System for authorizing functionality in adaptable hardware devices

Information

  • Patent Grant
  • RE42743
  • Patent Number
    RE42,743
  • Date Filed
    Thursday, May 15, 2008
    16 years ago
  • Date Issued
    Tuesday, September 27, 2011
    13 years ago
Abstract
A system for authorizing new or ongoing functional use of an adaptable device. The device generates usage information including the times that the device is used, types of functionality provided, indication of amount and type of resources used, and other information. The usage information is transmitted back to a controlling entity, such as an original manufacturer of the adaptable device. The controlling entity can act to enable or prevent use of the provided functionality, as desired. Part of the requirement for using functionality can be monetary, by predetermined agreement, or by other criteria.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is related to co-pending U.S. patent application Ser. No. 09/815,122, filed on Mar. 22, 2001, entitled “ADAPTIVE INTEGRATED CIRCUITRY WITH HETEROGENEOUS AND ADAPTABLE MATRICES OF DIVERSE AND ADAPTIVE COMPUTATIONAL UNITS HAVING FIXED, APPLICATION SPECIFIC COMPUTATIONAL ELEMENTS” which is hereby incorporated by reference as if set forth in full in this document.


BACKGROUND OF THE INVENTION

This invention relates in general to monitoring functionality in adaptable devices and more specifically to a system for authorizing, in an ongoing manner, users and other entities for activity in association with a highly adaptable hardware device.


Traditional consumer electronic devices have substantially fixed functionality. Devices such as cell phones, digital audio players, personal digital assistants (PDAs), global positioning satellite (GPS) terminals, etc. are designed from scratch and manufactured and marketed as a specific type of device with a specific feature set. Traditionally, once a consumer purchases a hardware device the original manufacturer of the device has no further control over the device and can not receive additional revenue based on a consumer's use of the device. While this approach has worked well for non-adaptable, “fixed function,” devices, such an approach suffers from several drawbacks in the case where highly adaptable consumer devices are developed and marketed.


This approach is adequate where a device's functionality is “fixed” or not capable of substantially changing. However, recent developments are providing more flexible consumer devices where the device's feature set, data formats, communication protocols, etc. can be greatly modified after sale by the use of software or other information. Such modification can potentially be so extreme as to change the consumer's concept of the device so that it is no longer even considered to be the same device. Thus, it is desirable to provide a mechanism whereby a manufacturer, or other entity, has more opportunities to obtain revenue and profit from the creation and support of the devices, and associated hardware and software.


SUMMARY OF THE INVENTION

The present invention provides a system for authorizing new or ongoing functional use of an adaptable, or configurable, device. The device generates usage information including the times that the device is used, types of functionality provided, indication of amount and type of resources used, and other information. The usage information is transmitted back to a controlling entity, such as an original manufacturer of the adaptable device. The controlling entity can act to enable or prevent use of the provided functionality, as desired. Part of the requirement for using functionality can be monetary, by predetermined agreement, or by other criteria.


In one embodiment the invention provides a method for authorizing the use of an adaptable device. The method includes detecting that the adaptable device is adapted to perform a first type of operation at a first point in time; detecting that the adaptable device is adapted to perform a second type of operation at a second point in time; and using the detected adaptations to determine whether to authorize the continued use of the device.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates typical entities involved in the development, sale, distribution and adaptation of a adaptable device;



FIG. 2 illustrates a general-purpose processor type of adaptable device; and



FIG. 3 illustrates basic parts of an adaptable device architecture based on an adaptive computing environment.





DESCRIPTION OF A PREFERRED EMBODIMENT

The present invention allows for monitoring and controlling adaptable devices after the point of sale. Examples of a preferred type of adaptable device is described in the above-referenced co-pending patent application. Although the invention is discussed herein with respect to specific device types, it should be clear that aspects of the invention include any type of adaptable device, using any type of architecture, adaptation method, adaptation information transfer systems, adaptation data format, etc.



FIG. 1 illustrates typical entities involved in the development, sale, distribution and adaptation of a adaptable device.


In FIG. 1, box 130 illustrates entities involved with hardware aspects of the device while box 132 illustrates entities involved with software, or “adaptation information,” aspects of the device. Original manufacturer 102 is the primary developer of the adaptable device. As such, original manufacturer 102 desires to obtain as much revenue as possible from all entities who stand to gain, or benefit from, use and sale of the device or of additional hardware and information related to the device. Note that although the system of the present invention is discussed primarily with respect to obtaining revenue and profits for the original manufacturer, that any entity in FIG. 1 (and other entities, not shown) can obtain revenue benefits using features of the present invention.


Original manufacturer 102 can sell, rent, lease, license or otherwise deliver, device 120 to an end user. A preferred embodiment of the invention licenses the use of the hardware device, or resources in the hardware device. Such licensing can be by possession of the device over time, dependent on machine cycles, features used, input/output (I/O) rate or amount, memory activity or utilization, energy use, bus utilization, or any other performance measurement. This ability of the original manufacturer to receive one or more payments after sale of the device, where the payments are dependent upon a degree of possession or use of the device, provides distinct commercial advantages to one or more entities involved, including the end user.


Returning to FIG. 1, delivery of the physical adaptable device can be through normal retail distribution networks such as store sales, internet sales, mail order, telephone order, etc, as represented by distribution network 116. Original manufacturer 102 can license or sell components or hardware technology to designer 104 or original equipment manufacturer (OEM) 106, or other entities (not shown). The commercial aspects of selling or licensing hardware to end users, or to affiliated developers or business partners is well-known and any traditional, or future, development, sales, and distribution methods can be employed.


Unauthorized developer 108 is a hardware manufacturer that operates without authority from original developer 102. However, because the device (or components) are physical, such unauthorized action is relatively easy to detect and police by using traditional laws and regulation methods.


