System for automatically gathering battery information

Information

  • Patent Grant
  • 9496720
  • Patent Number
    9,496,720
  • Date Filed
    Tuesday, January 24, 2012
    13 years ago
  • Date Issued
    Tuesday, November 15, 2016
    8 years ago
Abstract
A method and apparatus is provided in which a radio frequency identification (RIFD) tag is associated with the storage battery and is used in conjunction with a battery test, battery charger, or other battery maintenance. A cable configured to be affixed to the storage battery. The cable is configured to store information and wirelessly communicate the information to a battery tester. A battery maintenance device configured to couple to the battery and to perform battery maintenance on the battery through the cable. The battery maintenance device includes wireless communication circuitry configured to communicate with a memory of the cable.
Description
BACKGROUND OF THE INVENTION

The present invention relates to storage batteries. More specifically, the present invention relates to a system for automatically gathering battery information for use during battery testing/charging.


Storage batteries, such as lead acid storage batteries, are used in a variety of applications such as automotive vehicles and stand by power sources. Typically, storage batteries consist of a plurality of individual storage cells which are electrically connected in series. Each cell can have a voltage potential of about 2.1 volts, for example. By connecting the cells in series, the voltages of individual cells are added in a cumulative manner. For example, in a typical automotive battery, six storage cells are used to provide a total voltage of 12.6 volts. The individual cells are held in a housing and the entire assembly is commonly referred to as the “battery.”


