The present invention relates generally to brackets or connectors for building materials, and more particularly to a connecting bracket providing a comprehensive positive connection between a support column and a slab, pier, girder or structural frame of a building.
With the escalating costs of building materials, especially lumber, many companies have developed pre-engineered polymer and fiberglass materials for use as support structures in commercial and residential construction.
At the same time, the monumental costs for rebuilding inferior structures after natural disasters has caused communities to enact tougher building codes and standards to minimize damage from future natural disasters, thereby hopefully lowering replacement costs and saving lives.
Accordingly, building designers and engineers must now factor both cost and safety requirements into their new designs.
In particular, hollowed polymer and fiberglass columns are used extensively for porches, porticos, decks, as well as interior design appurtenances. A problem arises when a contractor seeks to secure these columns to the structural counterparts they transfer the loads to. While the particular column manufacturing company typically supplies a technical data sheet for installation, such data sheets are often incomplete, or provide minimal guidelines. Frequently, the contractor is instructed to check with local state and/or federal building codes for proper installation. In a bit of circular logic, many of the building codes themselves (e.g., the International Building Code or IBC) will state that a product should be installed in accordance with the manufacturer's product specification.
Left with minimal guidance and subjective standards, many contractors/installers resort to ad hoc or self-created connection mechanisms, with the result that such structures are not in compliance with building codes, and are inadequate to properly withstand the wind, seismic or other destructive forces experienced in natural disasters.
For example, as shown in
In any case, these “L” brackets provide limited axial load support, load transfer, lateral support and shear value from the column 80 to the structural counterpart 95. These concentrated point connections do not transfer the load around the entire circumference of the column, severely reducing the load transfer capabilities for wind, snow, seismic and lateral forces.
In another typical installation shown in
What is needed, therefore, is a connecting bracket that provides a shear connection around the entire circumference or perimeter of the column. What is also needed is a device that can connect and transfer the loads efficiently and with stronger lateral integrity.
To overcome the above described and other disadvantages of the prior art, the present invention provides for a collar-type connecting bracket with two components: a socket for attaching a support column to the connecting bracket, and a base plate for attaching the connecting bracket to one or more structural members.
More specifically, the present invention provides for a connecting bracket, for attaching a columnar building member to a structural support member, including a flat base plate having an inner perimeter and an outer perimeter, with a plurality of apertures disposed along the base plate. A socket extends from the inner perimeter of the base plate, with the perimeter of the socket conforming to the inner perimeter of the base plate, and with a plurality of apertures disposed along the socket. The columnar building member is attached to the connecting bracket via a plurality of fastening means through the apertures disposed along the socket. The columnar building member and connecting bracket are attached to the structural support member(s) via a plurality of fastening means through the apertures disposed along the base plate.
The above objects and other advantages of the present invention will become more apparent by describing in detail the preferred embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
Broadly described, an embodiment of the invention provides a means for connecting a support column to a slab pier, girder or structural frame of a building. Support columns used in construction today may be hollow or not, but the connecting bracket of the present invention can be used with any support column installation.
The connecting bracket 60 of the present invention provides a positive, secure and circumferential connection between the respective upper or lower ends of the support column 80 and the slab, pier, girder or other structural component. The connecting bracket 60 is designed to provide a connection that meets or exceeds the building code requirements, while still making it easier and quicker to install than existing methods and apparatus. The connecting bracket 60 can be used to secure any type of material, including but not limited to wood, polymer and aluminum materials. The connecting bracket 60 is secured to the column 80 and the structural member using a suitable fastening means 70, for example, nails, screws, lag bolts, nut/bolt combinations and other equivalent means.
While shown in a circular, collar-type configuration in
The outer perimeter 63 of the base plate 62 may be of a different shape to conform to a specific location of the structural support members to which it will be secured. For example, if attaching a cylindrical column 80 at a corner structural location, the outer perimeter 63 of the base plate 62 may be triangular, while the inner diameter 61 would be circular to conform to the circumference of the column 80 (see
While
Also, the connecting bracket 60 shown in
In each of
In addition, as shown in
As described herein, the connecting bracket 60 can be used to install and secure the attachment point between similar or dissimilar building materials, whether conventional wood and aluminum, or modern polymers and fiberglass. The connecting bracket 60 also facilitates inspection and maintenance of the structural attachment point.
The connecting bracket 60 can be made of many different materials and material thicknesses, depending on the end use, environmental factors, and the anticipated load. For example, the connecting bracket 60 can be manufactured with all gauges of stainless steel, hot-dipped zinc-coated galvanized steel, silicone, bronze, copper, fiberglass and plastics.
The vertical height and horizontal width of the bracket should be dimensioned to ensure the decorative base 210 (see
In still another embodiment, the present invention may be used to more effectively secure a hollow column to an attachment point, especially where the attachment point presents an offset load. As described previously in
Conventional systems focus on center load and symmetrical load bearing connections, not offset loads as described herein. These symmetrical loading examples have corresponding points exhibiting symmetry in a structural formula having equal parts on both halves of the hollow column. In addition, conventional systems require use of special tools, or precautionary techniques to prevent internal parts such as chains or cable loops from twisting or being compromised to their attachment points during installation. On the other hand, the embodiment described herein enables ease of installation with all threads and couplers. This sequence of all threads and couplers assists in the ease of installation providing a sense of continuity to components not visible during the assembly process.
The peripheral rim 310 is initially secured by any conventional means to the attachment point by aligning the apertures disposed along the peripheral rim 310. Then the base plate 62 of the connecting bracket 60 is placed over the peripheral rim 310 to provide additional securing force, especially in areas of the country prone to high wind loading. Note that the column installer can secure the base plate 62 of the connecting bracket 60 over the peripheral rim 310 of the base support 300, and for additional securing force, also secure the socket 64 of the connecting bracket 60 to the hollow column 80. The peripheral rim 310 and the base plate 62 would be of like configuration, such as square, triangular, or octagon.
By spreading the load along and around the entire the circumference of the column, and providing a plurality of attachment points to thereby increase the shear connection, the present invention is also well suited for those circumstances where the center point load of a roof girder, for instance, is offset from the center point load of the columnar support.
While the present invention has been described in detail with reference to the preferred embodiments thereof, it should be understood to those skilled in the art that various changes, substitutions and alterations can be made hereto without departing from the scope of the invention as defined by the appended claims.
The present application is a continuation-in-part of U.S. application Ser. No. 12/214,919, filed on Jun. 25, 2008, which is, in turn, a continuation-in-part of U.S. application Ser. No. 11/407,240, filed on Apr. 20, 2006.
Number | Date | Country | |
---|---|---|---|
Parent | 12214919 | Jun 2008 | US |
Child | 12924981 | US | |
Parent | 11407240 | Apr 2006 | US |
Child | 12214919 | US |