Box 132 represents the “software” aspect of the adaptable device. As mentioned, device 120 is so highly adaptable that it can be readapted not only with extremely diverse features, but it can also be readapted to become a completely different functional device. For example, formats can be changed so that a device adapted as a code division multiple access (CDMA) cell phone can become a time-division multiple access (TDMA) cell phone by downloading adaptation information from adaptation companies such as 110 or 112 through a communications link such as internet 122. Other formats and/or protocols are possible such as voice over intemet protocol (VoIP), traditional radio frequency transmission, etc. The device itself can be changed so that it is no longer a cell phone, but becomes a different device, or combination of what are today considered different devices. For example, the device can be readapted to be a media playback device, database device, web browser, digital satellite radio, etc.


Within a given device type there may be multiple formats, protocols, or other data or transmission type differentiations that make device types incompatible with each other or with certain data. For example, audio media players may be mp3, RealAudio, Media Player, .wav or other formats. Digital video players may include MPEG, .mov, .avi, and other formats. A highly adaptable device is able to perform functions so that the same physical device can be adapted to be any device type, and to handle any function or operation among different data and transmission formats within a device type. The physical device type can be a hand-held unit, set top box, car mounted, etc.


Adaptation companies 110 and 112 can receive payment from an end user of device 120 by means as is known in the art. For example, the adaptation information can be downloaded as shareware, trialware, a standard software product, etc. The adaptation information can also be licensed. Alternatively, payments to the adaptation companies can come from original manufacturer 102 while the original manufacturer obtains revenue with one of the approaches described, below.


Unauthorized adaptation company 114 represents an entity producing adaptation information without approval (or not under the control of) original manufacturer 102. Such unauthorized software-type distribution is extremely difficult to police and control because of the amorphous, complex and world-wide nature of Internet 122, typically used as the distribution mechanism.


However, a preferred embodiment of the invention allows the original manufacturer to receive revenue from any use of the device regardless of whether an authorized, or unauthorized, adaptation company has sold a “virtual device” (i.e., adaptation information that defines a new feature or device) to an end user. The preferred embodiment allows the device to send “usage information” from device 120 to original manufacturer 102 via communication network 118. Communication network 118 can be any type of network such as the Internet, satellite, radio-frequency broadcasts, the cellular network, a cable network, POTS telephone network, etc. The types of usage information are next presented.


Device 120 can be any type of adaptable device created using any type of architecture or design methodology, such as a device using a general-purpose processor, multiprocessing, application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), dedicated circuitry, etc., or combination of the foregoing. A preferred embodiment of the invention uses an adaptive computing engine (ACE) which is more fully described in the co-pending patent application referenced above. For purposes of illustration, the features of the present invention are next presented with respect to two specific architectures, namely (1) a general-purpose processor architecture and (2) the ACE architecture. However, it should be apparent that any type of adaptable hardware device design is adaptable for use with the present invention.



FIG. 2 illustrates a general-purpose processor type of adaptable device.


In FIG. 2, subsystems within device 140 typically communicate over a system bus such as bus 142. Additional buses or data transfer links can be used, such as dedicated signal wires, etc. Subsystems include input/output (I/O) controller 144, System Memory (or random access memory “RAM”) 146, central processing unit CPU 148, Display Controller 150, Serial Port 150, Fixed Disk 152, and Communication Link 154. Communication Link 154 allows the device to transfer data with an arbitrary external device, network or other communication system such as the Internet. Typically, adaptation information in the form of software can be loaded into the device through the communication link. Other ways to reconfigure the device include using removable media such as magnetic disks, compact disk read-only memory (CDROM), media cards, etc.


Bus 142 allows each of the subsystems to transfer data among other subsystems and, most importantly, with the CPU. External devices can communicate with the CPU or other subsystems via bus 142 by interfacing with a subsystem on the bus. Thus, Display 166 communicates with Display Adapter 150, a relative pointing device (RPD, e.g. a mouse) connects through Port 160, etc. Some devices such as Keyboard 170 can communicate with the CPU by direct means without using the main data bus as, for example, via an interrupt controller and associated registers (not shown). Any manner of user controls can be employed.


The present invention allows monitoring of various performance aspects, resource utilization and other indicators of use of the adaptable device. Any information, used to indicate the extent or type of use of an adaptable device is referred to herein as “usage information” or “usage parameters”.


One type of usage information includes using identification tags. An identification tag is an electronic signal sent via the communication link to the original manufacturer or another entity for purposes of monitoring usage. Each tag can be a unique identifier to indicate a type of functionality, feature, type of device adaptation, or other indication of usability of the device. In a preferred embodiment, the tags and a device identification are received by an authorizing entity. The device must receive an authorization code from the authorization entity before using, or in order to continue to use, the type of function indicated by the tag. Such authorization can be sent periodically to continue allowing the device to perform the functionality. Authorization can be based on a payment schedule, purchaser agreement, or some other criteria.


Other types of usage information measure performance or resource utilization of the device. For example, processor speed, number of cycles, or clock “on” time can be measured. This is not only an indication of how long the device is on, or being used, but also can indicate how much processing the device is performing.


Since many cycles are “idle” in a typical processor, other operations such as rate of instruction execution and type of instructions executed can be detected. For example, one approach is to sample the processing occurring at relatively long intervals, such as once per 500 mS. If digital signal processing (DSP) is occurring frequently then a higher charge can be applied to the device owner's account because DSP processing is a likely indicator of a high-level device operation. A high-level device such as a cell phone, media playback device, etc., would use DSP operations more frequently as opposed to standard logic and arithmetic functions in more basic devices such as an address book or web browser. A counter can be integrated into the central processing unit to increment when a complex (or other predetermined) instruction is executed. The counter value can be sampled at intervals.


Use of system resources is another type of usage information, or usage parameter, that can be the basis for payment charges, user accounting, monitoring or other purposes. For example, the rate of memory accessing, average or maximum memory utilization, I/O use by one or more ports, buses, communication links, etc., can be measured and used as usage information. As is discussed next, the preferred architecture (as opposed to a general purpose processor approach) allows more precise determination of usage information based on minute functionality or performance of an adaptable device.