It is frequently desirable to ascertain the condition of a storage battery. Various testing techniques have been developed over the long history of storage batteries. For example, one technique involves the use of a hygrometer in which the specific gravity of the acid mixture in the battery is measured. Electrical testing has also been used to provide less invasive battery testing techniques. A very simple electrical test is to simply measure the voltage across the battery. If the voltage is below a certain threshold, the battery is determined to be bad. Another technique for testing a battery is referred to as a load test. In the load test, the battery is discharged using a known load. As the battery is discharged, the voltage across the battery is monitored and used to determine the condition of the battery. More recently, techniques have been pioneered by Dr. Keith S. Champlin and Midtronics, Inc. of Willowbrook, Ill. for testing storage batteries by measuring a dynamic parameter of the battery such as the dynamic conductance of the battery. This technique is described in a number of United States patents and United States patent applications, for example U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996; U.S. Pat. No. 5,583,416, issued Dec. 10, 1996; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997; U.S. Pat. No. 5,757,192, issued May 26, 1998; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998; U.S. Pat. No. 5,871,858, issued Feb. 16, 1999; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001; U.S. Pat. No. 6,225,808, issued May 1, 2001; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002; U.S. Pat. No. 6,377,031, issued Apr. 23, 2002; U.S. Pat. No. 6,392,414, issued May 21, 2002; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002; U.S. Pat. No. 6,437,957, issued Aug. 20, 2002; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002; U.S. Pat. No. 6,456,045; U.S. Pat. No. 6,466,025, issued Oct. 15, 2002; U.S. Pat. No. 6,465,908, issued Oct. 15, 2002; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002; U.S. Pat. No. 6,469,511, issued Nov. 22, 2002; U.S. Pat. No. 6,495,990, issued Dec. 17, 2002; U.S. Pat. No. 6,497,209, issued Dec. 24, 2002; U.S. Pat. No. 6,507,196, issued Jan. 14, 2003; U.S. Pat. No. 6,534,993; issued Mar. 18, 2003; U.S. Pat. No. 6,544,078, issued Apr. 8, 2003; U.S. Pat. No. 6,556,019, issued Apr. 29, 2003; U.S. Pat. No. 6,566,883, issued May 20, 2003; U.S. Pat. No. 6,586,941, issued Jul. 1, 2003; U.S. Pat. No. 6,597,150, issued Jul. 22, 2003; U.S. Pat. No. 6,621,272, issued Sep. 16, 2003; U.S. Pat. No. 6,623,314, issued Sep. 23, 2003; U.S. Pat. No. 6,633,165, issued Oct. 14, 2003; U.S. Pat. No. 6,635,974, issued Oct. 21, 2003; U.S. Pat. No. 6,707,303, issued Mar. 16, 2004; U.S. Pat. No. 6,737,831, issued May 18, 2004; U.S. Pat. No. 6,744,149, issued Jun. 1, 2004; U.S. Pat. No. 6,759,849, issued Jul. 6, 2004; U.S. Pat. No. 6,781,382, issued Aug. 24, 2004; U.S. Pat. No. 6,788,025, filed Sep. 7, 2004; U.S. Pat. No. 6,795,782, issued Sep. 21, 2004; U.S. Pat. No. 6,805,090, filed Oct. 19, 2004; U.S. Pat. No. 6,806,716, filed Oct. 19, 2004; U.S. Pat. No. 6,850,037, filed Feb. 1, 2005; U.S. Pat. No. 6,850,037, issued Feb. 1, 2005; U.S. Pat. No. 6,871,151, issued Mar. 22, 2005; U.S. Pat. No. 6,885,195, issued Apr. 26, 2005; U.S. Pat. No. 6,888,468, issued May 3, 2005; U.S. Pat. No. 6,891,378, issued May 10, 2005; U.S. Pat. No. 6,906,522, issued Jun. 14, 2005; U.S. Pat. No. 6,906,523, issued Jun. 14, 2005; U.S. Pat. No. 6,909,287, issued Jun. 21, 2005; U.S. Pat. No. 6,914,413, issued Jul. 5, 2005; U.S. Pat. No. 6,913,483, issued Jul. 5, 2005; U.S. Pat. No. 6,930,485, issued Aug. 16, 2005; U.S. Pat. No. 6,933,727, issued Aug. 23, 200; U.S. Pat. No. 6,941,234, filed Sep. 6, 2005; U.S. Pat. No. 6,967,484, issued Nov. 22, 2005; U.S. Pat. No. 6,998,847, issued Feb. 14, 2006; U.S. Pat. No. 7,003,410, issued Feb. 21, 2006; U.S. Pat. No. 7,003,411, issued Feb. 21, 2006; U.S. Pat. No. 7,012,433, issued Mar. 14, 2006; U.S. Pat. No. 7,015,674, issued Mar. 21, 2006; U.S. Pat. No. 7,034,541, issued Apr. 25, 2006; U.S. Pat. No. 7,039,533, issued May 2, 2006; U.S. Pat. No. 7,058,525, issued Jun. 6, 2006; U.S. Pat. No. 7,081,755, issued Jul. 25, 2006; U.S. Pat. No. 7,106,070, issued Sep. 12, 2006; U.S. Pat. No. 7,116,109, issued Oct. 3, 2006; U.S. Pat. No. 7,119,686, issued Oct. 10, 2006; and U.S. Pat. No. 7,126,341, issued Oct. 24, 2006; U.S. Pat. No. 7,154,276, issued Dec. 26, 2006; U.S. Pat. No. 7,198,510, issued Apr. 3, 2007; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,208,914, issued Apr. 24, 2007; U.S. Pat. No. 7,246,015, issued Jul. 17, 2007; U.S. Pat. No. 7,295,936, issued