The present invention relates to wireless networks for collecting data, and more particularly, to systems and methods for managing the migration of nodes on such networks.
The collection of meter data from electrical energy, water, and gas meters has traditionally been performed by human meter-readers. The meter-reader travels to the meter location, which is frequently on the customer's premises, visually inspects the meter, and records the reading. The meter-reader may be prevented from gaining access to the meter as a result of inclement weather or, where the meter is located within the customer's premises, due to an absentee customer. This methodology of meter data collection is labor intensive, prone to human error, and often results in stale and inflexible metering data.
Some meters have been enhanced to include a one-way radio transmitter for transmitting metering data to a receiving device. A person collecting meter data that is equipped with an appropriate radio receiver need only come into proximity with a meter to read the meter data and need not visually inspect the meter. Thus, a meter-reader may walk or drive by a meter location to take a meter reading. While this represents an improvement over visiting and visually inspecting each meter, it still requires human involvement in the process.
An automated means for collecting meter data involves a fixed wireless network. Devices such as, for example, repeaters and gateways are permanently affixed on rooftops and pole-tops and strategically positioned to receive data from enhanced meters fitted with radio-transmitters. Typically, these transmitters operate in the 902-928 MHz range and employ Frequency Hopping Spread Spectrum (FHSS) technology to spread the transmitted energy over a large portion of the available bandwidth.
Data is transmitted from the meters to the repeaters and gateways and ultimately communicated to a central location. While fixed wireless networks greatly reduce human involvement in the process of meter reading, such systems require the installation and maintenance of a fixed network of repeaters, gateways, and servers. Identifying an acceptable location for a repeater or server and physically placing the device in the desired location on top of a building or utility pole is a tedious and labor-intensive operation. Furthermore, each meter that is installed in the network needs to be manually configured to communicate with a particular portion of the established network. When a portion of the network fails to operate as intended, human intervention is typically required to test the effected components and reconfigure the network to return it to operation.
Thus, while existing fixed wireless systems have reduced the need for human involvement in the daily collection of meter data, such systems require substantial human investment in planning, installation, and maintenance and are relatively inflexible and difficult to manage. Therefore, there is a need for networks that do not depend on pre-determined communication paths, but instead rapidly adapt to changing wireless communications conditions so as to maintain optimal network connectivity. These networks, where nodes in the network can change communication paths spontaneously based on changing wireless communication performance, have a need for a system to manage the wireless network as nodes migrate among the many communication paths.
The present invention is directed to methods and systems of managing the migration of wireless nodes amongst repeaters and collectors in a wireless network. According to a first aspect of the invention, there is provided a system for managing nodes migrating from a first communication path to a second communication path in a wireless network. The system includes a first collector disposed within the first communication path and a second collector disposed within the second communication path, a network management server that determines a network state, and a network management system that maintains a database of the network state. When the network management server detects that a node has migrated from the first communication path to the second communication path, information associated with the node is retrieved from a global database of device configuration parameters and downloaded to the second collector. In this way, the system ensures that each collector has the configuration information for each meter communicating through it.
According to a feature, a current network state database and a historical network state database may be update to reflect that the node has migrated from the first communication path to the second communication path.
According to another aspect of the invention, there is provided a method of managing nodes that spontaneously migrate among plural communication paths in a wireless network. The method includes detecting a migration of a node from a first communication path to a second communication path; updating a network state; retrieving information associated with the node from a first intermediary node in the first communication path; and downloading the information to a second intermediary node in the second communication path.
According to a feature, a current network state database and a historical network state database may be updated to reflect that the node has migrated from the first communication path to the second communication path. Also, the node may be configured in the second communication path in accordance with the information. The collected data from the first intermediary node may be merged with second collected data that is collected after the node migrated to the second communication path. The information may be removed from the first intermediary node after being downloaded to the second intermediary node.
According to another aspect of the invention there is provided a method for managing a spontaneous migration of a meter from a first collector in a first communication path to a second collector in a second communication path. The method includes detecting the spontaneous migration; retrieving configuration information and first collected data associated with the meter; contacting the second collector and download the configuration information and the first collected data; and merging the first collected data with second collected data associated with the meter stored in the second collector.
