant temperature is or has been high and when the driver opens the hood the HWC 102 displays display content that highlights the radiator cap, the fan belt, and/or the water pump. Another example is where, at a maintenance interval, the areas of the car that need attention are highlighted when the user looks at the car. This may include messaging to indicate what needs to be done.
In further embodiments, specific to operating vehicles such as for example: automobiles, planes, ships or trains, displayed content may only be provided within the display field of view of the head-mounted display when the gaze direction of the user is away from the transparent portion of the windshield or other windows and toward a portion of the vehicle where the displayed content will not impede the user's view of the surrounding environment, thereby enhancing safety.
Determining where the user is looking can be done by comparing the gaze direction of the head-mounted display, such as determined by an associated magnetometer, to the motion direction of the head mounted display, such as determined by an associated GPS sensor. For example, if the gaze direction is similar to the motion direction (e.g. within 20 degrees of each other), the user may be determined to be looking through the windshield and displayed content is not provided within the display field of view. Similarly, if the gaze direction is different from the motion direction by 70 to 100 degrees, the user may be determined to be looking out a side window and displayed content is not provided within the display field of view. However, if the gaze direction is different from the motion direction by 20 to 70 degrees, the user may be determined to be looking at the dashboard and not looking through the windshield or side window and depending on the direction of the difference, different types of displayed content may be provided within the display field of view. For example, if the gaze direction is 40 degrees to the right of the motion direction and 10 degrees downward compared to the motion direction, the user may be determined to be looking at position 6014 so navigational information is provided for the user to view within the display field of view. However, if the gaze direction is 30 degrees to the right and 10 degrees upward compared to the motion direction, the user may be determined to be looking at position 6012 so images from the backup camera are provided for viewing by the user within the display field of view.
Alternatively, a camera associated with the head mounted display can be used to capture images of the interior of the vehicle from the perspective of the user. The captured images may then be analyzed to identify objects or target points within the interior of the vehicle and thereby determine the direction the user is looking. In this analysis, for example, objects associated with the vehicle can be identified such as, the edge of the windshield 6010, the steering wheel 6020, the rear view mirror, door pillar, edges of a side window, audio system or side view mirror. Easily identifiable markings or target points can be associated with objects in the interior of the vehicle such as high contrast stripes, small lights or specific colors. In this way, the camera and associated image analysis system could tell the difference between the user looking out the side window to check for vehicles entering an intersection and the user looking at the side mirror thereby indicating that images from side facing or rear facing cameras should be displayed within the display field of view.
Using a camera from the head-worn display to capture images of where the user is looking could also enable a determination of whether the user is operating the vehicle during the day or at night and the brightness or color of the displayed content could be adjusted to reduce the impact of providing displayed content to the user's night vision. For example, the displayed content could be provided at a lower brightness level or provided as a red image when the user is operating the vehicle at night.
Additionally, if the camera is sensitive to infrared light, an array of infrared emitting targets (not shown) may be positioned adjacent to or in the areas where displayed content can be provided to make it easier to identify the areas where displayed content can be provided. Infrared targets may have the advantage of not being detectable by the human eye so that they are not distracting to the user. Thus, when the infrared targets are detected to be adjacent to the center of the field of view of the camera (e.g. with 5 degrees of the center of the camera's field of view), thereby indicating that the user is looking at the infrared target, displayed content is provided for viewing by the user within the display field of view. The geometry, pattern, blinking rate or other visible characteristic of the infrared targets may be detected by the camera to determine which type of displayed content should be provided to the user. If the user is determined to no longer be looking at the infrared target, such as for example the infrared target moving to more than 5 degrees away from the center of the camera's field of view, the displayed content is interrupted to provide the user with an unimpeded see-through view of the surrounding environment. The infrared targets may be provided with a wide emission cone so that passengers can also benefit from the controlled presentation of displayed content when using a head-worn display while riding in a vehicle.
In further embodiments, the displayed content can be presented in ways that assist the driver. For example, the displayed content can be provided with a convergence distance or focus distance that is farther away (e.g. >15 feet from the user) than the internal surfaces of the vehicle. Alternatively the convergence distance or focus distance of the displayed content can be selected in correspondence to the speed of movement or the distance to other objects in the anticipated path of the vehicle, for example, the convergence distance or focus distance of the displayed content can be selected to be approximately the same as the distance to another vehicle in front of the vehicle when the user is driving in traffic. In this way, the user does not have to refocus when looking from the displayed content to the see-through view of the surrounding environment. The user can then perform a more rapid cognitive switch from looking at the displayed content to looking at the surrounding environment than would occur when looking from physical objects inside the vehicle, such as a radio, to the surrounding environment, thereby enhancing the safety of operating the vehicle.
In yet another embodiment, when the user is viewing displayed content and important information relating to the operation of the vehicle is detected by the head-worn display or other systems including the vehicle (e.g. a vehicle camera or a navigational system), an indication may be provided to the user within the display field of view to alert the user to the situation. For example, if an imaging system such as a collision avoidance system associated with the vehicle detects a dangerous situation when the user is looking at displayed content, the displayed content can be interrupted and a warning can be given to the user. In another example, the head-worn display can detect through analyzing head movements or determining that the user has been looking at areas other than the windshield for an overly long time that the user is either asleep or not paying attention and a warning can be given to the user. The warning can be an arrow indicating where the user should look, or the head-worn display may provide a haptic indication of where to look such as a vibration on the side of the head-worn display toward where the user should turn his head. If the user is asleep or not paying attention, the haptic indication may include vibration to both sides of the head-worn display or an audio alert.
Although embodiments of HWC have been described in language specific to features, systems, computer processes and/or methods, the appended claims are not necessarily limited to the specific features, systems, computer processes and/or methods described. Rather, the specific features, systems, computer processes and/or and methods are disclosed as non-limited example implementations of HWC.