Authorization codes can be keyed to enable only specific devices. Such an approach can use keyed encryption schemes, or other methods, as is known in the art. Authorization can be used to allow the user to use the device, or a portion of the device's functionality, for a period of time. Authorized use can be measured in other ways as, for example, by providing limitations on resources such as processing time, memory use, number or type of instruction or operations allowed, or any other type of device resource.



FIG. 3 illustrates basic parts of an adaptable device architecture based on an adaptive computing environment (ACE) approach. Such an approach is discussed in detail in the co-pending patent application referenced, above. The ACE architecture uses small processing elements called nodes, or matrices. The matrices are each designed to be specialized in one basic type of processing such as arithmetic, bit manipulation, finite state machine, memory oriented or reduced instruction set computing (RISC) approaches. The matrices are provided with adaptable interconnection networks. A scheduler performs the task of mapping an operation, or function, onto the matrices. Once mapped, the function can execute for a while before a next function is mapped onto the same set of matrices. In this manner, the functionality of a device that includes the matrices can be changed quickly and efficiently.


In FIG. 3, adaptable matrix 150 includes a plurality of computation units 200 (illustrated as computation units 200A through 200N). Computation units include a plurality of computational elements 250 (illustrated as computational elements 250A through 250Z). As illustrated in FIG. 3, matrix 150 generally includes a matrix controller 230 and plurality of computation (or computational) units 200 as logical or conceptual subsets or portions of a matrix interconnect network. Also shown are data interconnect network 240 and Boolean interconnect network 210. Interconnect networks can have different levels of interconnectivity and flexibility for greater levels of adaptability and adaptation. In an applied architecture, the matrix represented by FIG. 3 is replicated within a single chip, or chipset, and interconnected with each other to provide a scalable approach to providing processing resources. A network interconnecting matrices (not shown) is referred to as a matrix interconnection network.


Boolean interconnect network 210 provides adaptation and data interconnection capability between and among the various computation units 200, and is preferably small (i.e., only a few bits wide). Data interconnect network 240 provides the adaptation and data interconnection capability for data input and output between and among the various computation units 200, and is preferably comparatively large (i.e., many bits wide). It should be noted, however, that while conceptually divided into adaptation and data capabilities, any given physical portion of the matrix interconnection network, at any given time, may be operating as either the Boolean interconnect network 210, the data interconnect network 240, the lowest level interconnect 220 (between and among the various computational elements 250), or other input, output, or connection functionality.


Continuing to refer to FIG. 3, included within a computation unit 200 are a plurality of computational elements 250, illustrated as computational elements 250A through 250Z (individually and collectively referred to as computational elements 250), and additional interconnect 220. The interconnect 220 provides the adaptable interconnection capability and input/output paths between and among the various computational elements 250. As indicated above, each of the various computational elements 250 consist of dedicated, application specific hardware designed to perform a given task or range of tasks, resulting in a plurality of different, fixed computational elements 250. Utilizing the interconnect 220, the fixed computational elements 250 may be adaptably connected together into adaptive and varied computational units 200, which also may be further readapted and interconnected, to execute an algorithm or other function, at any given time, utilizing the interconnect 220, the Boolean network 210, and the matrix interconnection network (not shown).


In a preferred embodiment, the various computational elements 250 are designed and grouped together, into various adaptive and adaptable computation units 200. In addition to computational elements 250 which are designed to execute a particular It algorithm or function, such as multiplication or addition, other types of computational elements 250 are also utilized. As illustrated in FIG. 3, computational elements 250A and 250B implement memory, to provide local memory elements for any given calculation or processing function (compared to more “remote” or auxiliary memory that can be external to the matrix). In addition, computational elements 250I, 250J, 250K and 250L are adapted to implement finite state machines to provide local processing capability especially suitable for complicated control processing.


With the various types of different computational elements 250 that may be available, depending upon the desired functionality, the computation units 200 may be loosely categorized. A first category of computation units 200 includes computational elements 250 performing linear operations, such as multiplication, addition, finite impulse response filtering, and so on. A second category of computation units 200 includes computational elements 250 performing non-linear operations, such as discrete cosine transformation, trigonometric calculations, and complex multiplications. A third type of computation unit 200 implements a finite state machine, such as computation unit 200C as illustrated in FIG. 3, particularly useful for complicated control sequences, dynamic scheduling, and input/output management, while a fourth type may implement memory and memory management, such as computation unit 200A. Lastly, a fifth type of computation unit 200 may be included to perform bit-level manipulation, such as for encryption, decryption, channel coding, Viterbi decoding, and packet and protocol processing (such as Internet Protocol processing).


In addition to the ways of determining functionality for general-purpose processing devices, as described above, the functionality of a device using the ACE architecture can be determined by adaptation information that is used to schedule operations on the computation units. Usage information can include the availability, types and frequency of use of different computation units. Adaptation of the interconnect network, number of active computation units over time, rate of execution of operations, etc., can all be used as usage parameters.


Although the invention has been described with respect to specific embodiments, the embodiments are merely illustrative, and not restrictive, of the invention. For example, the specific adaptable device designs presented herein can be greatly modified without departing from the scope of the invention. Subsystems, components or devices other than those shown can be added, modified or removed from the designs. Similarly, entities can be added to, or removed from the diagram of FIG. 1, depicting the operation and method of the present invention. In general, the advantages of the present invention can be realized with many different types of entities playing different roles and having different relationships to each other than those shown in FIG. 1.


Note that traditional forms of selling, renting, leasing, or contractual or licensing arrangements for the use of adaptable devices are possible. Such traditional terms can incorporate the approach of the present invention to monitor usage information and to authorize functionality, use of resources, etc.


Thus, the scope of the invention is to be determined solely by the appended claims.