Additional features and advantages of the invention will be made apparent from the following detailed description of illustrative embodiments that proceeds with reference to the accompanying drawings.
The foregoing summary, as well as the following detailed description of preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings exemplary constructions of the invention; however, the invention is not limited to the specific methods and instrumentalities disclosed. In the drawings:
Exemplary systems and methods for gathering meter data are described below with reference to
Generally, a plurality of meter devices, which operate to track usage of a service or commodity such as, for example, electricity, water, and gas, are operable to wirelessly communicate with each other. A collector is operable to automatically identify and register meters for communication with the collector. When a meter is installed, the meter becomes registered with the collector that can provide a communication path to the meter. The collectors receive and compile metering data from a plurality of meter devices via wireless communications. A communications server communicates with the collectors to retrieve the compiled meter data.
System 110 further comprises collectors 116. Collectors 116 are also meters operable to detect and record usage of a service or commodity such as, for example, electricity, water, or gas. Collectors 116 comprise an antenna and are operable to send and receive data wirelessly. In particular, collectors 116 are operable to send data to and receive data from meters 114. In an illustrative embodiment, meters 114 may be, for example, an electrical meter manufactured by Elster Electricity, LLC.
A collector 116 and the meters 114 for which it is configured to receive meter data define a subnet/LAN 120 of system 110. As used herein, meters 114 and collectors 116 maybe considered as nodes in the subnet 120. For each subnet/LAN 120, data is collected at collector 116 and periodically transmitted to a data collection server 206. The data collection server 206 stores the data for analysis and preparation of bills. The data collection server 206 may be a specially programmed general purpose computing system and may communicate with collectors 116 wirelessly or via a wire line connection such as, for example, a dial-up telephone connection or fixed wire network.
Generally, collector 116 and meters 114 communicate with and amongst one another using any one of several robust wireless techniques such as, for example, frequency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS). As illustrated, meters 114a are “first level” meters that communicate with collector 116, whereas meters 114b are higher level meters that communicate with other meters in the network that forward information to the collector 116.
Referring now to
In accordance with an aspect of the invention, communication between nodes and the system 200 is accomplished using the LAN ID, however it is preferable for customers to query and communicate with nodes using their own identifier. To this end, a marriage file 208 may be used to correlate a customer serial number, a manufacturer serial number and LAN ID for each node (e.g., meters 114a and collectors 116) in the subnet/LAN 120. A device configuration database 210 stores configuration information regarding the nodes. For example, in the metering system 110, the device configuration database may include data regarding time of use (TOU) switchpoints, etc. for the meters 114a and collectors 116 communicating to the system 200. A data collection requirements database 212 contains information regarding the data to be collected on a per node basis. For example, a user may specify that metering data such as load profile, demand, TOU, etc. is to be collected from particular meter(s) 114a. Reports 214 containing information on the network configuration may be automatically generated or in accordance with a user request.
The network management system (NMS) 204 maintains a database describing the current state of the global fixed network system (current network state 220) and a database describing the historical state of the system (historical network state 222). The current network state 220 contains data regarding current meter to collector assignments, etc. for each subnet/LAN 120. The historical network state 222 is a database from which the state of the network at a particular point in the past can be reconstructed. The NMS 204 is responsible for, amongst other things, providing reports 214 about the state of the network. The NMS 204 may be accessed via an API 220 that is exposed to a user interface 216 and a Customer Information System (CIS) 218. Other external interfaces may be implemented in accordance with the present invention. In addition, the data collection requirements stored in the database 212 may be set via the user interface 216 or CIS 218.
The data collection server 206 collects data from the nodes (e.g., collectors 116) and stores the data in a database 224. The data includes metering information, such as energy consumption and may be used for billing purposes, etc. by a utility provider.
The network management server 202, network management system 204 and data collection server 206 communicate with the nodes in each subnet/LAN 120 via a communication system 226. The communication system 226 may be a Frequency Hopping Spread Spectrum radio network, a mesh network, a Wi-Fi (802.11) network, a Wi-Max (802.16) network, a land line (POTS) network, etc., or any combination of the above and enables the system 200 to communicate with the metering system 110.