All documents referenced herein are hereby incorporated by reference.
This application is a continuation of U.S. Non-Provisional application Ser. No. 14/966,103, filed Dec. 11, 2015, which is a continuation of the following U.S. Non-Provisional Application, which is incorporated by reference in its entirety: U.S. Non-Provisional application Ser. No. 14/956,590, filed Dec. 2, 2015, now Abandoned. U.S. Non-Provisional application Ser. No. 14/956,590 is a continuation-in-part of the following U.S. patent applications, each of which is incorporated by reference in its entirety:U.S. Non-Provisional application Ser. No. 14/262,695, filed Apr. 25, 2014, now Abandoned; andU.S. Non-Provisional application Ser. No. 14/228,526, filed Mar. 28, 2014, now Abandoned.
Number | Name | Date | Kind |
---|---|---|---|
1897833 | Benway | Feb 1933 | A |
2064604 | Paul | Dec 1936 | A |
3305294 | Alvarez | Feb 1967 | A |
3531190 | Leblanc | Sep 1970 | A |
3671111 | Okner | Jun 1972 | A |
4034401 | Mann | Jul 1977 | A |
4145125 | Chika | Mar 1979 | A |
4513812 | Papst | Apr 1985 | A |
4668155 | Kaufmann | May 1987 | A |
4788535 | Chikara | Nov 1988 | A |
4811739 | Silver | Mar 1989 | A |
4852988 | Velez | Aug 1989 | A |
4928301 | Smoot | May 1990 | A |
D327674 | Kuo | Jul 1992 | S |
5151722 | Massof | Sep 1992 | A |
5257094 | Larussa | Oct 1993 | A |
D352930 | Tsuji | Nov 1994 | S |
5483307 | Anderson | Jan 1996 | A |
D375748 | Hartman | Nov 1996 | S |
5579026 | Tabata | Nov 1996 | A |
D376790 | Taylor | Dec 1996 | S |
5596451 | Handschy | Jan 1997 | A |
5621424 | Shimada | Apr 1997 | A |
5625372 | Hildebrand | Apr 1997 | A |
5699057 | Ikeda | Dec 1997 | A |
5699194 | Takahashi | Dec 1997 | A |
5717422 | Fergason | Feb 1998 | A |
D392959 | Edwards | Mar 1998 | S |
5729242 | Margerum | Mar 1998 | A |
5767841 | Hartman | Jun 1998 | A |
5788195 | Rice | Aug 1998 | A |
5808589 | Fergason | Sep 1998 | A |
5808800 | Handschy | Sep 1998 | A |
5808802 | Hur | Sep 1998 | A |
D410638 | Loughnane | Jun 1999 | S |
5914818 | Tejada | Jun 1999 | A |
5949583 | Rallison | Sep 1999 | A |
5954642 | Johnson | Sep 1999 | A |
5991084 | Hildebrand | Nov 1999 | A |
6028608 | Jenkins | Feb 2000 | A |
6034653 | Robertson | Mar 2000 | A |
6046712 | Beller | Apr 2000 | A |
6147805 | Fergason | Nov 2000 | A |
6160552 | Wilsher | Dec 2000 | A |
6160666 | Rallison | Dec 2000 | A |
6195136 | Handschy | Feb 2001 | B1 |
6204974 | Spitzer | Mar 2001 | B1 |
6222677 | Budd | Apr 2001 | B1 |
6297749 | Smith | Oct 2001 | B1 |
D451892 | Carrere | Dec 2001 | S |
6347764 | Brandon | Feb 2002 | B1 |
6359723 | Handschy | Mar 2002 | B1 |
6369952 | Rallison | Apr 2002 | B1 |
6379009 | Fergason | Apr 2002 | B1 |
6384982 | Spitzer | May 2002 | B1 |
6392656 | Someya | May 2002 | B1 |
D460071 | Sheehan | Jul 2002 | S |
6433760 | Vaissie | Aug 2002 | B1 |
6456438 | Lee | Sep 2002 | B1 |
6461000 | Magarill | Oct 2002 | B1 |
6478429 | Aritake | Nov 2002 | B1 |
6480174 | Kaufmann | Nov 2002 | B1 |
6491389 | Yaguchi | Dec 2002 | B2 |
6491391 | Blum et al. | Dec 2002 | B1 |
D470144 | Li | Feb 2003 | S |
6535182 | Stanton | Mar 2003 | B2 |
D473871 | Santos | Apr 2003 | S |
6563626 | Iwasaki | May 2003 | B1 |
D478052 | Thomas, Jr. | Aug 2003 | S |
6642945 | Sharpe | Nov 2003 | B1 |
6675030 | Ciurczak | Jan 2004 | B2 |
6747611 | Budd | Jun 2004 | B1 |
6771294 | Pulli | Aug 2004 | B1 |
6795041 | Ogawa | Sep 2004 | B2 |
6847336 | Lemelson | Jan 2005 | B1 |
6906836 | Parker | Jun 2005 | B2 |
6943754 | Aughey | Sep 2005 | B2 |
D512027 | Sarasjoki | Nov 2005 | S |
D513233 | Stauffer | Dec 2005 | S |
6977776 | Volkenandt et al. | Dec 2005 | B2 |
6987787 | Mick | Jan 2006 | B1 |
D514525 | Stauffer | Feb 2006 | S |
7003308 | Fuoss | Feb 2006 | B1 |
7016116 | Dolgoff | Mar 2006 | B2 |
7030925 | Tsunekawa | Apr 2006 | B1 |
D521493 | Wai | May 2006 | S |
7088234 | Naito | Aug 2006 | B2 |
D529467 | Rose | Oct 2006 | S |
D541226 | Wakisaka | Apr 2007 | S |
7199934 | Yamasaki | Apr 2007 | B2 |
7206134 | Weissman | Apr 2007 | B2 |
7312766 | Edwards | Dec 2007 | B1 |
D559793 | Fan | Jan 2008 | S |
7347551 | Fergason et al. | Mar 2008 | B2 |
D571816 | Corcoran | Jun 2008 | S |
7380936 | Howell | Jun 2008 | B2 |
7401918 | Howell | Jul 2008 | B2 |
7401920 | Kranz | Jul 2008 | B1 |
7414791 | Urakawa | Aug 2008 | B2 |
7417617 | Eichenlaub | Aug 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7481531 | Howell | Jan 2009 | B2 |
7488294 | Torch | Feb 2009 | B2 |
7500747 | Howell | Mar 2009 | B2 |
7522344 | Curatu | Apr 2009 | B1 |
7542210 | Chirieleison, Sr. | Jun 2009 | B2 |
7543943 | Hubby, Jr. | Jun 2009 | B1 |
7646540 | Dolgoff | Jan 2010 | B2 |
7677723 | Howell | Mar 2010 | B2 |
7690799 | Nestorovic | Apr 2010 | B2 |
7728799 | Kerr | Jun 2010 | B2 |
7733571 | Li | Jun 2010 | B1 |
7771046 | Howell | Aug 2010 | B2 |
7777690 | Winsor | Aug 2010 | B2 |
7777723 | Namiki | Aug 2010 | B2 |
7777960 | Freeman | Aug 2010 | B2 |
7791889 | Belady | Sep 2010 | B2 |
7792552 | Thomas | Sep 2010 | B2 |
7806525 | Howell | Oct 2010 | B2 |
7812842 | Gordon | Oct 2010 | B2 |
7813743 | Loeb | Oct 2010 | B1 |
7830370 | Yamazaki | Nov 2010 | B2 |
7850301 | Dichiara | Dec 2010 | B2 |
7855743 | Sako | Dec 2010 | B2 |
D631881 | Quinn | Feb 2011 | S |
D631882 | Odgers | Feb 2011 | S |
7928926 | Yamamoto | Apr 2011 | B2 |
8004765 | Amitai | Aug 2011 | B2 |
8018579 | Krah | Sep 2011 | B1 |
8079713 | Ashkenazi | Dec 2011 | B2 |
8089568 | Brown | Jan 2012 | B1 |
8092007 | Dichiara | Jan 2012 | B2 |
8166421 | Magal | Apr 2012 | B2 |
8187481 | Hobbs | May 2012 | B1 |
8212859 | Tang | Jul 2012 | B2 |
8228315 | Starner | Jul 2012 | B1 |
8235529 | Raffle | Aug 2012 | B1 |
8246170 | Yamamoto | Aug 2012 | B2 |
D669066 | Olsson | Oct 2012 | S |
8337013 | Howell | Dec 2012 | B2 |
8376548 | Schultz | Feb 2013 | B2 |
8378924 | Jacobsen | Feb 2013 | B2 |
8384999 | Crosby | Feb 2013 | B1 |
D680112 | Monahan | Apr 2013 | S |
D680152 | Olsson | Apr 2013 | S |
8427396 | Kim | Apr 2013 | B1 |
8430507 | Howell | Apr 2013 | B2 |
8434863 | Howell | May 2013 | B2 |
D685019 | Li | Jun 2013 | S |
8467133 | Miller | Jun 2013 | B2 |
8472120 | Border | Jun 2013 | B2 |
8473241 | Foxlin | Jun 2013 | B2 |
8477425 | Border | Jul 2013 | B2 |
8482859 | Border | Jul 2013 | B2 |
8487838 | Lewis | Jul 2013 | B2 |
8488246 | Border | Jul 2013 | B2 |
8489326 | Na | Jul 2013 | B1 |
8494215 | Kimchi | Jul 2013 | B2 |
8505430 | Miralles | Aug 2013 | B2 |
8520310 | Shimizu | Aug 2013 | B2 |
D689862 | Liu | Sep 2013 | S |
8531394 | Maltz | Sep 2013 | B2 |
D690684 | Lee | Oct 2013 | S |
8553910 | Dong | Oct 2013 | B1 |
8564883 | Totani | Oct 2013 | B2 |
8570273 | Smith | Oct 2013 | B1 |
8570656 | Weissman | Oct 2013 | B1 |
8576276 | Bar-Zeev | Nov 2013 | B2 |
8576491 | Takagi | Nov 2013 | B2 |
8587869 | Totani | Nov 2013 | B2 |
8593795 | Chi | Nov 2013 | B1 |
8594467 | Lu | Nov 2013 | B2 |
D696668 | Chen | Dec 2013 | S |
8611015 | Wheeler | Dec 2013 | B2 |
8638498 | Bohn et al. | Jan 2014 | B2 |
8662686 | Takagi | Mar 2014 | B2 |
8670183 | Clavin | Mar 2014 | B2 |
8678581 | Blum | Mar 2014 | B2 |
8681073 | Robbins | Mar 2014 | B1 |
8696113 | Lewis | Apr 2014 | B2 |
8698157 | Hanamura | Apr 2014 | B2 |
8711487 | Takeda | Apr 2014 | B2 |
8730129 | Solomon | May 2014 | B2 |
8733927 | Lewis | May 2014 | B1 |
8733928 | Lewis | May 2014 | B1 |
8743052 | Keller | Jun 2014 | B1 |
8745058 | Garcia-barrio | Jun 2014 | B1 |
8750541 | Dong | Jun 2014 | B1 |
8752963 | Mcculloch | Jun 2014 | B2 |
8760765 | Gupta | Jun 2014 | B2 |
8767306 | Miao | Jul 2014 | B1 |
8770742 | Howell | Jul 2014 | B2 |
8786675 | Deering | Jul 2014 | B2 |
8786686 | Amirparviz | Jul 2014 | B1 |
8787006 | Golko | Jul 2014 | B2 |
8803867 | Oikawa | Aug 2014 | B2 |
8814691 | Haddick | Aug 2014 | B2 |
8823071 | Oyamada | Sep 2014 | B2 |
8824779 | Smyth | Sep 2014 | B1 |
8832557 | Fadell | Sep 2014 | B2 |
8836768 | Rafii | Sep 2014 | B1 |
8837880 | Takeda | Sep 2014 | B2 |
8854433 | Rafii | Oct 2014 | B1 |
8854735 | Totani | Oct 2014 | B2 |
8866702 | Wong | Oct 2014 | B1 |
8866849 | Cho | Oct 2014 | B1 |
8867139 | Gupta | Oct 2014 | B2 |
D716808 | Yeom | Nov 2014 | S |
D716813 | Deng | Nov 2014 | S |
8878749 | Wu | Nov 2014 | B1 |
8893164 | Teller | Nov 2014 | B1 |
D719568 | Heinrich | Dec 2014 | S |