Claims
  • 1. A method for authorizing the use of a configurable device, the method comprising: detecting that the configurable device is configured to perform a first type of operation at a first point in time;detecting that the configurable device is configured to perform a second type of operation at a second point in time;using the detected configurations to determine whether to authorize the continued use of the device, wherein the detecting steps include the substep of receiving usage information from the device;
  • 2. A method for authorizing the use of a configurable device, the method comprising: detecting that the configurable device is configured to perform a first type of operation at a first point in time;detecting that the configurable device is configured to perform a second type of operation at a second point in time;using the detected configurations to determine whether to authorize the continued use of the device, wherein the detecting steps include the substep of receiving usage information from the device;
  • 3. A method for authorizing the use of a configurable device, the method comprising: detecting that the configurable device is configured to perform a first type of operation at a first point in time;detecting that the configurable device is configured to perform a second type of operation at a second point in time;using the detected configurations to determine whether to authorize the continued use of the device, wherein the detecting steps include the substep of receiving usage information from the device;wherein the usage information includes information about resources that the device has used, andwherein a resource includes instruction type.
  • 4. A method for authorizing the use of a configurable device, the method comprising: detecting that the configurable device is configured to perform a first type of operation at a first point in time;detecting that the configurable device is configured to perform a second type of operation at a second point in time;using the detected configurations to determine whether to authorize the continued use of the device, wherein the detecting steps include the substep of receiving usage information from the device;wherein the usage information includes information about resources that the device has used, and wherein a resource includes instruction execution frequency.
  • 5. A system for authorizing the use of configurable devices, the system comprising: an authorization system; anda communications link to transfer adaptation information from the authorization system to a configurable device including a plurality of heterogeneous computational elements coupled to a configurable interconnection network, the configurable interconnection network being configured in response to the adaptation information to provide corresponding interconnections between the plurality of heterogeneous computational elements to configure the device to perform a function,wherein the configurable device transmits usage information regarding the use of the function,wherein the usage information comprises a device identification that is transmitted to the authorization system over the communications link, and wherein the authorization system transmits an authorization code over the communications link to the configurable device,wherein the authorization code provides limitations on resources of the configurable device used by the function.
  • 6. The system of claim 5, wherein the authorization system determines whether the configurable device is authorized to perform the function based on the usage information; and prevents the configurable device from performing the function if it is determined that the configurable device is not authorized to perform the function.
  • 7. The system of claim 5, wherein the plurality of computational elements are hardware computational elements and the interconnections are physical interconnections.
  • 8. The system of claim 5, wherein: the function is a new function and the configurable device was previously configured to perform a previous function; andthe configuring of the configurable device comprises reconfiguring the configurable device to perform the new function instead of the previous function in response to the adaptation information.
  • 9. The system of claim 8, wherein the previous and new functions comprise different communication or data processing functions.
  • 10. The system of claim 8, wherein the previous and new functions comprise different communication functions using different communication protocols.
  • 11. The system of claim 10, wherein the different communication functions comprise CDMA and TDMA functions.
  • 12. The system of claim 8, wherein the previous and new functions comprise different data processing functions using different data formats.
  • 13. The system of claim 8, wherein the previous and new functions comprise media playback functions for different media formats.