The present invention provides a system and method for downloading a meter's collection data from an old collector to a new collector upon determining that the meter changed collectors. The present invention serves to ensure that the new collector is able to provide accurate metering data to the system 200 when requested, as well as properly configure the meter. With reference to
Prior to the meter 114a changing LANs, it is possible that collector A in LAN A has collected meter data and contains configuration information associated with the meter 114a. This data and configuration information may include historical demand, load profile and event data. If collector A has such data, it is advantageous to make collector B aware of that data in order to accurately collect subsequent data from the meter 114a. Therefore, according to the present invention, to ensure that collector B has all of the data and configuration information associated with meter 114a, the system 200 contacts collector A after detecting the change (step 7) and downloads the meter's settings and data from collector A. Next, the system 200 communicates the information to collector B (step 8) where the settings and data from collector A are merged with data and configuration information contained in collector B for the meter 114a. The data contained in collector A is removed to free up space on the collector. In this manner, meter data and configuration information is maintained at the appropriate collector. As such, collector B will have all of the historical information for meter 114a and will be able to accurately provide metering data to the system 200 when requested.
While systems and methods have been described and illustrated with reference to specific embodiments, those skilled in the art will recognize that modification and variations may be made without departing from the principles described above and set forth in the following claims. Accordingly, reference should be made to the following claims as describing the scope of disclosed embodiments.
Number | Name | Date | Kind |
---|---|---|---|
3455815 | Saltzberg et al. | Jul 1969 | A |
3858212 | Tompkins et al. | Dec 1974 | A |
3878512 | Kobayashi et al. | Apr 1975 | A |
3973240 | Fong | Aug 1976 | A |
4031513 | Simciak | Jun 1977 | A |
4056107 | Todd et al. | Nov 1977 | A |
4066964 | Costanza et al. | Jan 1978 | A |
4132981 | White | Jan 1979 | A |
4190800 | Kelly, Jr. et al. | Feb 1980 | A |
4204195 | Bogacki | May 1980 | A |
4218737 | Buscher et al. | Aug 1980 | A |
4250489 | Dudash et al. | Feb 1981 | A |
4254472 | Juengel et al. | Mar 1981 | A |
4319358 | Sepp | Mar 1982 | A |
4321582 | Banghart | Mar 1982 | A |
4322842 | Martinez | Mar 1982 | A |
4328581 | Harmon et al. | May 1982 | A |
4361851 | Asip et al. | Nov 1982 | A |
4361890 | Green, Jr. et al. | Nov 1982 | A |
4396915 | Farnsworth et al. | Aug 1983 | A |
4405829 | Rivest et al. | Sep 1983 | A |
4415896 | Allgood | Nov 1983 | A |
4466001 | Moore et al. | Aug 1984 | A |
4504831 | Jahr et al. | Mar 1985 | A |
4506386 | Ichikawa et al. | Mar 1985 | A |
4513415 | Martinez | Apr 1985 | A |