D719569 | Heinrich | Dec 2014 | S |
D719570 | Heinrich | Dec 2014 | S |
8922530 | Pance | Dec 2014 | B2 |
8929589 | Publicover et al. | Jan 2015 | B2 |
8947323 | Raffle | Feb 2015 | B1 |
8948935 | Peeters | Feb 2015 | B1 |
8955973 | Raffle | Feb 2015 | B2 |
8963068 | Hagopian | Feb 2015 | B2 |
8964298 | Haddick | Feb 2015 | B2 |
D724083 | Olsson | Mar 2015 | S |
8970495 | Biffle | Mar 2015 | B1 |
8971023 | Olsson | Mar 2015 | B2 |
8982014 | Evans | Mar 2015 | B2 |
8982471 | Starner | Mar 2015 | B1 |
D727317 | Olsson | Apr 2015 | S |
9010929 | Lewis | Apr 2015 | B2 |
9020832 | Fisher | Apr 2015 | B2 |
D728573 | Deng | May 2015 | S |
9024842 | Prada Gomez | May 2015 | B1 |
9031273 | Dong | May 2015 | B2 |
9033502 | Nistico | May 2015 | B2 |
D732025 | Heinrich | Jun 2015 | S |
9046686 | Saito | Jun 2015 | B2 |
9046999 | Teller | Jun 2015 | B1 |
9063563 | Gray | Jun 2015 | B1 |
D733709 | Kawai | Jul 2015 | S |
9076149 | Sorensen | Jul 2015 | B2 |
9076368 | Evans | Jul 2015 | B2 |
9096920 | Gomez | Aug 2015 | B1 |
9107622 | Nistico | Aug 2015 | B2 |
9116337 | Miao | Aug 2015 | B1 |
D738373 | Davies | Sep 2015 | S |
9122054 | Osterhout | Sep 2015 | B2 |
9128281 | Osterhout | Sep 2015 | B2 |
9129157 | Chao | Sep 2015 | B2 |
9129295 | Border | Sep 2015 | B2 |
9143693 | Zhou | Sep 2015 | B1 |
9158115 | Worley | Oct 2015 | B1 |
9158116 | Osterhout | Oct 2015 | B1 |
D743963 | Osterhout | Nov 2015 | S |
9176582 | Johnson | Nov 2015 | B1 |
9185352 | Jacques | Nov 2015 | B1 |
D745007 | Cazalet | Dec 2015 | S |
9202233 | Siegel | Dec 2015 | B1 |
9225934 | Cho | Dec 2015 | B2 |
9229233 | Osterhout | Jan 2016 | B2 |
9229234 | Osterhout | Jan 2016 | B2 |
9230501 | Starner | Jan 2016 | B1 |
9235051 | Salter | Jan 2016 | B2 |
9269193 | Saito | Feb 2016 | B2 |
D751551 | Ho | Mar 2016 | S |
D751552 | Osterhout | Mar 2016 | S |
9274338 | Robbins et al. | Mar 2016 | B2 |
9286728 | Osterhout | Mar 2016 | B2 |
9292973 | Bar-zeev et al. | Mar 2016 | B2 |
9298001 | Border | Mar 2016 | B2 |
9298002 | Border | Mar 2016 | B2 |
9298007 | Border | Mar 2016 | B2 |
9299194 | Border | Mar 2016 | B2 |
D753114 | Osterhout | Apr 2016 | S |
9310610 | Border | Apr 2016 | B2 |
9316833 | Border | Apr 2016 | B2 |
9323325 | Perez et al. | Apr 2016 | B2 |
D756363 | Mathis | May 2016 | S |
D757006 | Cazalet | May 2016 | S |
9329387 | Border | May 2016 | B2 |
9354445 | Weaver | May 2016 | B1 |
9366867 | Border | Jun 2016 | B2 |
9366868 | Border | Jun 2016 | B2 |
9374655 | Lee | Jun 2016 | B1 |
9377625 | Border | Jun 2016 | B2 |
9400233 | Lin | Jul 2016 | B2 |
9400390 | Osterhout | Jul 2016 | B2 |
9401540 | Osterhout | Jul 2016 | B2 |
9423612 | Border | Aug 2016 | B2 |
9423842 | Osterhout | Aug 2016 | B2 |
9436006 | Border | Sep 2016 | B2 |
9448409 | Border | Sep 2016 | B2 |
9494800 | Border | Nov 2016 | B2 |
9523856 | Osterhout | Dec 2016 | B2 |
9529192 | Border | Dec 2016 | B2 |
9529195 | Osterhout | Dec 2016 | B2 |
9529199 | Osterhout | Dec 2016 | B2 |
9532714 | Border | Jan 2017 | B2 |
9532715 | Border | Jan 2017 | B2 |
9538915 | Border | Jan 2017 | B2 |
9547465 | Border | Jan 2017 | B2 |
9575321 | Osterhout | Feb 2017 | B2 |
9594246 | Border | Mar 2017 | B2 |
9658473 | Lewis | May 2017 | B2 |
9720505 | Gribetz et al. | Aug 2017 | B2 |
9746686 | Haddick | Aug 2017 | B2 |
10013053 | Cederlund et al. | Jul 2018 | B2 |
10025379 | Drake et al. | Jul 2018 | B2 |
10185147 | Lewis | Jan 2019 | B2 |
11104272 | Border et al. | Aug 2021 | B2 |
20010019240 | Takahashi | Sep 2001 | A1 |
20010050817 | Travers | Dec 2001 | A1 |
20020005108 | Ludwig | Jan 2002 | A1 |
20020021498 | Ohtaka | Feb 2002 | A1 |
20020057280 | Anabuki | May 2002 | A1 |
20020085843 | Mann | Jul 2002 | A1 |
20020109903 | Kaeriyama | Aug 2002 | A1 |
20020126396 | Dolgoff | Sep 2002 | A1 |
20020148655 | Cho | Oct 2002 | A1 |
20020149545 | Hanayama | Oct 2002 | A1 |
20020181115 | Massof | Dec 2002 | A1 |
20020183101 | Oh | Dec 2002 | A1 |
20020191297 | Gleckman | Dec 2002 | A1 |
20030030597 | Geist | Feb 2003 | A1 |
20030030912 | Gleckman | Feb 2003 | A1 |
20030142065 | Pahlavan | Jul 2003 | A1 |
20030151834 | Penn | Aug 2003 | A1 |
20030160736 | Faso | Aug 2003 | A1 |
20030209953 | Park | Nov 2003 | A1 |
20030234823 | Sato | Dec 2003 | A1 |
20040008158 | Chi | Jan 2004 | A1 |
20040008177 | Ahn | Jan 2004 | A1 |
20040024287 | Patton | Feb 2004 | A1 |
20040027312 | Owada | Feb 2004 | A1 |
20040030448 | Solomon | Feb 2004 | A1 |
20040032392 | Chi | Feb 2004 | A1 |
20040066363 | Yamano | Apr 2004 | A1 |
20040066547 | Parker | Apr 2004 | A1 |
20040080541 | Saiga | Apr 2004 | A1 |
20040130522 | Lin | Jul 2004 | A1 |
20040132509 | Glezerman | Jul 2004 | A1 |
20040150631 | Fleck | Aug 2004 | A1 |
20040162211 | Domey | Aug 2004 | A1 |
20040194880 | Jiang | Oct 2004 | A1 |
20040227994 | Bruzzone | Nov 2004 | A1 |
20050010091 | Woods | Jan 2005 | A1 |
20050010563 | Gross | Jan 2005 | A1 |
20050041289 | Berman | Feb 2005 | A1 |
20050091338 | De la Huerga | Apr 2005 | A1 |
20050122319 | Sakurai | Jun 2005 | A1 |
20050129286 | Hekimian | Jun 2005 | A1 |
20050154505 | Nakamura | Jul 2005 | A1 |
20050156915 | Fisher | Jul 2005 | A1 |
20050157949 | Aiso | Jul 2005 | A1 |
20050212980 | Miyazaki | Sep 2005 | A1 |
20050264752 | Howell | Dec 2005 | A1 |
20060022993 | Hammond | Feb 2006 | A1 |
20060023158 | Howell et al. | Feb 2006 | A1 |
20060047386 | Kanevsky | Mar 2006 | A1 |
20060050146 | Richardson | Mar 2006 | A1 |
20060061542 | Stokic | Mar 2006 | A1 |
20060072820 | Porjo | Apr 2006 | A1 |
20060092131 | Kuroki | May 2006 | A1 |
20060098293 | Garoutte | May 2006 | A1 |
20060119794 | Hillis | Jun 2006 | A1 |
20060132457 | Rimas-ribikauskas | Jun 2006 | A1 |
20060132924 | Mimran | Jun 2006 | A1 |
20060152686 | Yeralan | Jul 2006 | A1 |
20060170652 | Bannai | Aug 2006 | A1 |
20060173351 | Marcotte | Aug 2006 | A1 |
20060178827 | Aoyama | Aug 2006 | A1 |
20060183986 | Rice | Aug 2006 | A1 |
20060215111 | Mihashi | Sep 2006 | A1 |
20060224238 | Azar | Oct 2006 | A1 |
20060238550 | Page | Oct 2006 | A1 |
20060239629 | Qi | Oct 2006 | A1 |
20060250322 | Hall | Nov 2006 | A1 |
20060250696 | Mcguire | Nov 2006 | A1 |
20060279549 | Zhang | Dec 2006 | A1 |
20060285315 | Tufenkjian | Dec 2006 | A1 |
20060288233 | Kozlay | Dec 2006 | A1 |
20070003168 | Oliver | Jan 2007 | A1 |
20070004451 | C. Anderson | Jan 2007 | A1 |
20070024750 | Wing | Feb 2007 | A1 |
20070024763 | Chung | Feb 2007 | A1 |
20070024764 | Chung | Feb 2007 | A1 |
20070024820 | Chung | Feb 2007 | A1 |
20070024823 | Chung | Feb 2007 | A1 |
20070025273 | Chung | Feb 2007 | A1 |
20070030243 | Ishii | Feb 2007 | A1 |
20070030456 | Duncan | Feb 2007 | A1 |
20070035563 | Biocca | Feb 2007 | A1 |
20070038960 | Rekimoto | Feb 2007 | A1 |
20070058868 | Seino | Mar 2007 | A1 |
20070069976 | Willins | Mar 2007 | A1 |
20070070859 | Hirayama | Mar 2007 | A1 |
20070091431 | Mezouari | Apr 2007 | A1 |
20070100637 | Mccune | May 2007 | A1 |
20070109284 | Yamazaki | May 2007 | A1 |
20070120806 | Schmidt | May 2007 | A1 |
20070120836 | Yamaguchi | May 2007 | A1 |
20070132662 | Morita | Jun 2007 | A1 |
20070153639 | Lafever | Jul 2007 | A1 |
20070178950 | Lewis | Aug 2007 | A1 |
20070233376 | Gershony | Oct 2007 | A1 |
20070263174 | Cheng | Nov 2007 | A1 |
20070273611 | Torch | Nov 2007 | A1 |
20070274080 | Negley | Nov 2007 | A1 |
20070282682 | Dietz | Dec 2007 | A1 |
20070296684 | Thomas | Dec 2007 | A1 |
20080005702 | Skourup | Jan 2008 | A1 |
20080036653 | Huston | Feb 2008 | A1 |
20080066973 | Furuki | Mar 2008 | A1 |
20080071559 | Arrasvuori | Mar 2008 | A1 |
20080088793 | Sverdrup | Apr 2008 | A1 |
20080121441 | Sheets | May 2008 | A1 |
20080122736 | Ronzani | May 2008 | A1 |
20080143954 | Abreu | Jun 2008 | A1 |
20080169998 | Jacobsen | Jul 2008 | A1 |
20080186255 | Cohen | Aug 2008 | A1 |
20080191965 | Pandozy | Aug 2008 | A1 |
20080219025 | Spitzer | Sep 2008 | A1 |
20080266645 | Dharmatilleke | Oct 2008 | A1 |
20080278821 | Rieger | Nov 2008 | A1 |
20080291277 | Jacobsen | Nov 2008 | A1 |
20080298639 | Tsunekawa | Dec 2008 | A1 |
20090013204 | Kobayashi | Jan 2009 | A1 |
20090015735 | Simmonds | Jan 2009 | A1 |
20090040296 | Moscato | Feb 2009 | A1 |
20090093702 | Vollmer | Apr 2009 | A1 |
20090108837 | Johansson | Apr 2009 | A1 |
20090110241 | Takemoto | Apr 2009 | A1 |
20090147331 | Ashkenazi | Jun 2009 | A1 |
20090183929 | Zhang | Jul 2009 | A1 |