  • 14. The system of claim 5, wherein the configurable device is a handheld device.
  • 15. The system of claim 5, wherein the adaptation information is encrypted and wherein the authorization code is used by the configurable device to decrypt the adaptation information.
  • 16. The system of claim 5, wherein the plurality of heterogeneous computational elements coupled to the configurable interconnection network are a node, and wherein the configurable device comprises a plurality of nodes coupled to a node interconnection network.
  • 17. The system of claim 16, wherein the node interconnection network is further configured in response to the adaptation information to provide corresponding interconnections between the plurality of nodes to configure the device to perform the function.
  • 18. A configurable device comprising: a plurality of computational units, the plurality of computational units including at least a first computational unit configured to perform a linear operation, a second computational unit configured to perform a non-linear operation, a third computational unit configured to perform memory management, and a fourth computational unit configured to perform bit-level manipulation; anda communication network interface configured to transmit an identification tag to an external entity and receive an authorization code allowing use of at least a portion of the configurable device for a period of time,wherein the communication network interface is further configured to receive adaptation information that enables the configurable device to perform a function, and wherein the fourth computational element is configured to decrypt the adaptation information based on the authorization code,wherein the authorization code provides limitations on resources of the configurable device used by the function.
  • 19. The configurable device of claim 18, wherein the first computational element is configured to perform an operation selected from the group consisting of multiplication, addition and finite impulse response filtering.
  • 20. The configurable device of claim 18, wherein the second computational element is configured to perform an operation selected from the group consisting of discrete cosine transformation, trigonometric calculations and complex multiplication.
  • 21. The configurable device of claim 18, wherein the fourth computational element is configured to perform an operation selected from the group consisting of encryption, decryption, channel coding, Viterbi decoding and packet and protocol processing.
  • 22. The configurable device of claim 18, wherein the communication network interface is further configured to transmit usage information, wherein the usage information comprises a device identification and wherein the authorization code is associated with the device identification.
  • 23. The configurable device of claim 18, wherein the first computational element is configured to perform an operation selected from the group consisting of multiplication, addition and finite impulse response filtering, the second computational element is configured to perform an operation selected from the group consisting of discrete cosine transformation, trigonometric calculations and complex multiplication, and the fourth computational element is configured to perform an operation selected from the group consisting of encryption, decryption, channel coding, Viterbi decoding and packet and protocol processing.
US Referenced Citations (467)
Number Name Date Kind
3409175 Byrne Nov 1968 A
3666143 Weston May 1972 A
3938639 Birrell Feb 1976 A
3949903 Benasutti et al. Apr 1976 A
3960298 Birrell Jun 1976 A
3967062 Dobias Jun 1976 A
3991911 Shannon et al. Nov 1976 A
3995441 McMillin Dec 1976 A
4076145 Zygiel Feb 1978 A
4143793 McMillin et al. Mar 1979 A
4172669 Edelbach Oct 1979 A
4174872 Fessler Nov 1979 A
4181242 Zygiel et al. Jan 1980 A
RE30301 Zygiel Jun 1980 E
4218014 Tracy Aug 1980 A
4222972 Caldwell Sep 1980 A
4237536 Enelow et al. Dec 1980 A
4252253 Shannon Feb 1981 A
4302775 Widergren et al. Nov 1981 A
4333587 Fessler et al. Jun 1982 A
4354613 Desai et al. Oct 1982 A
4377246 McMillin et al. Mar 1983 A
4393468 New Jul 1983 A
4413752 McMillin et al. Nov 1983 A
4458584 Annese et al. Jul 1984 A
4466342 Basile et al. Aug 1984 A
4475448 Shoaf et al. Oct 1984 A
4509690 Austin et al. Apr 1985 A
4520950 Jeans Jun 1985 A
4549675 Austin Oct 1985 A
4553573 McGarrah Nov 1985 A
4560089 McMillin et al. Dec 1985 A
4577782 Fessler Mar 1986 A
4578799 Scholl et al. Mar 1986 A
RE32179 Sedam et al. Jun 1986 E
4633386 Terepin et al. Dec 1986 A
4658988 Hassell Apr 1987 A
4694416 Wheeler et al. Sep 1987 A
4711374 Gaunt et al. Dec 1987 A
4713755 Worley, Jr. et al. Dec 1987 A
4719056 Scott Jan 1988 A
4726494 Scott Feb 1988 A
4747516 Baker May 1988 A
4748585 Chiarulli et al. May 1988 A
4760525 Webb Jul 1988 A
4760544 Lamb Jul 1988 A
4765513 McMillin et al. Aug 1988 A
4766548 Cedrone et al. Aug 1988 A