4525861 | Freeburg | Jun 1985 | A |
4600923 | Hicks et al. | Jul 1986 | A |
4608699 | Batlivala et al. | Aug 1986 | A |
4611333 | McCallister et al. | Sep 1986 | A |
4614945 | Brunius et al. | Sep 1986 | A |
4617566 | Diamond | Oct 1986 | A |
4628313 | Gombrich et al. | Dec 1986 | A |
4631538 | Carreno | Dec 1986 | A |
4638298 | Spiro | Jan 1987 | A |
4644321 | Kennon | Feb 1987 | A |
4653076 | Jerrim et al. | Mar 1987 | A |
4672555 | Hart et al. | Jun 1987 | A |
4680704 | Konicek et al. | Jul 1987 | A |
4688038 | Giammarese | Aug 1987 | A |
4692761 | Robinton | Sep 1987 | A |
4707852 | Jahr et al. | Nov 1987 | A |
4713837 | Gordon | Dec 1987 | A |
4724435 | Moses et al. | Feb 1988 | A |
4728950 | Hendrickson et al. | Mar 1988 | A |
4734680 | Gehman et al. | Mar 1988 | A |
4749992 | Fitzemeyer et al. | Jun 1988 | A |
4757456 | Benghiat | Jul 1988 | A |
4769772 | Dwyer | Sep 1988 | A |
4783748 | Swarztrauber et al. | Nov 1988 | A |
4792946 | Mayo | Dec 1988 | A |
4799059 | Grindahl et al. | Jan 1989 | A |
4804938 | Rouse et al. | Feb 1989 | A |
4804957 | Selph et al. | Feb 1989 | A |
4811011 | Sollinger | Mar 1989 | A |
4827514 | Ziolko et al. | May 1989 | A |
4833618 | Verma et al. | May 1989 | A |
4839645 | Lill | Jun 1989 | A |
4841545 | Endo et al. | Jun 1989 | A |
4860379 | Schoeneberger et al. | Aug 1989 | A |
4862493 | Venkataraman et al. | Aug 1989 | A |
4868877 | Fischer | Sep 1989 | A |
4884021 | Hammond et al. | Nov 1989 | A |
4912722 | Carlin | Mar 1990 | A |
4922518 | Gordon et al. | May 1990 | A |
4939726 | Flammer et al. | Jul 1990 | A |
4940974 | Sojka | Jul 1990 | A |
4940976 | Gastouniotis et al. | Jul 1990 | A |
4958359 | Kato | Sep 1990 | A |
4964138 | Nease et al. | Oct 1990 | A |
4965533 | Gilmore | Oct 1990 | A |
4972507 | Lusignan | Nov 1990 | A |
5007052 | Flammer | Apr 1991 | A |
5018165 | Sohner et al. | May 1991 | A |
5022046 | Morrow, Jr. | Jun 1991 | A |
5032833 | Laporte | Jul 1991 | A |
5053766 | Ruiz-del-Portal et al. | Oct 1991 | A |
5053774 | Schuermann et al. | Oct 1991 | A |
5056107 | Johnson et al. | Oct 1991 | A |
5067136 | Arthur et al. | Nov 1991 | A |
5079715 | Venkataraman et al. | Jan 1992 | A |
5079768 | Flammer | Jan 1992 | A |
5086292 | Johnson et al. | Feb 1992 | A |
5086385 | Launey | Feb 1992 | A |
5090024 | Vander Mey et al. | Feb 1992 | A |
5111479 | Akazawa | May 1992 | A |
5115433 | Baran et al. | May 1992 | A |
5115448 | Mori | May 1992 | A |
5129096 | Burns | Jul 1992 | A |
5130987 | Flammer | Jul 1992 | A |
5132985 | Hashimoto et al. | Jul 1992 | A |
5136614 | Hiramatsu et al. | Aug 1992 | A |
5142694 | Jackson et al. | Aug 1992 | A |
5151866 | Glaser et al. | Sep 1992 | A |
5155481 | Brennan, Jr. et al. | Oct 1992 | A |
5160926 | Schweitzer, III | Nov 1992 | A |
5166664 | Fish | Nov 1992 | A |
5177767 | Kato | Jan 1993 | A |
5179376 | Pomatto | Jan 1993 | A |
5189694 | Garland | Feb 1993 | A |
5194860 | Jones et al. | Mar 1993 | A |
5197095 | Bonnet | Mar 1993 | A |
5204877 | Endo et al. | Apr 1993 | A |
5214587 | Green | May 1993 | A |
5225994 | Arinobu et al. | Jul 1993 | A |