20090209884 | Van Vorhis | Aug 2009 | A1 |
20090251441 | Edgecomb | Oct 2009 | A1 |
20090279180 | Amitai | Nov 2009 | A1 |
20100001572 | Masunaga | Jan 2010 | A1 |
20100007852 | Bietry | Jan 2010 | A1 |
20100045928 | Levy | Feb 2010 | A1 |
20100046075 | Powell | Feb 2010 | A1 |
20100056274 | Uusitalo | Mar 2010 | A1 |
20100060713 | Snyder | Mar 2010 | A1 |
20100073376 | Schmale | Mar 2010 | A1 |
20100079356 | Hoellwarth | Apr 2010 | A1 |
20100079508 | Hodge | Apr 2010 | A1 |
20100079733 | Lu | Apr 2010 | A1 |
20100082368 | Gecelter et al. | Apr 2010 | A1 |
20100085325 | King-smith | Apr 2010 | A1 |
20100094161 | Kiderman | Apr 2010 | A1 |
20100097580 | Yamamoto | Apr 2010 | A1 |
20100103075 | Kalaboukis | Apr 2010 | A1 |
20100113062 | Lee | May 2010 | A1 |
20100130140 | Waku | May 2010 | A1 |
20100134848 | Lynggaard | Jun 2010 | A1 |
20100141555 | Rorberg | Jun 2010 | A1 |
20100149073 | Chaum | Jun 2010 | A1 |
20100178101 | Day | Jul 2010 | A1 |
20100182561 | Ikeda | Jul 2010 | A1 |
20100194682 | Orr | Aug 2010 | A1 |
20100225473 | Leuthardt | Sep 2010 | A1 |
20100240988 | Varga | Sep 2010 | A1 |
20100241450 | Gierhart | Sep 2010 | A1 |
20100253594 | Szczerba | Oct 2010 | A1 |
20100254017 | Martins | Oct 2010 | A1 |
20100280904 | Ahuja | Nov 2010 | A1 |
20100283774 | Bovet | Nov 2010 | A1 |
20100290127 | Kessler | Nov 2010 | A1 |
20100309426 | Howell | Dec 2010 | A1 |
20100329301 | Pang | Dec 2010 | A1 |
20110006982 | Rhee | Jan 2011 | A1 |
20110007081 | Gordon | Jan 2011 | A1 |
20110012874 | Kurozuka | Jan 2011 | A1 |
20110089325 | Ottney | Apr 2011 | A1 |
20110096100 | Sprague | Apr 2011 | A1 |
20110102234 | Adams | May 2011 | A1 |
20110118870 | Sugihara | May 2011 | A1 |
20110130958 | Stahl | Jun 2011 | A1 |
20110131495 | Bull | Jun 2011 | A1 |
20110157236 | Inoue | Jun 2011 | A1 |
20110159931 | Boss | Jun 2011 | A1 |
20110164047 | Pance | Jul 2011 | A1 |
20110164163 | Bilbrey | Jul 2011 | A1 |
20110164221 | Tilleman | Jul 2011 | A1 |
20110175925 | Kane | Jul 2011 | A1 |
20110176106 | Lewkowski | Jul 2011 | A1 |
20110196610 | Waldman | Aug 2011 | A1 |
20110199171 | Prest | Aug 2011 | A1 |
20110199305 | Suh | Aug 2011 | A1 |
20110201213 | Dabov | Aug 2011 | A1 |
20110202823 | Berger | Aug 2011 | A1 |
20110205209 | Kurokawa | Aug 2011 | A1 |
20110211056 | Publicover et al. | Sep 2011 | A1 |
20110213664 | Osterhout | Sep 2011 | A1 |
20110221672 | Osterhout | Sep 2011 | A1 |
20110221896 | Haddick | Sep 2011 | A1 |
20110227820 | Haddick | Sep 2011 | A1 |
20110234631 | Kim | Sep 2011 | A1 |
20110248963 | Lawrence | Oct 2011 | A1 |
20110285638 | Harris | Nov 2011 | A1 |
20110285764 | Kimura | Nov 2011 | A1 |
20120021806 | Maltz | Jan 2012 | A1 |
20120026088 | Goran | Feb 2012 | A1 |
20120032874 | Mukawa | Feb 2012 | A1 |
20120033080 | Watanabe | Feb 2012 | A1 |
20120035934 | Cunningham | Feb 2012 | A1 |
20120038641 | Levantovsky | Feb 2012 | A1 |
20120047233 | Jin | Feb 2012 | A1 |
20120049759 | Pezzutti | Mar 2012 | A1 |
20120050140 | Border | Mar 2012 | A1 |
20120050493 | Ernst | Mar 2012 | A1 |
20120056093 | Poteet | Mar 2012 | A1 |
20120062444 | Cok | Mar 2012 | A1 |
20120062594 | Campbell | Mar 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120062998 | Schultz | Mar 2012 | A1 |
20120068913 | Bar-zeev | Mar 2012 | A1 |
20120069413 | Schultz | Mar 2012 | A1 |
20120075168 | Osterhout | Mar 2012 | A1 |
20120078628 | Ghulman | Mar 2012 | A1 |
20120081800 | Cheng | Apr 2012 | A1 |
20120092328 | Flaks | Apr 2012 | A1 |
20120092329 | Koo | Apr 2012 | A1 |
20120096095 | Bhargava | Apr 2012 | A1 |
20120113514 | Rodman | May 2012 | A1 |
20120119978 | Border | May 2012 | A1 |
20120120103 | Border | May 2012 | A1 |
20120120498 | Harrison | May 2012 | A1 |
20120127062 | Bar-zeev | May 2012 | A1 |
20120127284 | Bar-zeev | May 2012 | A1 |
20120133885 | Howell | May 2012 | A1 |
20120154920 | Harrison | Jun 2012 | A1 |
20120162270 | Fleck | Jun 2012 | A1 |
20120163013 | Buelow, II | Jun 2012 | A1 |
20120169608 | Forutanpour | Jul 2012 | A1 |
20120176682 | Dejong | Jul 2012 | A1 |
20120188245 | Hyatt | Jul 2012 | A1 |
20120194550 | Osterhout | Aug 2012 | A1 |
20120194553 | Osterhout | Aug 2012 | A1 |
20120194784 | Shih | Aug 2012 | A1 |
20120200935 | Miyao | Aug 2012 | A1 |
20120206817 | Totani | Aug 2012 | A1 |
20120212398 | Border | Aug 2012 | A1 |
20120212484 | Haddick | Aug 2012 | A1 |
20120212499 | Haddick | Aug 2012 | A1 |
20120212593 | Na | Aug 2012 | A1 |
20120218301 | Miller | Aug 2012 | A1 |
20120223885 | Perez | Sep 2012 | A1 |
20120224060 | Gurevich | Sep 2012 | A1 |
20120229367 | Magyari | Sep 2012 | A1 |
20120229909 | Clavin | Sep 2012 | A1 |
20120233000 | Fisher | Sep 2012 | A1 |
20120235885 | Miller | Sep 2012 | A1 |
20120237085 | Meier | Sep 2012 | A1 |
20120242251 | Kwisthout | Sep 2012 | A1 |
20120242570 | Kobayashi | Sep 2012 | A1 |
20120242697 | Border | Sep 2012 | A1 |
20120242698 | Haddick | Sep 2012 | A1 |
20120249741 | Maciocci | Oct 2012 | A1 |
20120249797 | Haddick | Oct 2012 | A1 |
20120250152 | Larson | Oct 2012 | A1 |
20120256944 | Crumly | Oct 2012 | A1 |
20120264510 | Wigdor | Oct 2012 | A1 |
20120268449 | Choi | Oct 2012 | A1 |
20120287398 | Baker | Nov 2012 | A1 |
20120293548 | Perez | Nov 2012 | A1 |
20120294478 | Publicover | Nov 2012 | A1 |
20120306850 | Balan | Dec 2012 | A1 |
20120307198 | Ifergan | Dec 2012 | A1 |
20120326948 | Crocco | Dec 2012 | A1 |
20120327040 | Simon | Dec 2012 | A1 |
20120327116 | Liu | Dec 2012 | A1 |
20130009366 | Hannegan | Jan 2013 | A1 |
20130009907 | Rosenberg | Jan 2013 | A1 |
20130027337 | Chen | Jan 2013 | A1 |
20130027341 | Mastandrea | Jan 2013 | A1 |
20130038729 | Chang | Feb 2013 | A1 |
20130044042 | Olsson | Feb 2013 | A1 |
20130044130 | Geisner | Feb 2013 | A1 |
20130050258 | Liu | Feb 2013 | A1 |
20130063496 | Basler | Mar 2013 | A1 |
20130063695 | Hsieh | Mar 2013 | A1 |
20130069924 | Robinson | Mar 2013 | A1 |
20130069985 | Wong | Mar 2013 | A1 |
20130070344 | Takeda | Mar 2013 | A1 |
20130077049 | Bohn | Mar 2013 | A1 |
20130077147 | Efimov | Mar 2013 | A1 |
20130083003 | Perez | Apr 2013 | A1 |
20130083009 | Geisner | Apr 2013 | A1 |
20130083055 | Piemonte | Apr 2013 | A1 |
20130088413 | Raffle | Apr 2013 | A1 |
20130100259 | Ramaswamy | Apr 2013 | A1 |
20130106674 | Wheeler | May 2013 | A1 |
20130120224 | Cajigas | May 2013 | A1 |
20130120841 | Shpunt | May 2013 | A1 |
20130127906 | Sugita | May 2013 | A1 |
20130127980 | Haddick | May 2013 | A1 |
20130135198 | Hodge | May 2013 | A1 |
20130141434 | Sugden | Jun 2013 | A1 |
20130154913 | Genc | Jun 2013 | A1 |
20130154918 | Vaught | Jun 2013 | A1 |
20130162632 | Varga | Jun 2013 | A1 |
20130169530 | Bhaskar | Jul 2013 | A1 |
20130169560 | Cederlund | Jul 2013 | A1 |
20130176533 | Raffle | Jul 2013 | A1 |
20130185052 | Boyd | Jul 2013 | A1 |
20130194389 | Vaught | Aug 2013 | A1 |
20130196757 | Latta | Aug 2013 | A1 |
20130201080 | Evans | Aug 2013 | A1 |
20130201081 | Evans | Aug 2013 | A1 |
20130207887 | Raffle | Aug 2013 | A1 |
20130207970 | Shpunt | Aug 2013 | A1 |
20130208508 | Nichol | Aug 2013 | A1 |
20130214909 | Meijers | Aug 2013 | A1 |
20130215149 | Hayashi | Aug 2013 | A1 |
20130222270 | Winkler | Aug 2013 | A1 |
20130222919 | Komatsu | Aug 2013 | A1 |
20130230215 | Gurman | Sep 2013 | A1 |
20130234914 | Fujimaki | Sep 2013 | A1 |
20130235331 | Heinrich | Sep 2013 | A1 |
20130241805 | Gomez | Sep 2013 | A1 |
20130241948 | Kimura | Sep 2013 | A1 |
20130242405 | Gupta | Sep 2013 | A1 |
20130248691 | Mirov | Sep 2013 | A1 |
20130249778 | Morimoto | Sep 2013 | A1 |
20130249787 | Morimoto | Sep 2013 | A1 |
20130250207 | Bohn | Sep 2013 | A1 |
20130250430 | Robbins | Sep 2013 | A1 |
20130250503 | Olsson | Sep 2013 | A1 |
20130257622 | Davalos | Oct 2013 | A1 |
20130257709 | Raffle | Oct 2013 | A1 |
20130258111 | Frank | Oct 2013 | A1 |
20130265212 | Kato | Oct 2013 | A1 |
20130265227 | Julian | Oct 2013 | A1 |
20130278631 | Border | Oct 2013 | A1 |
20130280682 | Levine | Oct 2013 | A1 |
20130286168 | Park | Oct 2013 | A1 |
20130293530 | Perez | Nov 2013 | A1 |
20130293580 | Spivack | Nov 2013 | A1 |
20130300637 | Smits | Nov 2013 | A1 |
20130300652 | Raffle | Nov 2013 | A1 |
20130314555 | Vartanian | Nov 2013 | A1 |
20130321265 | Bychkov | Dec 2013 | A1 |
20130321271 | Bychkov | Dec 2013 | A1 |
20130321932 | Hsu | Dec 2013 | A1 |
20130335301 | Wong | Dec 2013 | A1 |