4781309 Vogel Nov 1988 A
4800492 Johnson et al. Jan 1989 A
4811214 Nosenchuck et al. Mar 1989 A
4824075 Holzboog Apr 1989 A
4827426 Patton et al. May 1989 A
4850269 Hancock et al. Jul 1989 A
4856684 Gerstung Aug 1989 A
4901887 Burton Feb 1990 A
4921315 Metcalfe et al. May 1990 A
4930666 Rudick Jun 1990 A
4932564 Austin et al. Jun 1990 A
4936488 Austin Jun 1990 A
4937019 Scott Jun 1990 A
4960261 Scott et al. Oct 1990 A
4961533 Teller et al. Oct 1990 A
4967340 Dawes Oct 1990 A
4974643 Bennett et al. Dec 1990 A
4982876 Scott Jan 1991 A
4993604 Gaunt et al. Feb 1991 A
5007560 Sassak Apr 1991 A
5021947 Campbell et al. Jun 1991 A
5040106 Maag Aug 1991 A
5044171 Farkas Sep 1991 A
5090015 Dabbish et al. Feb 1992 A
5129549 Austin Jul 1992 A
5139708 Scott Aug 1992 A
5156301 Hassell et al. Oct 1992 A
5156871 Goulet et al. Oct 1992 A
5165575 Scott Nov 1992 A
5190083 Gupta et al. Mar 1993 A
5190189 Zimmer et al. Mar 1993 A
5193151 Jain Mar 1993 A
5193718 Hassell et al. Mar 1993 A
5202993 Tarsy et al. Apr 1993 A
5203474 Haynes Apr 1993 A
5240144 Feldman Aug 1993 A
5261099 Bigo et al. Nov 1993 A
5263509 Cherry et al. Nov 1993 A
5269442 Vogel Dec 1993 A
5280711 Motta et al. Jan 1994 A
5297400 Benton et al. Mar 1994 A
5301100 Wagner Apr 1994 A
5303846 Shannon Apr 1994 A
5335276 Thompson et al. Aug 1994 A
5339428 Burmeister et al. Aug 1994 A
5343716 Swanson et al. Sep 1994 A
5361362 Benkeser et al. Nov 1994 A
5368198 Goulet Nov 1994 A
5379343 Grube et al. Jan 1995 A
5381546 Servi et al. Jan 1995 A
5381550 Jourdenais et al. Jan 1995 A
5388212 Grube et al. Feb 1995 A
5392960 Kendt et al. Feb 1995 A
5437395 Bull et al. Aug 1995 A
5450557 Kopp et al. Sep 1995 A
5454406 Rejret et al. Oct 1995 A
5465368 Davidson et al. Nov 1995 A
5479055 Eccles Dec 1995 A
5490165 Blakeney, II et al. Feb 1996 A
5491823 Ruttenberg Feb 1996 A
5507009 Grube et al. Apr 1996 A
5515519 Yoshioka et al. May 1996 A
5517600 Shimokawa May 1996 A
5519694 Brewer et al. May 1996 A
5522070 Sumimoto May 1996 A
5530964 Alpert et al. Jun 1996 A
5534796 Edwards Jul 1996 A
5542265 Rutland Aug 1996 A
5553755 Bonewald et al. Sep 1996 A
5555417 Odnert et al. Sep 1996 A
5560028 Sachs et al. Sep 1996 A
5560038 Haddock Sep 1996 A
5570587 Kim Nov 1996 A
5572572 Kawan et al. Nov 1996 A
5590353 Sakakibara et al. Dec 1996 A
5594657 Cantone et al. Jan 1997 A
5600810 Ohkami Feb 1997 A
5600844 Shaw et al. Feb 1997 A
5602833 Zehavi Feb 1997 A
5603043 Taylor et al. Feb 1997 A
5607083 Vogel et al. Mar 1997 A
5608643 Wichter et al. Mar 1997 A
5611867 Cooper et al. Mar 1997 A
5623545 Childs et al. Apr 1997 A
5625669 McGregor et al. Apr 1997 A
5626407 Westcott May 1997 A
5630206 Urban et al. May 1997 A
5635940 Hickman et al. Jun 1997 A
5646544 Iadanza Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5647512 Assis Mascarenhas deOliveira et al. Jul 1997 A
5649187 Hornbuckle Jul 1997 A
5667110 McCann et al. Sep 1997 A
5684793 Kiema et al. Nov 1997 A
5684980 Casselman Nov 1997 A
5687236 Moskowitz et al. Nov 1997 A
5694613 Suzuki Dec 1997 A
5694794 Jerg et al. Dec 1997 A
5699328 Ishizaki et al. Dec 1997 A
5701482 Harrison et al. Dec 1997 A
5704053 Santhanam Dec 1997 A
5706191 Bassett et al. Jan 1998 A
5706976 Purkey Jan 1998 A
5712996 Schepers Jan 1998 A
5720002 Wang Feb 1998 A
5721693 Song Feb 1998 A
5721854 Ebicioglu et al. Feb 1998 A
5732563 Bethuy et al. Mar 1998 A
5734808 Takeda Mar 1998 A
5737631 Trimberger Apr 1998 A
5742180 DeHon et al. Apr 1998 A
5742821 Prasanna Apr 1998 A
5745366 Highma et al. Apr 1998 A
RE35780 Hassell et al. May 1998 E
5751295 Becklund et al. May 1998 A
5754227 Fukuoka May 1998 A
5758261 Wiedeman May 1998 A
5768561 Wise Jun 1998 A
5778439 Trimberger et al. Jul 1998 A
5784636 Rupp Jul 1998 A
5787237 Reilly Jul 1998 A
5790817 Asghar et al. Aug 1998 A
5791517 Avital Aug 1998 A
5791523 Oh Aug 1998 A
5794062 Baxter Aug 1998 A
5794067 Kadowaki Aug 1998 A
5802055 Krein et al. Sep 1998 A
5818603 Motoyama Oct 1998 A
5822308 Weigand et al. Oct 1998 A
5822313 Malek et al. Oct 1998 A
5822360 Lee et al. Oct 1998 A
5828858 Athanas et al. Oct 1998 A
5829085 Jerg et al. Nov 1998 A
5835753 Witt Nov 1998 A
5838165 Chatter Nov 1998 A
5845815 Vogel Dec 1998 A
5860021 Klingman Jan 1999 A
5862961 Motta et al. Jan 1999 A
5870427 Tiedemann, Jr. et al. Feb 1999 A
5873045 Lee et al. Feb 1999 A
5881106 Cartier Mar 1999 A
5884284 Peters et al. Mar 1999 A
5886537 Macias et al. Mar 1999 A
5887174 Simons et al. Mar 1999 A
5889816 Agrawal et al. Mar 1999 A
5890014 Long Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5892961 Trimberger Apr 1999 A
5894473 Dent Apr 1999 A
5901884 Goulet et al. May 1999 A
5903886 Heimlich et al. May 1999 A
5907285 Toms et al. May 1999 A
5907580 Cummings May 1999 A
5910733 Bertolet et al. Jun 1999 A
5912572 Graf, III Jun 1999 A
5913172 McCabe et al. Jun 1999 A
5917852 Butterfield et al. Jun 1999 A
5920801 Thomas et al. Jul 1999 A
5931918 Row et al. Aug 1999 A
5933642 Greenbaum et al. Aug 1999 A
5940438 Poon et al. Aug 1999 A