5228029 | Kotzin | Jul 1993 | A |
5229996 | Bäckström et al. | Jul 1993 | A |
5239575 | White et al. | Aug 1993 | A |
5239584 | Hershey et al. | Aug 1993 | A |
5243338 | Brennan, Jr. et al. | Sep 1993 | A |
5252967 | Brennan et al. | Oct 1993 | A |
5260943 | Comroe et al. | Nov 1993 | A |
5270704 | Sosa Quintana et al. | Dec 1993 | A |
5280498 | Tymes et al. | Jan 1994 | A |
5280499 | Suzuki | Jan 1994 | A |
5285469 | Vanderpool | Feb 1994 | A |
5287287 | Chamberlain et al. | Feb 1994 | A |
5289497 | Jacobson et al. | Feb 1994 | A |
5295154 | Meier et al. | Mar 1994 | A |
5307349 | Shloss et al. | Apr 1994 | A |
5311541 | Sanderford, Jr. | May 1994 | A |
5311542 | Eder | May 1994 | A |
5315531 | Oravetz et al. | May 1994 | A |
5319679 | Bagby | Jun 1994 | A |
5329547 | Ling | Jul 1994 | A |
5345225 | Davis | Sep 1994 | A |
5359625 | Vander Mey et al. | Oct 1994 | A |
5377222 | Sanderford, Jr. | Dec 1994 | A |
5381462 | Larson et al. | Jan 1995 | A |
5383134 | Wrzesinski | Jan 1995 | A |
5384712 | Oravetz et al. | Jan 1995 | A |
5387873 | Muller et al. | Feb 1995 | A |
5390360 | Scop et al. | Feb 1995 | A |
5406495 | Hill | Apr 1995 | A |
5416917 | Adair et al. | May 1995 | A |
5420799 | Peterson et al. | May 1995 | A |
5428636 | Meier | Jun 1995 | A |
5430759 | Yokev et al. | Jul 1995 | A |
5432507 | Mussino et al. | Jul 1995 | A |
5432815 | Kang et al. | Jul 1995 | A |
5438329 | Gastouniotis et al. | Aug 1995 | A |
5448230 | Schanker et al. | Sep 1995 | A |
5448570 | Toda et al. | Sep 1995 | A |
5450088 | Meier et al. | Sep 1995 | A |
5452465 | Geller et al. | Sep 1995 | A |
5455533 | Köllner | Oct 1995 | A |
5455544 | Kechkaylo | Oct 1995 | A |
5455569 | Sherman et al. | Oct 1995 | A |
5455822 | Dixon et al. | Oct 1995 | A |
5457713 | Sanderford, Jr. et al. | Oct 1995 | A |
5461558 | Patsiokas et al. | Oct 1995 | A |
5463657 | Rice | Oct 1995 | A |
5473322 | Carney | Dec 1995 | A |
5475742 | Gilbert | Dec 1995 | A |
5475867 | Blum | Dec 1995 | A |
5479442 | Yamamoto | Dec 1995 | A |
5481259 | Bane | Jan 1996 | A |
5488608 | Flammer, III | Jan 1996 | A |
5491473 | Gilbert | Feb 1996 | A |
5493287 | Bane | Feb 1996 | A |
5495239 | Ouellette | Feb 1996 | A |
5497424 | Vanderpool | Mar 1996 | A |
5499243 | Hall | Mar 1996 | A |
5500871 | Kato et al. | Mar 1996 | A |
5511188 | Pascucci et al. | Apr 1996 | A |
5519388 | Adair, Jr. | May 1996 | A |
5521910 | Matthews | May 1996 | A |
5522044 | Pascucci et al. | May 1996 | A |
5524280 | Douthitt et al. | Jun 1996 | A |
5525898 | Lee, Jr. et al. | Jun 1996 | A |
5526389 | Buell et al. | Jun 1996 | A |
5528507 | McNamara et al. | Jun 1996 | A |
5528597 | Gerszberg et al. | Jun 1996 | A |
5539775 | Tuttle et al. | Jul 1996 | A |
5541589 | Delaney | Jul 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5546424 | Miyake | Aug 1996 | A |
5548527 | Hemminger et al. | Aug 1996 | A |
5548633 | Kujawa et al. | Aug 1996 | A |
5553094 | Johnson et al. | Sep 1996 | A |
5555508 | Munday et al. | Sep 1996 | A |
5559870 | Patton et al. | Sep 1996 | A |
5566332 | Adair et al. | Oct 1996 | A |