20130335435 | Ambrus | Dec 2013 | A1 |
20130335461 | Rekimoto | Dec 2013 | A1 |
20130336528 | Itani | Dec 2013 | A1 |
20130336629 | Mulholland | Dec 2013 | A1 |
20130342564 | Kinnebrew | Dec 2013 | A1 |
20130342571 | Kinnebrew | Dec 2013 | A1 |
20130342591 | Sagan | Dec 2013 | A1 |
20130342981 | Cox | Dec 2013 | A1 |
20130346245 | Desore | Dec 2013 | A1 |
20140028704 | Wu | Jan 2014 | A1 |
20140043682 | Hussey | Feb 2014 | A1 |
20140055746 | Nistico | Feb 2014 | A1 |
20140062854 | Cho | Mar 2014 | A1 |
20140063054 | Osterhout | Mar 2014 | A1 |
20140063055 | Osterhout | Mar 2014 | A1 |
20140063473 | Pasolini | Mar 2014 | A1 |
20140078043 | Kim | Mar 2014 | A1 |
20140078282 | Aoki | Mar 2014 | A1 |
20140091984 | Ashbrook | Apr 2014 | A1 |
20140101608 | Ryskamp | Apr 2014 | A1 |
20140104142 | Bickerstaff | Apr 2014 | A1 |
20140104692 | Bickerstaff | Apr 2014 | A1 |
20140111838 | Han | Apr 2014 | A1 |
20140111864 | Margulis | Apr 2014 | A1 |
20140125668 | Steed | May 2014 | A1 |
20140125785 | Na | May 2014 | A1 |
20140129328 | Mathew | May 2014 | A1 |
20140139655 | Mimar | May 2014 | A1 |
20140146394 | Tout | May 2014 | A1 |
20140147829 | Jerauld | May 2014 | A1 |
20140152530 | Venkatesha | Jun 2014 | A1 |
20140152558 | Salter | Jun 2014 | A1 |
20140152676 | Rohn | Jun 2014 | A1 |
20140153173 | Pombo | Jun 2014 | A1 |
20140159995 | Adams | Jun 2014 | A1 |
20140160055 | Margolis | Jun 2014 | A1 |
20140160137 | Martin | Jun 2014 | A1 |
20140160157 | Poulos | Jun 2014 | A1 |
20140160170 | Lyons | Jun 2014 | A1 |
20140160576 | Robbins | Jun 2014 | A1 |
20140165000 | Fleizach | Jun 2014 | A1 |
20140168056 | Swaminathan | Jun 2014 | A1 |
20140168266 | Kimura | Jun 2014 | A1 |
20140168716 | King | Jun 2014 | A1 |
20140168735 | Yuan | Jun 2014 | A1 |
20140176591 | Klein | Jun 2014 | A1 |
20140176603 | Kumar | Jun 2014 | A1 |
20140176910 | Mahn | Jun 2014 | A1 |
20140177023 | Gao | Jun 2014 | A1 |
20140183269 | Glaser | Jul 2014 | A1 |
20140195918 | Friedlander | Jul 2014 | A1 |
20140204759 | Guo | Jul 2014 | A1 |
20140213280 | Sandel | Jul 2014 | A1 |
20140222929 | Grossman | Aug 2014 | A1 |
20140225814 | English | Aug 2014 | A1 |
20140232651 | Kress | Aug 2014 | A1 |
20140240103 | Lake | Aug 2014 | A1 |
20140240223 | Lake | Aug 2014 | A1 |
20140240313 | Varga | Aug 2014 | A1 |
20140247286 | Chi | Sep 2014 | A1 |
20140253588 | Mandala | Sep 2014 | A1 |
20140253605 | Border | Sep 2014 | A1 |
20140267010 | Pasquero | Sep 2014 | A1 |
20140267270 | Pappoppula | Sep 2014 | A1 |
20140267419 | Ballard | Sep 2014 | A1 |
20140275760 | Lee | Sep 2014 | A1 |
20140279528 | Slaby | Sep 2014 | A1 |
20140285631 | Janky | Sep 2014 | A1 |
20140306866 | Miller | Oct 2014 | A1 |
20140310075 | Ricci | Oct 2014 | A1 |
20140320389 | Scavezze | Oct 2014 | A1 |
20140320971 | Gupta | Oct 2014 | A1 |
20140336876 | Gieseke | Nov 2014 | A1 |
20140341441 | Slaby | Nov 2014 | A1 |
20140347572 | Liu | Nov 2014 | A1 |
20140361957 | Hua | Dec 2014 | A1 |
20140361976 | Osman | Dec 2014 | A1 |
20140361996 | Eden | Dec 2014 | A1 |
20140362195 | Ng-thow-hing | Dec 2014 | A1 |
20140363797 | Hu | Dec 2014 | A1 |
20140372957 | Keane | Dec 2014 | A1 |
20140375542 | Robbins | Dec 2014 | A1 |
20140375545 | Ackerman | Dec 2014 | A1 |
20140375680 | Ackerman | Dec 2014 | A1 |
20140375683 | Salter | Dec 2014 | A1 |
20150002371 | Burgess | Jan 2015 | A1 |
20150002528 | Bohn | Jan 2015 | A1 |
20150012581 | Kim | Jan 2015 | A1 |
20150022542 | Baba | Jan 2015 | A1 |
20150029088 | Kim | Jan 2015 | A1 |
20150029222 | Hofmann | Jan 2015 | A1 |
20150035744 | Robbins | Feb 2015 | A1 |
20150042544 | Sugihara | Feb 2015 | A1 |
20150085333 | Theytaz | Mar 2015 | A1 |
20150097719 | Balachandreswaran | Apr 2015 | A1 |
20150106623 | Holman | Apr 2015 | A1 |
20150134143 | Willenborg | May 2015 | A1 |
20150143297 | Wheeler | May 2015 | A1 |
20150145839 | Hack | May 2015 | A1 |
20150146004 | Kritt | May 2015 | A1 |
20150147000 | Salvador Marcos | May 2015 | A1 |
20150153572 | Miao | Jun 2015 | A1 |
20150161822 | Basu | Jun 2015 | A1 |
20150161913 | Dominguez | Jun 2015 | A1 |
20150168730 | Ashkenazi | Jun 2015 | A1 |
20150168731 | Robbins | Jun 2015 | A1 |
20150169953 | Border | Jun 2015 | A1 |
20150175068 | Szostak | Jun 2015 | A1 |
20150178932 | Wyatt | Jun 2015 | A1 |
20150181383 | Schulz | Jun 2015 | A1 |
20150186636 | Tharappel | Jul 2015 | A1 |
20150194035 | Akiva | Jul 2015 | A1 |
20150198807 | Hirai | Jul 2015 | A1 |
20150201834 | Border | Jul 2015 | A1 |
20150201835 | Border | Jul 2015 | A1 |
20150201836 | Border | Jul 2015 | A1 |
20150202962 | Habashima | Jul 2015 | A1 |
20150205035 | Border | Jul 2015 | A1 |
20150205100 | Border | Jul 2015 | A1 |
20150205101 | Border | Jul 2015 | A1 |
20150205102 | Border | Jul 2015 | A1 |
20150205103 | Border | Jul 2015 | A1 |
20150205104 | Border | Jul 2015 | A1 |
20150205105 | Border | Jul 2015 | A1 |
20150205107 | Border | Jul 2015 | A1 |
20150205108 | Border | Jul 2015 | A1 |
20150205111 | Border | Jul 2015 | A1 |
20150205112 | Border | Jul 2015 | A1 |
20150205113 | Border | Jul 2015 | A1 |
20150205114 | Border | Jul 2015 | A1 |
20150205115 | Border | Jul 2015 | A1 |
20150205116 | Border | Jul 2015 | A1 |
20150205117 | Border | Jul 2015 | A1 |
20150205118 | Border | Jul 2015 | A1 |
20150205119 | Osterhout | Jul 2015 | A1 |
20150205120 | Border | Jul 2015 | A1 |
20150205121 | Border | Jul 2015 | A1 |
20150205122 | Border | Jul 2015 | A1 |
20150205123 | Border | Jul 2015 | A1 |
20150205124 | Border | Jul 2015 | A1 |
20150205125 | Border | Jul 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150205127 | Border | Jul 2015 | A1 |
20150205128 | Border | Jul 2015 | A1 |
20150205129 | Border | Jul 2015 | A1 |
20150205130 | Border | Jul 2015 | A1 |
20150205131 | Border | Jul 2015 | A1 |
20150205132 | Osterhout | Jul 2015 | A1 |
20150205135 | Border | Jul 2015 | A1 |
20150205346 | Border | Jul 2015 | A1 |
20150205347 | Border | Jul 2015 | A1 |
20150205348 | Nortrup | Jul 2015 | A1 |
20150205349 | Nortrup | Jul 2015 | A1 |
20150205351 | Osterhout | Jul 2015 | A1 |
20150205373 | Osterhout | Jul 2015 | A1 |
20150205378 | Osterhout | Jul 2015 | A1 |
20150205384 | Osterhout | Jul 2015 | A1 |
20150205385 | Osterhout | Jul 2015 | A1 |
20150205387 | Osterhout | Jul 2015 | A1 |
20150205388 | Osterhout | Jul 2015 | A1 |
20150205401 | Osterhout | Jul 2015 | A1 |
20150205402 | Osterhout | Jul 2015 | A1 |
20150205494 | Scott | Jul 2015 | A1 |
20150205566 | Osterhout | Jul 2015 | A1 |
20150206008 | Border | Jul 2015 | A1 |
20150206173 | Nortrup | Jul 2015 | A1 |
20150212324 | Osterhout | Jul 2015 | A1 |
20150212327 | Osterhout | Jul 2015 | A1 |
20150212647 | Kim | Jul 2015 | A1 |
20150213584 | Ishikawa | Jul 2015 | A1 |
20150213650 | Barzuza | Jul 2015 | A1 |
20150213754 | Amjad | Jul 2015 | A1 |
20150226966 | Osterhout | Aug 2015 | A1 |
20150226967 | Osterhout | Aug 2015 | A1 |
20150226969 | Tsukahara | Aug 2015 | A1 |
20150228099 | Osterhout | Aug 2015 | A1 |
20150228119 | Osterhout | Aug 2015 | A1 |
20150228120 | Osterhout | Aug 2015 | A1 |
20150229019 | Osterhout | Aug 2015 | A1 |
20150232030 | Bongwald | Aug 2015 | A1 |
20150234458 | Hsieh | Aug 2015 | A1 |
20150234508 | Cho | Aug 2015 | A1 |
20150235422 | Lohse | Aug 2015 | A1 |
20150235429 | Miller | Aug 2015 | A1 |
20150235622 | Border | Aug 2015 | A1 |
20150241963 | Nortrup | Aug 2015 | A1 |
20150241964 | Nortrup | Aug 2015 | A1 |
20150241965 | Nortrup | Aug 2015 | A1 |
20150241966 | Nortrup | Aug 2015 | A1 |
20150243039 | Holz | Aug 2015 | A1 |
20150245131 | Facteau | Aug 2015 | A1 |
20150253573 | Sako | Sep 2015 | A1 |
20150254882 | Englert | Sep 2015 | A1 |
20150260887 | Salisbury | Sep 2015 | A1 |
20150260986 | Nortrup | Sep 2015 | A1 |
20150261015 | Han | Sep 2015 | A1 |
20150277113 | Border | Oct 2015 | A1 |
20150277116 | Richards | Oct 2015 | A1 |
20150277118 | Border | Oct 2015 | A1 |
20150277120 | Border | Oct 2015 | A1 |
20150277122 | Border | Oct 2015 | A1 |
20150277549 | Border | Oct 2015 | A1 |
20150277559 | Vescovi | Oct 2015 | A1 |
20150279010 | Cianfrone | Oct 2015 | A1 |
20150279104 | Border | Oct 2015 | A1 |
20150279107 | Border | Oct 2015 | A1 |
20150279108 | Border | Oct 2015 | A1 |
20150287048 | Nortrup | Oct 2015 | A1 |
20150293587 | Wilairat | Oct 2015 | A1 |
20150294156 | Border | Oct 2015 | A1 |
20150294627 | Yoo | Oct 2015 | A1 |