5949415 Lin et al. Sep 1999 A
5950011 Albrecht et al. Sep 1999 A
5950131 Vilmur Sep 1999 A
5951674 Moreno Sep 1999 A
5953322 Kimball Sep 1999 A
5956518 DeHon et al. Sep 1999 A
5956967 Kim Sep 1999 A
5959811 Richardson Sep 1999 A
5959881 Trimberger et al. Sep 1999 A
5963048 Harrison et al. Oct 1999 A
5966534 Cooke et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5987105 Jenkins et al. Nov 1999 A
5987611 Freund Nov 1999 A
5991302 Berl et al. Nov 1999 A
5991308 Fuhrmann et al. Nov 1999 A
5993739 Lyon Nov 1999 A
5999734 Willis et al. Dec 1999 A
6005943 Cohen et al. Dec 1999 A
6006105 Rostoker et al. Dec 1999 A
6006249 Leong Dec 1999 A
6016395 Mohamed Jan 2000 A
6021186 Suzuki et al. Feb 2000 A
6021492 May Feb 2000 A
6023742 Ebeling et al. Feb 2000 A
6023755 Casselman Feb 2000 A
6028610 Deering Feb 2000 A
6036166 Olson Mar 2000 A
6039219 Bach et al. Mar 2000 A
6041322 Meng et al. Mar 2000 A
6041970 Vogel Mar 2000 A
6046603 New Apr 2000 A
6047115 Mohan et al. Apr 2000 A
6052600 Fette et al. Apr 2000 A
6055314 Spies et al. Apr 2000 A
6056194 Kolls May 2000 A
6059840 Click, Jr. May 2000 A
6061580 Altschul et al. May 2000 A
6073132 Gehman Jun 2000 A
6076174 Freund Jun 2000 A
6078736 Guccione Jun 2000 A
6085740 Ivri et al. Jul 2000 A
6088043 Kelleher et al. Jul 2000 A
6091263 New et al. Jul 2000 A
6091765 Pietzold, III et al. Jul 2000 A
6094065 Tavana et al. Jul 2000 A
6094726 Gonion et al. Jul 2000 A
6111893 Volftsun et al. Aug 2000 A
6111935 Hughes-Hartogs Aug 2000 A
6115751 Tam et al. Sep 2000 A
6120551 Law et al. Sep 2000 A
6122670 Bennett et al. Sep 2000 A
6138693 Matz Oct 2000 A
6141283 Bogin et al. Oct 2000 A
6150838 Wittig et al. Nov 2000 A
6154494 Sugahara et al. Nov 2000 A
6157997 Oowaki et al. Dec 2000 A
6175854 Bretscher Jan 2001 B1
6175892 Sazzad et al. Jan 2001 B1
6181981 Varga et al. Jan 2001 B1
6185418 MacLellan et al. Feb 2001 B1
6192070 Poon et al. Feb 2001 B1
6192255 Lewis et al. Feb 2001 B1
6192388 Cajolet Feb 2001 B1
6195788 Leaver et al. Feb 2001 B1
6198924 Ishii et al. Mar 2001 B1
6199181 Rechef et al. Mar 2001 B1
6202130 Scales, III et al. Mar 2001 B1
6219697 Lawande et al. Apr 2001 B1
6219756 Kasamizugami Apr 2001 B1
6219780 Lipasti Apr 2001 B1
6223222 Fijolek et al. Apr 2001 B1
6226364 O'Neil May 2001 B1
6226387 Tewfik et al. May 2001 B1
6230307 Davis et al. May 2001 B1
6237029 Master et al. May 2001 B1
6246883 Lee Jun 2001 B1
6247125 Noel-Baron et al. Jun 2001 B1
6249251 Chang et al. Jun 2001 B1
6258725 Lee et al. Jul 2001 B1
6263057 Silverman Jul 2001 B1
6266760 DeHon et al. Jul 2001 B1
6272579 Lentz et al. Aug 2001 B1
6281703 Furuta et al. Aug 2001 B1
6282627 Wong et al. Aug 2001 B1
6289375 Knight et al. Sep 2001 B1
6289434 Roy Sep 2001 B1
6289488 Dave et al. Sep 2001 B1
6292822 Hardwick Sep 2001 B1
6292827 Raz Sep 2001 B1
6292830 Taylor et al. Sep 2001 B1
6301653 Mohamed et al. Oct 2001 B1
6305014 Roediger et al. Oct 2001 B1
6311149 Ryan et al. Oct 2001 B1
6321985 Kolls Nov 2001 B1
6346824 New Feb 2002 B1
6347346 Taylor Feb 2002 B1
6349394 Brock et al. Feb 2002 B1
6353841 Marshall et al. Mar 2002 B1
6356994 Barry et al. Mar 2002 B1
6359248 Mardi Mar 2002 B1
6360256 Lim Mar 2002 B1
6360259 Bradley Mar 2002 B1
6360263 Kurtzberg et al. Mar 2002 B1
6363411 Dugan et al. Mar 2002 B1
6366999 Drabenstott et al. Apr 2002 B1
6377983 Cohen et al. Apr 2002 B1
6378072 Collins et al. Apr 2002 B1
6381735 Hunt Apr 2002 B1
6385751 Wolf May 2002 B1
6405214 Meade, II Jun 2002 B1
6408039 Ito Jun 2002 B1
6410941 Taylor et al. Jun 2002 B1
6411612 Halford et al. Jun 2002 B1
6421372 Bierly et al. Jul 2002 B1
6421809 Wuytack et al. Jul 2002 B1
6430624 Jamtgaard et al. Aug 2002 B1
6433578 Wasson Aug 2002 B1
6434590 Blelloch et al. Aug 2002 B1
6438737 Morelli et al. Aug 2002 B1
6456996 Crawford, Jr. et al. Sep 2002 B1
6459883 Subramanian et al. Oct 2002 B2
6473609 Schwartz et al. Oct 2002 B1
6507947 Schreiber et al. Jan 2003 B1
6510138 Pannell Jan 2003 B1
6510510 Garde Jan 2003 B1
6538470 Langhammer et al. Mar 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6563891 Eriksson et al. May 2003 B1
6570877 Kloth et al. May 2003 B1
6577678 Scheuermann Jun 2003 B2
6587684 Hsu et al. Jul 2003 B1
6590415 Agrawal et al. Jul 2003 B2
6601086 Howard et al. Jul 2003 B1
6601158 Abbott et al. Jul 2003 B1
6604085 Kolls Aug 2003 B1
6606529 Crowder, Jr. et al. Aug 2003 B1
6615333 Hoogerbrugge et al. Sep 2003 B1
6618434 Heidari-Bateni et al. Sep 2003 B2
6640304 Ginter et al. Oct 2003 B2
6653859 Sihlbom et al. Nov 2003 B2
6675265 Barroso et al. Jan 2004 B2
6691148 Zinky et al. Feb 2004 B1
6711617 Bantz et al. Mar 2004 B1
6718182 Kung Apr 2004 B1
6721286 Williams et al. Apr 2004 B1
6721884 De Oliveira Kastrup Pereira et al. Apr 2004 B1
6732354 Ebeling et al. May 2004 B2
6735621 Yoakum et al. May 2004 B1
6738744 Kirovski et al. May 2004 B2
6748360 Pitman et al. Jun 2004 B2
6754470 Hendrickson et al. Jun 2004 B2
6760587 Holtzman et al. Jul 2004 B2
6766165 Sharma et al. Jul 2004 B2
6778212 Deng et al. Aug 2004 B1