5570084 | Ritter et al. | Oct 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5574657 | Tofte et al. | Nov 1996 | A |
5590179 | Shincovich et al. | Dec 1996 | A |
5592470 | Rudrapatna et al. | Jan 1997 | A |
5594740 | LaDue | Jan 1997 | A |
5602744 | Meek et al. | Feb 1997 | A |
5617084 | Sears | Apr 1997 | A |
5619192 | Ayala | Apr 1997 | A |
5619685 | Schiavone | Apr 1997 | A |
5621629 | Hemminger et al. | Apr 1997 | A |
5627759 | Bearden et al. | May 1997 | A |
5631636 | Bane | May 1997 | A |
5636216 | Fox et al. | Jun 1997 | A |
5640679 | Lundqvist et al. | Jun 1997 | A |
5659300 | Dresselhuys et al. | Aug 1997 | A |
5668803 | Tymes et al. | Sep 1997 | A |
5668828 | Sanderford, Jr. et al. | Sep 1997 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5684472 | Bane | Nov 1997 | A |
5684799 | Bigham et al. | Nov 1997 | A |
5691715 | Ouellette | Nov 1997 | A |
5692180 | Lee | Nov 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5696765 | Safadi | Dec 1997 | A |
5696903 | Mahany | Dec 1997 | A |
5699276 | Roos | Dec 1997 | A |
5714931 | Petite et al. | Feb 1998 | A |
5715390 | Hoffman et al. | Feb 1998 | A |
5717604 | Wiggins | Feb 1998 | A |
5719564 | Sears | Feb 1998 | A |
5732078 | Arango | Mar 1998 | A |
5745901 | Entner et al. | Apr 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5748619 | Meier | May 1998 | A |
5751914 | Coley et al. | May 1998 | A |
5751961 | Smyk | May 1998 | A |
5754772 | Leaf | May 1998 | A |
5754830 | Butts et al. | May 1998 | A |
5757783 | Eng et al. | May 1998 | A |
5768148 | Murphy et al. | Jun 1998 | A |
5778368 | Hogan et al. | Jul 1998 | A |
5787437 | Potterveld et al. | Jul 1998 | A |
5790789 | Suarez | Aug 1998 | A |
5790809 | Holmes | Aug 1998 | A |
5801643 | Williams et al. | Sep 1998 | A |
5805712 | Davis | Sep 1998 | A |
5808558 | Meek et al. | Sep 1998 | A |
5809059 | Souissi et al. | Sep 1998 | A |
5822521 | Gartner et al. | Oct 1998 | A |
5850187 | Carrender et al. | Dec 1998 | A |
5862391 | Salas et al. | Jan 1999 | A |
5872774 | Wheatley, III et al. | Feb 1999 | A |
5874903 | Shuey et al. | Feb 1999 | A |
5875183 | Nitadori | Feb 1999 | A |
5875402 | Yamawaki | Feb 1999 | A |
5883886 | Eaton et al. | Mar 1999 | A |
5884184 | Sheffer | Mar 1999 | A |
5892758 | Argyroudis | Apr 1999 | A |
5896382 | Davis et al. | Apr 1999 | A |
5897607 | Jenney et al. | Apr 1999 | A |
5898387 | Davis et al. | Apr 1999 | A |
5907491 | Canada et al. | May 1999 | A |
5907540 | Hayashi | May 1999 | A |
5910799 | Carpenter et al. | Jun 1999 | A |
5923269 | Shuey et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5943375 | Veintimilla | Aug 1999 | A |
5944842 | Propp et al. | Aug 1999 | A |
5953319 | Dutta et al. | Sep 1999 | A |
5958018 | Eng et al. | Sep 1999 | A |
5959550 | Giles | Sep 1999 | A |
5960074 | Clark | Sep 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
5974236 | Sherman | Oct 1999 | A |
5986574 | Colton | Nov 1999 | A |
6000034 | Lightbody et al. | Dec 1999 | A |
6028522 | Petite | Feb 2000 | A |
6034988 | VanderMey et al. | Mar 2000 | A |
6035201 | Whitehead | Mar 2000 | A |
6041056 | Bigham et al. | Mar 2000 | A |
6041506 | Iwao | Mar 2000 | A |