20150301593 | Border | Oct 2015 | A1 |
20150302646 | Osterhout | Oct 2015 | A1 |
20150302647 | Osterhout | Oct 2015 | A1 |
20150304368 | Vaccari | Oct 2015 | A1 |
20150309313 | Border | Oct 2015 | A1 |
20150309314 | Border | Oct 2015 | A1 |
20150309317 | Osterhout | Oct 2015 | A1 |
20150309534 | Osterhout | Oct 2015 | A1 |
20150309562 | Shams | Oct 2015 | A1 |
20150309995 | Osterhout | Oct 2015 | A1 |
20150316766 | Weaver | Nov 2015 | A1 |
20150316769 | Border | Nov 2015 | A1 |
20150316770 | Border | Nov 2015 | A1 |
20150316771 | Border | Nov 2015 | A1 |
20150316772 | Border | Nov 2015 | A1 |
20150321606 | Vartanian | Nov 2015 | A1 |
20150325120 | Cho | Nov 2015 | A1 |
20150331240 | Poulos | Nov 2015 | A1 |
20150331241 | Haddick | Nov 2015 | A1 |
20150332032 | Alameh | Nov 2015 | A1 |
20150338661 | Osterhout | Nov 2015 | A1 |
20150338915 | Publicover | Nov 2015 | A1 |
20150346496 | Haddick | Dec 2015 | A1 |
20150346511 | Osterhout | Dec 2015 | A1 |
20150347823 | Monnerat | Dec 2015 | A1 |
20150355466 | Border | Dec 2015 | A1 |
20150355468 | Osterhout | Dec 2015 | A1 |
20150356772 | Osterhout | Dec 2015 | A1 |
20150356775 | Osterhout | Dec 2015 | A1 |
20150356776 | Osterhout | Dec 2015 | A1 |
20150356777 | Osterhout | Dec 2015 | A1 |
20150356778 | Osterhout | Dec 2015 | A1 |
20150356779 | Osterhout | Dec 2015 | A1 |
20150358594 | Marshall | Dec 2015 | A1 |
20150363975 | Osterhout | Dec 2015 | A1 |
20150382305 | Drincic | Dec 2015 | A1 |
20160005003 | Norris | Jan 2016 | A1 |
20160007849 | Krueger | Jan 2016 | A1 |
20160011417 | Border | Jan 2016 | A1 |
20160015470 | Border | Jan 2016 | A1 |
20160018640 | Haddick | Jan 2016 | A1 |
20160018641 | Haddick | Jan 2016 | A1 |
20160018642 | Haddick | Jan 2016 | A1 |
20160018644 | Border | Jan 2016 | A1 |
20160018645 | Haddick | Jan 2016 | A1 |
20160018646 | Osterhout | Jan 2016 | A1 |
20160018647 | Osterhout | Jan 2016 | A1 |
20160018648 | Osterhout | Jan 2016 | A1 |
20160018649 | Osterhout | Jan 2016 | A1 |
20160018650 | Haddick | Jan 2016 | A1 |
20160018651 | Haddick | Jan 2016 | A1 |
20160018652 | Haddick | Jan 2016 | A1 |
20160018653 | Haddick | Jan 2016 | A1 |
20160018654 | Haddick | Jan 2016 | A1 |
20160019715 | Haddick | Jan 2016 | A1 |
20160019719 | Osterhout | Jan 2016 | A1 |
20160021304 | Osterhout | Jan 2016 | A1 |
20160025974 | Osterhout | Jan 2016 | A1 |
20160025977 | Osterhout | Jan 2016 | A1 |
20160025979 | Border | Jan 2016 | A1 |
20160025980 | Osterhout | Jan 2016 | A1 |
20160026239 | Border | Jan 2016 | A1 |
20160027211 | Osterhout | Jan 2016 | A1 |
20160027414 | Osterhout | Jan 2016 | A1 |
20160035139 | Fuchs | Feb 2016 | A1 |
20160045810 | Minkovitch | Feb 2016 | A1 |
20160048018 | De Matos Pereira Vieira | Feb 2016 | A1 |
20160048019 | Haddick | Feb 2016 | A1 |
20160048021 | Border | Feb 2016 | A1 |
20160048023 | Haddick | Feb 2016 | A1 |
20160048160 | Haddick | Feb 2016 | A1 |
20160049008 | Haddick | Feb 2016 | A1 |
20160054566 | Osterhout | Feb 2016 | A1 |
20160055675 | Kasahara | Feb 2016 | A1 |
20160062118 | Osterhout | Mar 2016 | A1 |
20160062121 | Border | Mar 2016 | A1 |
20160062122 | Border | Mar 2016 | A1 |
20160077342 | Osterhout | Mar 2016 | A1 |
20160081547 | Gramatikov | Mar 2016 | A1 |
20160085071 | Border | Mar 2016 | A1 |
20160085072 | Haddick | Mar 2016 | A1 |
20160085278 | Osterhout | Mar 2016 | A1 |
20160089272 | Li | Mar 2016 | A1 |
20160091718 | Border | Mar 2016 | A1 |
20160091719 | Border | Mar 2016 | A1 |
20160098086 | Li | Apr 2016 | A1 |
20160109709 | Osterhout | Apr 2016 | A1 |
20160109711 | Border | Apr 2016 | A1 |
20160109713 | Osterhout | Apr 2016 | A1 |
20160116738 | Osterhout | Apr 2016 | A1 |
20160116745 | Osterhout | Apr 2016 | A1 |
20160116979 | Border | Apr 2016 | A1 |
20160117972 | Yoshiyama | Apr 2016 | A1 |
20160131904 | Border | May 2016 | A1 |
20160131911 | Border | May 2016 | A1 |
20160131912 | Border | May 2016 | A1 |
20160132082 | Border | May 2016 | A1 |
20160133201 | Border | May 2016 | A1 |
20160137312 | Osterhout | May 2016 | A1 |
20160140826 | Sahiholnasab | May 2016 | A1 |
20160147063 | Border | May 2016 | A1 |
20160147064 | Border | May 2016 | A1 |
20160147065 | Border | May 2016 | A1 |
20160147070 | Border | May 2016 | A1 |
20160154242 | Border | Jun 2016 | A1 |
20160154244 | Border | Jun 2016 | A1 |
20160161743 | Osterhout | Jun 2016 | A1 |
20160161747 | Osterhout | Jun 2016 | A1 |
20160170207 | Haddick | Jun 2016 | A1 |
20160170208 | Border | Jun 2016 | A1 |
20160170209 | Border | Jun 2016 | A1 |
20160170699 | Border | Jun 2016 | A1 |
20160171769 | Haddick | Jun 2016 | A1 |
20160171846 | Brav | Jun 2016 | A1 |
20160187651 | Border | Jun 2016 | A1 |
20160187658 | Osterhout | Jun 2016 | A1 |
20160189426 | Thomas | Jun 2016 | A1 |
20160202946 | Osterhout | Jul 2016 | A1 |
20160216516 | Border | Jul 2016 | A1 |
20160216517 | Border | Jul 2016 | A1 |
20160231571 | Border | Aug 2016 | A1 |
20160239985 | Haddick | Aug 2016 | A1 |
20160240008 | Haddick | Aug 2016 | A1 |
20160246055 | Border | Aug 2016 | A1 |
20160252731 | Border | Sep 2016 | A1 |
20160259166 | Border | Sep 2016 | A1 |
20160270655 | Caraffi | Sep 2016 | A1 |
20160274361 | Border | Sep 2016 | A1 |
20160274365 | Bailey | Sep 2016 | A1 |
20160282624 | Munger | Sep 2016 | A1 |
20160282626 | Border | Sep 2016 | A1 |
20160286177 | Border | Sep 2016 | A1 |
20160286203 | Border | Sep 2016 | A1 |
20160286210 | Border | Sep 2016 | A1 |
20160306173 | Tsukahara | Oct 2016 | A1 |
20160329634 | Osterhout | Nov 2016 | A1 |
20160357019 | Border | Dec 2016 | A1 |
20160370606 | Huynh | Dec 2016 | A1 |
20170017323 | Yu | Jan 2017 | A1 |
20170023790 | Border | Jan 2017 | A1 |
20170024007 | Pelis | Jan 2017 | A1 |
20170024035 | Pelis | Jan 2017 | A1 |
20170025091 | Haddick | Jan 2017 | A1 |
20170031395 | Osterhout | Feb 2017 | A1 |
20170246070 | Osterhout | Aug 2017 | A1 |
20170248788 | Osterhout | Aug 2017 | A1 |
20170248792 | Border | Aug 2017 | A1 |
20170249860 | Osterhout | Aug 2017 | A1 |
20170249861 | Border | Aug 2017 | A1 |
20170249862 | Border | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2316473 | Jan 2001 | CA |
2362895 | Dec 2002 | CA |
2388766 | Dec 2003 | CA |
104977785 | Oct 2015 | CN |
368898 | May 1990 | EP |
777867 | Jun 1997 | EP |
1326121 | Jul 2003 | EP |
2207164 | Jul 2010 | EP |
2486450 | Aug 2012 | EP |
2490130 | Aug 2012 | EP |
2502410 | Sep 2012 | EP |
2674834 | Dec 2013 | EP |
3095026 | Jul 2015 | EP |
2491984 | Dec 2012 | GB |
H07110735 | Apr 1995 | JP |
200102036 | Apr 2000 | JP |
2005138755 | Jun 2005 | JP |
2009171505 | Jul 2009 | JP |
5017989 | Sep 2012 | JP |
2012212990 | Nov 2012 | JP |
1020110101944 | Sep 2011 | KR |
2011143655 | Nov 2011 | WO |
2012040030 | Mar 2012 | WO |
2012058175 | May 2012 | WO |
2012064546 | May 2012 | WO |
2012082807 | Jun 2012 | WO |
2012118573 | Sep 2012 | WO |
2012118575 | Sep 2012 | WO |
2013043288 | Mar 2013 | WO |
2013049248 | Apr 2013 | WO |
2013050650 | Apr 2013 | WO |
2013103825 | Jul 2013 | WO |
2013110846 | Aug 2013 | WO |
2013076079 | Nov 2013 | WO |
2013170073 | Nov 2013 | WO |
2014155072 | Oct 2014 | WO |
2015109145 | Jul 2015 | WO |
2015164276 | Oct 2015 | WO |
2015175681 | Nov 2015 | WO |
2015179877 | Nov 2015 | WO |
2015195444 | Dec 2015 | WO |
2016044035 | Mar 2016 | WO |
2016073734 | May 2016 | WO |
2016133886 | Aug 2016 | WO |
2016205601 | Dec 2016 | WO |
2017015093 | Jan 2017 | WO |
2017095790 | Jun 2017 | WO |
Entry |
---|
US 8,743,465 B2, 06/2014, Totani (withdrawn) |
US 8,792,178 B2, 07/2014, Totani (withdrawn) |
US 9,195,056 B2, 11/2015, Border et al. (withdrawn) |
Allison, R S. et al. “Tolerance of Temporal Delay in Virtual Environments,” VR '01 Proceedings of the Virtual Reality 2001 Conference (VR'01), Centre for Vision Research and Departments of Computer Science and Psychology, Mar. 2001, 1-8. |
Azuma, Ronald T. (Aug. 1997). “A Survey of Augmented Reality,” In Presence: Teleoperators and Virtual Environments 6, 4, Hughes Research Laboratories, Malibu, CA, located at: https://web.archive.org/web/20010604100006/http://www.cs.unc.edu/˜azuma/ARpresence.pdf , retrieved on Oct. 26, 2020. |
Bezryadin, et al. “Brightness Calculation in Digital Image Processing,” Technologies for Digital Fulfillment 2007, Las Vegas, NV, 2007, pp. 1-6. |
Bimber, Oliver et al. (2005). “Spatial Augmented Reality: Merging Real and Virtual Worlds,” A. K. Peters, Ltd., Wellesley, MA. |