6785341 Walton et al. Aug 2004 B2
6819140 Yamanaka et al. Nov 2004 B2
6823448 Roth et al. Nov 2004 B2
6829633 Gelfer et al. Dec 2004 B2
6832250 Coons et al. Dec 2004 B1
6836839 Master et al. Dec 2004 B2
6865664 Budrovic et al. Mar 2005 B2
6871236 Fishman et al. Mar 2005 B2
6883084 Donohoe Apr 2005 B1
6894996 Lee May 2005 B2
6901440 Bimm et al. May 2005 B1
6912515 Jackson et al. Jun 2005 B2
6985517 Matsumoto et al. Jan 2006 B2
6986021 Master et al. Jan 2006 B2
6988139 Jervis et al. Jan 2006 B1
7032229 Flores et al. Apr 2006 B1
7044741 Leem May 2006 B2
7080051 Crawford Jul 2006 B1
7082456 Mani-Meitav et al. Jul 2006 B2
7139910 Ainsworth et al. Nov 2006 B1
7142731 Toi Nov 2006 B1
7249242 Ramchandran Jul 2007 B2
7536686 Tan et al. May 2009 B2
20010003191 Kovacs et al. Jun 2001 A1
20010023482 Wray Sep 2001 A1
20010029515 Mirsky Oct 2001 A1
20010034795 Moulton et al. Oct 2001 A1
20010039654 Miyamoto Nov 2001 A1
20010048713 Medlock et al. Dec 2001 A1
20010048714 Jha Dec 2001 A1
20010050948 Ramberg et al. Dec 2001 A1
20020010848 Kamano et al. Jan 2002 A1
20020013799 Blaker Jan 2002 A1
20020013937 Ostanevich et al. Jan 2002 A1
20020015435 Rieken Feb 2002 A1
20020015439 Kohli et al. Feb 2002 A1
20020023210 Tuomenoksa et al. Feb 2002 A1
20020024942 Tsuneki et al. Feb 2002 A1
20020024993 Subramanian et al. Feb 2002 A1
20020031166 Subramanian et al. Mar 2002 A1
20020032551 Zakiya Mar 2002 A1
20020035623 Lawande et al. Mar 2002 A1
20020041581 Aramaki Apr 2002 A1
20020042907 Yamanaka et al. Apr 2002 A1
20020061741 Leung et al. May 2002 A1
20020069282 Reisman Jun 2002 A1
20020072830 Hunt Jun 2002 A1
20020078337 Moreau et al. Jun 2002 A1
20020083305 Renard et al. Jun 2002 A1
20020083423 Ostanevich et al. Jun 2002 A1
20020087829 Snyder et al. Jul 2002 A1
20020089348 Langhammer Jul 2002 A1
20020101909 Chen et al. Aug 2002 A1
20020107905 Roe et al. Aug 2002 A1
20020107962 Richter et al. Aug 2002 A1
20020119803 Bitterlich et al. Aug 2002 A1
20020120672 Butt et al. Aug 2002 A1
20020138716 Master et al. Sep 2002 A1
20020141489 Imaizumi Oct 2002 A1
20020147845 Sanchez-Herrero et al. Oct 2002 A1
20020159503 Ramachandran Oct 2002 A1
20020162026 Neuman et al. Oct 2002 A1
20020168018 Scheuermann Nov 2002 A1
20020181559 Heidari-Bateni et al. Dec 2002 A1
20020184291 Hogenauer Dec 2002 A1
20020184498 Qi Dec 2002 A1
20020191790 Anand et al. Dec 2002 A1
20030007606 Suder et al. Jan 2003 A1
20030012270 Zhou et al. Jan 2003 A1
20030018446 Makowski et al. Jan 2003 A1
20030018700 Giroti et al. Jan 2003 A1
20030023830 Hogenauer Jan 2003 A1
20030026242 Jokinen et al. Feb 2003 A1
20030030004 Dixon et al. Feb 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030061260 Rajkumar Mar 2003 A1
20030061311 Lo Mar 2003 A1
20030063656 Rao et al. Apr 2003 A1
20030066063 Yokota Apr 2003 A1
20030076815 Miller et al. Apr 2003 A1
20030099223 Chang et al. May 2003 A1
20030102889 Master et al. Jun 2003 A1
20030105949 Master et al. Jun 2003 A1
20030110485 Lu et al. Jun 2003 A1
20030142818 Raghunathan et al. Jul 2003 A1
20030154357 Master et al. Aug 2003 A1
20030163723 Kozuch et al. Aug 2003 A1
20030172138 McCormack et al. Sep 2003 A1
20030172139 Srinivasan et al. Sep 2003 A1
20030200538 Ebeling et al. Oct 2003 A1
20030212684 Meyer et al. Nov 2003 A1
20040006584 Vandeweerd Jan 2004 A1
20040010645 Scheuermann et al. Jan 2004 A1
20040015970 Scheuermann Jan 2004 A1
20040025159 Scheuermann et al. Feb 2004 A1
20040057505 Valio Mar 2004 A1
20040062300 McDonough et al. Apr 2004 A1
20040081248 Parolari Apr 2004 A1
20040093479 Ramchandran May 2004 A1
20040168044 Ramchandran Aug 2004 A1
20050166038 Wang et al. Jul 2005 A1
20050198199 Dowling Sep 2005 A1
20060031660 Master et al. Feb 2006 A1
Foreign Referenced Citations (52)
Number Date Country
100 18 374 Oct 2001 DE
0 301 169 Feb 1989 EP
0 166 586 Jan 1991 EP
0 236 633 May 1991 EP
0 478 624 Apr 1992 EP
0 479 102 Apr 1992 EP
0 661 831 Jul 1995 EP
0 668 659 Aug 1995 EP
0 690 588 Jan 1996 EP
0 691 754 Jan 1996 EP
0 768 602 Apr 1997 EP
0 817 003 Jan 1998 EP
0 821 495 Jan 1998 EP
0 866 210 Sep 1998 EP
0 923 247 Jun 1999 EP
0 926 596 Jun 1999 EP
1 056 217 Nov 2000 EP
1 061 437 Dec 2000 EP
1 061 443 Dec 2000 EP
1 126 368 Aug 2001 EP
1 150 506 Oct 2001 EP
1 189 358 Mar 2002 EP
2 067 800 Jul 1981 GB
2 237 908 May 1991 GB
62-249456 Oct 1987 JP
63-147258 Jun 1988 JP
4-51546 Feb 1992 JP
7-064789 Mar 1995 JP
7066718 Mar 1995 JP
10233676 Sep 1998 JP
10254696 Sep 1998 JP
11296345 Oct 1999 JP
2000315731 Nov 2000 JP
2001-053703 Feb 2001 JP
WO 8905029 Jun 1989 WO
WO 8911443 Nov 1989 WO
WO 9100238 Jan 1991 WO
WO 9313603 Jul 1993 WO
WO 9511855 May 1995 WO
WO 9633558 Oct 1996 WO
WO 9832071 Jul 1998 WO
WO 9903776 Jan 1999 WO
WO 9921094 Apr 1999 WO
WO 9926860 Jun 1999 WO
WO 9965818 Dec 1999 WO
WO 0019311 Apr 2000 WO
WO 0065855 Nov 2000 WO
WO 0069073 Nov 2000 WO
WO 0111281 Feb 2001 WO
WO 0122235 Mar 2001 WO
WO 0176129 Oct 2001 WO
WO 0212978 Feb 2002 WO
Reissues (1)
Number Date Country
Parent 09998006 Nov 2001 US
Child 12152620 US