6061604 | Russ et al. | May 2000 | A |
6067029 | Durston | May 2000 | A |
6073169 | Shuey et al. | Jun 2000 | A |
6073174 | Montgomerie et al. | Jun 2000 | A |
6078251 | Landt et al. | Jun 2000 | A |
6078785 | Bush | Jun 2000 | A |
6078909 | Knutson | Jun 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6091758 | Ciccone et al. | Jul 2000 | A |
6100817 | Mason, Jr. et al. | Aug 2000 | A |
6112192 | Capek | Aug 2000 | A |
6124806 | Cunningham et al. | Sep 2000 | A |
6128276 | Agee | Oct 2000 | A |
6137423 | Glorioso et al. | Oct 2000 | A |
6150955 | Tracy et al. | Nov 2000 | A |
6154487 | Murai et al. | Nov 2000 | A |
6160993 | Wilson | Dec 2000 | A |
6172616 | Johnson et al. | Jan 2001 | B1 |
6195018 | Ragle et al. | Feb 2001 | B1 |
6199068 | Carpenter | Mar 2001 | B1 |
6208266 | Lyons et al. | Mar 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6327541 | Pitchford et al. | Dec 2001 | B1 |
6333975 | Brunn et al. | Dec 2001 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6393341 | Lawrence et al. | May 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6421731 | Ciotti, Jr. et al. | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6446192 | Narasimhan et al. | Sep 2002 | B1 |
6643278 | Panasik et al. | Nov 2003 | B1 |
6657549 | Avery | Dec 2003 | B1 |
6684245 | Shuey et al. | Jan 2004 | B1 |
6751563 | Spanier et al. | Jun 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6867707 | Kelley et al. | Mar 2005 | B1 |
6873602 | Ambe | Mar 2005 | B1 |
7061924 | Durrant et al. | Jun 2006 | B1 |
20010002210 | Petite | May 2001 | A1 |
20010024163 | Petite | Sep 2001 | A1 |
20020012323 | Petite et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020019712 | Petite et al. | Feb 2002 | A1 |
20020019725 | Petite | Feb 2002 | A1 |
20020026957 | Reyman | Mar 2002 | A1 |
20020027504 | Davis et al. | Mar 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020085719 | Crosbie | Jul 2002 | A1 |
20020094799 | Elliott et al. | Jul 2002 | A1 |
20020125998 | Petite et al. | Sep 2002 | A1 |
20020145537 | Mueller et al. | Oct 2002 | A1 |
20020169643 | Petite et al. | Nov 2002 | A1 |
20030036810 | Petite | Feb 2003 | A1 |
20030036822 | Davis et al. | Feb 2003 | A1 |
20030123442 | Drucker et al. | Jul 2003 | A1 |
20030193952 | O'Neill | Oct 2003 | A1 |
20030202512 | Kennedy | Oct 2003 | A1 |
20040113810 | Mason, Jr. et al. | Jun 2004 | A1 |
20050184881 | Dusenberry et al. | Aug 2005 | A1 |
20050270173 | Boaz | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
682196 | Jul 1993 | CH |
0 395 495 | Oct 1990 | EP |
0 446 979 | Sep 1991 | EP |
0 629 098 | Dec 1994 | EP |
2 118 340 | Oct 1983 | GB |
2 157 448 | Oct 1985 | GB |
2 186 404 | Aug 1987 | GB |
02 222 898 | Mar 1990 | GB |
2 237 910 | May 1991 | GB |
59-229949 | Dec 1984 | JP |
02-67967 | Mar 1990 | JP |
4290593 | Oct 1992 | JP |
05-260569 | Oct 1993 | JP |
8194023 | Jul 1996 | JP |
9302515 | Feb 1993 | WO |
9304451 | Mar 1993 | WO |
9532595 | Nov 1995 | WO |
9610856 | Apr 1996 | WO |
WO 2004004364 | Jan 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20060072465 A1 | Apr 2006 | US |