Cheng et al. “Design of an Optical See-Through Head-Mounted Display with a Low f-Number and Large Field of View Using a Freedom Prism,” Applied Optics, vol. 48, No. 14, May 10, 2009, pp. 2655-2668. |
Clements-Cortes, et al. “Short-Term Effects of Rhythmic Sensory Stimulation in Alzheimer's Disease: An Exploratory Pilot Study,” Journal of Alzheimer's Disease 52 (2016), IOS Press Feb. 9, 2016, pp. 651-660. |
Fathi, A. et al. (2012). “Social interactions: A First-Person Perspective,” Computer Vision and Pattern Recognition (CVPR), IEEE Conference on. IEEE, 2012, eight Pages. |
Final Office Action mailed Aug. 24, 2017, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 14 pages. |
Final Office Action mailed Dec. 2, 2015, for U.S. Appl. No. 14/262,695, filed Apr. 25, 2014, 24 pages. |
Final Office Action mailed Jan. 8, 2021, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 18 pages. |
Final Office Action mailed May 17, 2017, for U.S. Appl. No. 14/262,695, filed Apr. 25, 2014, 21 pages. |
Final Office Action mailed Nov. 1, 2018, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 18 pages. |
Final Office Action mailed Oct. 20, 2017, for U.S. Appl. No. 14/228,526, filed Mar. 28, 2014, 11 pages. |
Final Office Action mailed Sep. 1, 2016, for U.S. Appl. No. 14/228,526, filed Mar. 28, 2014, 9 pages. |
Gonzalez et al. “Digital Image Processing Second Edition,” http://users.dcc.uchile.cl/-jsaavedr/libros/dip_gw.pdf, 2002, pp. 1-190. |
Gonzalez et al. “Digital Image Processing Second Edition,” http://users.dcc.uchile.cl/-jsaavedr/libros/dip_gw.pdf, 2002, pp. 1-190. (Part Two). |
Hopkins et al. “In-VIVO NIR Diffuse-Reflectance Tissue Spectroscopy of Human Subjects,” http://citeseerx.ist.psu.edu/viewdoc/download?doi+10.1.1.596.955&rep=rep1&type=pdf, 1999, 1-11. |
Huang, “Image Completion Using Planar Structure Guidelines,” ACM Transactions on Graphics, 33(4):129, Jul. 14, 2011, 1-10. |
Janin, Adam L. et al. (1993). “Calibration of Head-Mounted Displays for Augmented Reality Applications”, Research and Technology Boeing Computer Services MS 7L-48 P.O. Box 24346 Seattle, WA 98124-0346 Virtual Reality Annual International Symposium, 1993., 1993 IEEE, 10 Pages. |
Lang, Manuel et al. “Nonlinear Disparity Mapping for Stereoscopic 3D”, Jul. 2010, pp. 1-10. |
Logbar Inc., “Ring: Shortcut Everything”, https://www.kickstarter.com/projects/1761670738/ring-shortcut-everything, Dec. 2014, 22 pages. |
Losev, O. et al. (Nov. 2016). “Light-emitting Diode,” https://en.wikipedia.orf/wiki/Lightemitting . . . diode, pp. 1-25. |
Mastandrea. “Mycestro, The Next Generation 3D Mouse,” https://www.kickstarter.com/projects/mycestro/mycestrotm-the-next-generation-3d-mouse. Dec. 2014, 22 pages. |
Non-Final Office Action mailed Aug. 11, 2016, for U.S. Appl. No. 14/262,695, filed Apr. 25, 2014, 17 pages. |
Non-Final Office Action mailed Jan. 11, 2018, for U.S. Appl. No. 14/262,695, filed Apr. 25, 2014, 12 pages. |
Non-Final Office Action mailed Jan. 13, 2016, for U.S. Appl. No. 14/228,526, filed Mar. 28, 2014, 10 pages. |
Non-Final Office Action mailed Jul. 15, 2019, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 15 pages. |
Non-Final Office Action mailed Jul. 26, 2017, for U.S. Appl. No. 14/956,590, filed Dec. 2, 2015, 11 pages. |
Non-Final Office Action mailed Jun. 1, 2020, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 15 pages. |
Non-Final Office Action mailed Jun. 18, 2016, for U.S. Appl. No. 14/262,695, filed Apr. 25, 2014, 6 pages. |
Non-Final Office Action mailed Mar. 29, 2018, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 17 pages. |
Non-Final Office Action mailed May 12, 2017, for U.S. Appl. No. 14/228,526, filed Mar. 28, 2014, 9 pages. |
Non-Final Office Action mailed Nov. 18, 2016, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 13 pages. |
Notice of Allowance mailed Apr. 28, 2021, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 9 pages. |
Pamplona, Vitor R. et al., “Photorealistic Models for Pupil Light Reflex and Iridal Pattern Deformation”, ACM Transactions on Graphics, vol. 28, No. 4, Article 106, Publication date: Aug. 2009, pp. 1-12. |
PCT/2016/064441, Application Serial No. PCT/US2016/064441, International Search Report and Written Opinion mailed Feb. 7, 2017, Osterhout Group, Inc., 16 pages. |
PCT/US2015/011697, “International Application Serial No. PCT/US2015/011697, International Preliminary Report on Patentability and Written Opinion mailed Jul. 28, 2016,” Osterhout Group, Inc., 10 pages. |
PCT/US2015/011697, “International Application Serial No. PCT/US2015/011697, International Search Report and Written Opinion mailed Apr. 13, 2015,” Osterhout Group, Inc., 14 pages. |
PCT/US2015/026704, “International Search Report and Written Opinion” mailed Aug. 21, 2015, 15 pages. |
PCT/US2015/026704, International Preliminary Report on Patentability and Written Opinion mailed Nov. 3, 2016, Osterhout Group, Inc., 10 pages. |
PCT/US2015/035192, “International Applications Serial No. PCT/US2015/035192, International Search Report and Written Opinion mailed Sep. 3, 2015,” Osterhout Group, Inc., 11 pages. |
PCT/US2015/035192, “International Preliminary Report on Patentability and Written Opinion mailed Dec. 29, 2016,” Osterhout Group, Inc. eight pages. |
PCT/US2015/059264, International Application Serial No. PCT/US2015/059264, International Search Report and Written Opinion mailed Feb. 19, 2016, Osterhout Group, Inc., 11 pages. |
PCT/US2015033379, International Application Serial No. PCT/US2015033379, International Preliminary Report on Patentability and Written Opinion, mailed Dec. 1, 2016, Osterhout Group, Inc. 8 pages. |
PCT/US2015033379, International Application Serial No. PCT/US2015033379, International Search Report Patentability and Written Opinion, mailed Nov. 30, 2015, Osterhout Group, Inc. 12 pages. |
PCT/US2016/018040, filed Feb. 16, 2016. (copy not attached.). |
PCT/US2016/018040, “International Application Serial No. PCT/US2016/018040, International Search Report and Written Opinion mailed Jul. 6, 2016,” Osterhout Group, Inc. 10 pages. |
PCT/US2016/038008, International Application Serial No. PCT/US2016/038008, International Search Report and Written Opinion mailed on Oct. 27, 2016, Osterhout Group, Inc. eight pages. |
PCT/US2016/042440, “Application Serial No. PCT/US2016/042440, The International Search Report and Written Opinion mailed Oct. 13, 2016,” Osterhout Group, Inc. seven pages. |
PCT/US2016/057021, filed Oct. 14, 2016. (copy not attached.). |
PCT/US2016/057021, “Application Serial No. PCT/US2016/057021, International Search Report and Written Opinion mailed Jan. 13, 2017,” Osterhout Group, Inc. nine pages. |
PCT/US2016/058023, Application Serial No. PCT/US2016/058023, International Search Report and Written Opinion mailed Dec. 30, 2016, Osterhout Group, Inc., 13 pages. |
PCT/US2016/058203, filed Oct. 21, 2016. (copy not attached.). |
PCT/US2016/063946, filed Nov. 29, 2016. (copy not attached.). |
PCT/US2016/063946, “Application Serial No. PCT/US2016/063946, International Search Report and Written Opinion dated Feb. 2, 2017,” Osterhout Group, Inc., 14 pages. |
PCT/US2016/063946, “International Application Serial No. PCT/US2016/063946, International Preliminary Report on Patentability and Written Opinion mailed Jun. 5, 2018,” Osterhout Group, Inc. nine pages. |
PCT/US2016/064441, filed Dec. 1, 2016. (copy not attached.). |
PCT/US2017/018277, filed Feb. 17, 2017. (Copy not attached.). |
PCT/US2017/019665, filed Feb. 27, 2017. (Copy not attached.). |
PCT/US2017/019665, Application Serial No. PCT/US2017/019665, International Search Report and the Written Opinion mailed May 19, 2017, eight pages. |
PCT/US2017/020379, filed Mar. 2, 2017. (Copy not attached.). |
PCT/US2017/026577, filed Apr. 7, 2017. (Copy not attached.). |
Petty et al. “Screening Controlled Substances Using The Near-Infrared Fourier Transform Raman Technique,” http://www.nicoletcz.cz/userfiles/file/vjecy/AN51242_Screening%20Controlled%20Substances.pdf, 1996, 2008. |
Plainis, et al., “The Physiologic Mechanism of Accommodation”, Cataract & Refractive Surgery Today Europe, Apr. 2014, pp. 23-29. |
Schedwill, “Bidirectional OLED Microdisplay”, Fraunhofer Research Institution for Organics, Materials and Electronic Device COMEDD, Apr. 11, 2014, 2 pages. |
U.S. Appl. No. 14/966,586, filed Dec. 11, 2015. (copy not attached.). |
U.S. Appl. No. 14/970,647, filed Dec. 16, 2015. (copy not attached.). |
U.S. Appl. No. 14/970,653, filed Dec. 16, 2015. (copy not attached.). |
U.S. Appl. No. 14/517,425, filed Oct. 17, 2014. (Copy not attached). |
U.S. Appl. No. 14/559,126, filed Dec. 3, 2014. (Copy not attached). |
U.S. Appl. No. 14/742,514, filed Jun. 17, 2015. (Copy not attached). |
U.S. Appl. No. 14/742,530, filed Jun. 17, 2015. (Copy not attached). |
U.S. Appl. No. 14/834,729, filed Aug. 25, 2015. (Copy not attached) (FTF). |
U.S. Appl. No. 14/834,748, filed Aug. 25, 2015. (Copy not attached). |
U.S. Appl. No. 14/834,774, filed Aug. 25, 2015. (Copy not attached). |
U.S. Appl. No. 14/834,795, filed Aug. 25, 2015. (Copy not attached). |
U.S. Appl. No. 14/919,523, filed Oct. 21, 2015. (Copy not attached). |
U.S. Appl. No. 14/955,615, filed Dec. 1, 2015. (Copy not attached). |
U.S. Appl. No. 14/956,590, filed Dec. 2, 2015. (Copy not attached). |
U.S. Appl. No. 14/970,635, filed Dec. 16, 2015. (Copy not attached. |
U.S. Appl. No. 14/970,639, filed Dec. 16, 2015. (Copy not attached). |
U.S. Appl. No. 15/047,110, filed Feb. 18, 2016. (Copy not attached.). |
U.S. Appl. No. 15/047,712, filed Feb. 19, 2016. (Copy not attached.). |
U.S. Appl. No. 15/053,832, filed Feb. 25, 2016. (Copy not attached.). |
U.S. Appl. No. 15/398,387, filed Jan. 4, 2017. (Copy not attached.). |
U.S. Appl. No. 15/446,025, filed Mar. 1, 2017. (Copy not attached.). |
U.S. Appl. No. 15/658,990, filed Jul. 25, 2017. (Copy not attached.). |
U.S. Appl. No. 14/623,932, filed Feb. 17, 2015. (Copy not attached). |
U.S. Appl. No. 14/659,781, filed Mar. 17, 2015. (Copy not attached). |
U.S. Appl. No. 14/670,677, filed Mar. 27, 2015. (Copy not attached). |
U.S. Appl. No. 14/671,885, filed Mar. 27, 2015. (Copy not attached). |
U.S. Appl. No. 14/671,899, filed Mar. 27, 2015. (Copy not attached). |
U.S. Appl. No. 14/671,906, filed Mar. 27, 2015. (Copy not attached). |
U.S. Appl. No. 14/743,047, filed Jun. 18, 2015. (Copy not attached). |
U.S. Appl. No. 14/802,878, filed Jul. 17, 2015. (Copy not attached). |
U.S. Appl. No. 14/806,385, filed Jul. 22, 2015. (Copy not attached). |
U.S. Appl. No. 14/806,410, filed Jul. 22, 2015. (Copy not attached). |
U.S. Appl. No. 14/880,809, filed Oct. 12, 2015. (Copy not attached). |
U.S. Appl. No. 14/919,981, filed Oct. 22, 2015. (Copy not attached). |
U.S. Appl. No. 15/051,365, filed Feb. 23, 2016. (Copy not attached). |
U.S. Appl. No. 15/053,054, filed Feb. 25, 2016. (Copy not attached). |
U.S. Appl. No. 15/053,110, filed Feb. 25, 2016. (Copy not attached). |
U.S. Appl. No. 15/056,573, filed Feb. 29, 2016. (Copy not attached). |
U.S. Appl. No. 15/058,383, filed Mar. 2, 2016. (Copy not attached). |
U.S. Appl. No. 15/058,835, filed Mar. 2, 2016. (Copy not attached). |
U.S. Appl. No. 15/063,667, filed Mar. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/063,682, filed Mar. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/063,691, filed Mar. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/063,702, filed Mar. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/063,714, filed Mar. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/094,039, filed Apr. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/149,456, filed May 9, 2016. (Copy not attached). |
U.S. Appl. No. 15/155,139, filed May 16, 2016. (Copy not attached). |
U.S. Appl. No. 15/155,476, filed May 16, 2016. (Copy not attached). |
U.S. Appl. No. 15/157,573, filed May 18, 2016. (Copy not attached). |
U.S. Appl. No. 15/162,737, filed May 24, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,621, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,648, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,665, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,679, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,695, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,708, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/167,720, filed May 27, 2016. (Copy not attached). |
U.S. Appl. No. 15/170,256, filed Jun. 1, 2016. (Copy not attached). |
U.S. Appl. No. 15/223,423, filed Jul. 29, 2016. (Copy not attached). |
U.S. Appl. No. 15/242,757, filed Aug. 22, 2016. (Copy not attached). |
U.S. Appl. No. 15/242,893, filed Aug. 22, 2016. (Copy not attached). |
U.S. Appl. No. 15/249,637, filed Aug. 29, 2016. (Copy not attached). |
U.S. Appl. No. 15/259,465, filed Sep. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/259,473, filed Sep. 8, 2016. (Copy not attached). |
U.S. Appl. No. 15/281,504, filed Sep. 30, 2016. (Copy not attached). |
U.S. Appl. No. 15/334,412, filed Oct. 26, 2016. (Copy not attached). |
U.S. Appl. No. 15/347,958, filed Nov. 10, 2016. (Copy not attached). |
U.S. Appl. No. 15/352,745, filed Nov. 16, 2016. (Copy not attached). |
U.S. Appl. No. 15/395,690, filed Dec. 30, 2016. (Copy not attached). |
U.S. Appl. No. 15/397,920, filed Jan. 4, 2017. (Copy not attached). |
U.S. Appl. No. 15/400,982, filed Jan. 7, 2017. (Copy not attached). |
U.S. Appl. No. 15/456,619, filed Mar. 13, 2017. (Copy not attached). |
U.S. Appl. No. 29/553,028, filed Jan. 28, 2016. (Copy not attached). |
U.S. Appl. No. 29/555,129, filed Feb. 18, 2016. (Copy not attached). |
U.S. Appl. No. 29/575,093, filed Aug. 22, 2016. (Copy not attached). |
U.S. Appl. No. 29/581,145, filed Oct. 17, 2016. (Copy not attached). |
U.S. Appl. No. 29/589,483, filed Dec. 31, 2016. (Copy not attached). |
U.S. Appl. No. 29/589,676, filed Jan. 4, 2017. (Copy not attached). |
Vogel, et al., “Data glasses controlled by eye movements”, Information and communication, Fraunhofer-Gesellschafl JSep. 22, 2013, 2 pages. |
Walton, Z. “Wear This Smartphone Controller on Your Finger,” http://www.webpronews.com/wear-this-smartphone-controller-on-your-finger-2012-06, 5 pages. |
Ye, Hui et al., “High Quality Voice Morphing”, Cambridge University Engineering Department Trumpington Street, Cambridge, England, CB2 1PZ, 2004, I-9-I-12. |
“Audio Spotlight,” by Holosonics, http://www.holosonics.com, accessed Jul. 3, 2014, three pages. |
“Continental Head-Up Display Augmented Reality HUD”, http://continental-head-up-display.com/ (2014) (last visited: Jan. 31, 2017). pp. 1-10. |
“Genius Ring Mice,” http://www.geniusnet.com/Genius/wSite/productCompare/compare.jsp, Dec. 23, 2014, one page. |
“Help Requested! Comments and input needed for new coaxial UAS-DIY Drones,” http://diydrones.com/profiles/blogs/help-requested-comments-and-input-needed-for-new-coaxial-uas, Mar. 5, 2015, 1-3. |
“How Ascent AeroSystems is looking to add to your outdoor adventure,” http://droneblog.com/2015/03/23/how-ascent-aerosystems-is-looking-to-add-to-your-outdoor-adventure/#!prettyPhoto, Mar. 23, 2015, 1-10. |
“Lightberry,” https://web.archive.org/web/20131201194408/http:1/lightberry.eu/, Dec. 1, 2013, 11 pages. |
“Meet Nod, the Bluetooth Ring That Wants to Replace your Mouse,” http://www.pcmag.com/article2/0.2817.2457238.00.asp, Apr. 29, 2014, 6 pages. |
“Sound from Ultrasound,” Wikipedia entry, http://en.m.wikipedia.org/wiki/Sound_from_ultrasound, accessed Jul. 3, 2014, 13 pages. |
Final Office Action mailed Feb. 14, 2020, for U.S. Appl. No. 14/966,103, filed Dec. 11, 2015, 16 pages. |
Non-Final Office Action mailed Nov. 16, 2016, for U.S. Appl. No. 14/956,590, filed Dec. 2, 2015, 15 pages. |
Jacob, R. “Eye Tracking in Advanced Interface Design”, Virtual Environments and Advanced Interface Design, Oxford University Press, Inc. (Jun. 1995). |
Rolland, J. et al., “High-resolution inset head- mounted display”, Optical Society of America, vol. 37, No. 19, Applied Optics, (Jul. 1, 1998). |
Tanriverdi, V. et al. (Apr. 2000). “Interacting With Eye Movements in Virtual Environments,” Department of Electrical Engineering and Computer Science, Tufts University, Medford, MA 02155, USA, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, eight pages. |
Yoshida, A. et al., “Design and Applications of a High Resolution Insert Head Mounted Display”, (Jun. 1994). |
Number | Date | Country | |
---|---|---|---|
20220017012 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14966103 | Dec 2015 | US |
Child | 17443814 | US | |
Parent | 14956590 | Dec 2015 | US |
Child | 14966103 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14262695 | Apr 2014 | US |
Child | 14956590 | US | |
Parent | 14228526 | Mar 2014 | US |
Child | 14956590 | US |