Nov. 13, 2007; U.S. Pat. No. 7,319,304, issued Jan. 15, 2008; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,398,176, issued Jul. 8, 2008; U.S. Pat. No. 7,408,358, issued Aug. 5, 2008; U.S. Pat. No. 7,425,833, issued Sep. 16, 2008; U.S. Pat. No. 7,446,536, issued Nov. 4, 2008; U.S. Pat. No. 7,479,763, issued Jan. 20, 2009; U.S. Pat. No. 7,498,767, issued Mar. 3, 2009; U.S. Pat. No. 7,501,795, issued Mar. 10, 2009; U.S. Pat. No. 7,505,856, issued Mar. 17, 2009; U.S. Pat. No. 7,545,146, issued Jun. 9, 2009; U.S. Pat. No. 7,557,586, issued Jul. 7, 2009; U.S. Pat. No. 7,595,643, issued Sep. 29, 2009; U.S. Pat. No. 7,598,699, issued Oct. 6, 2009; U.S. Pat. No. 7,598,744, issued Oct. 6, 2009; U.S. Pat. No. 7,598,743, issued Oct. 6, 2009; U.S. Pat. No. 7,619,417, issued Nov. 17, 2009; U.S. Pat. No. 7,642,786, issued Jan. 5, 2010; U.S. Pat. No. 7,642,787, issued Jan. 5, 2010; U.S. Pat. No. 7,656,162, issued Feb. 2, 2010; U.S. Pat. No. 7,688,074, issued Mar. 30, 2010; U.S. Pat. No. 7,705,602, issued Apr. 27, 2010; U.S. Pat. No. 7,706,992, issued Apr. 27, 2010; U.S. Pat. No. 7,710,119, issued May 4, 2010; U.S. Pat. No. 7,723,993, issued May 25, 2010; U.S. Pat. No. 7,728,597, issued Jun. 1, 2010; U.S. Pat. No. 7,772,850, issued Aug. 10, 2010; U.S. Pat. No. 7,774,151, issued Aug. 10, 2010; U.S. Pat. No. 7,777,612, issued Aug. 17, 2010; U.S. Pat. No. 7,791,348, issued Sep. 7, 2010; U.S. Pat. No. 7,808,375, issued Oct. 5, 2010; U.S. Pat. No. 7,924,015, issued Apr. 12, 2011; U.S. Pat. No. 7,940,053, issued May 10, 2011; U.S. Pat. No. 7,940,052, issued May 10, 2011; U.S. Pat. No. 7,959,476, issued Jun. 14, 2011; U.S. Pat. No. 7,977,914, issued Jul. 12, 2011; U.S. Pat. No. 7,999,505, issued Aug. 16, 2011; U.S. Pat. No. D643,759, issued Aug. 23, 2011; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 10/042,451, filed Jan. 8, 2002, entitled BATTERY CHARGE CONTROL DEVICE; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002, entitled APPARATUS AND METHOD FOR COUNTERACTING SELF DISCHARGE IN A STORAGE BATTERY; U.S. Ser. No. 10/112,998, filed Mar. 29, 2002, entitled BATTERY TESTER WITH BATTERY REPLACEMENT OUTPUT; U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 10/310,385, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 09/653,963, filed Sep. 1, 2000, entitled SYSTEM AND METHOD FOR CONTROLLING POWER GENERATION AND STORAGE; U.S. Ser. No. 10/174,110, filed Jun. 18, 2002, entitled DAYTIME RUNNING LIGHT CONTROL USING AN INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Ser. No. 10/258,441, filed Apr. 9, 2003, entitled CURRENT MEASURING CIRCUIT SUITED FOR BATTERIES; U.S. Ser. No. 10/681,666, filed Oct. 8, 2003, entitled ELECTRONIC BATTERY TESTER WITH PROBE LIGHT; U.S. Ser. No. 10/791,141, filed Mar. 2, 2004, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 10/867,385, filed Jun. 14, 2004, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Ser. No. 10/958,812, filed Oct. 5, 2004, entitled SCAN TOOL FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/587,232, filed Dec. 14, 2004, entitled CELLTRON ULTRA, U.S. Ser. No. 60/653,537, filed Feb. 16, 2005, entitled CUSTOMER MANAGED WARRANTY CODE; U.S. Ser. No. 60/665,070, filed Mar. 24, 2005, entitled OHMMETER PROTECTION CIRCUIT; U.S. Ser. No. 60,694,199, filed Jun. 27, 2005, entitled GEL BATTERY CONDUCTANCE COMPENSATION; U.S. Ser. No. 60/705,389, filed Aug. 4, 2005, entitled PORTABLE TOOL THEFT PREVENTION SYSTEM, U.S. Ser. No. 11/207,419, filed Aug. 19, 2005, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION FOR USE DURING BATTERY TESTER/CHARGING, U.S. Ser. No. 60/712,322, filed Aug. 29, 2005, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE, U.S. Ser. No. 60/713,168, filed Aug. 31, 2005, entitled LOAD TESTER SIMULATION WITH DISCHARGE COMPENSATION, U.S. Ser. No. 60/731,881, filed Oct. 31, 2005, entitled PLUG-IN FEATURES FOR BATTERY TESTERS; U.S. Ser. No. 60/731,887, filed Oct. 31, 2005, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 11/304,004, filed Dec. 14, 2005, entitled BATTERY TESTER THAT CALCULATES ITS OWN REFERENCE VALUES; U.S. Ser. No. 60/751,853, filed Dec. 20, 2005, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 11/304,004, filed Dec. 14, 2005, entitled BATTERY TESTER WITH CALCULATES ITS OWN REFERENCE VALUES; U.S. Ser. No. 60/751,853, filed Dec. 20, 2005, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 11/356,443, filed Feb. 16, 2006, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 11/519,481, filed Sep. 12, 2006, entitled BROAD-BAND LOW-CONDUCTANCE CABLES FOR MAKING KELVIN CONNECTIONS TO ELECTROCHEMICAL CELLS AND BATTERIES; U.S. Ser. No. 60/847,064, filed Sep. 25, 2006, entitled STATIONARY BATTERY MONITORING ALGORITHMS; U.S. Ser. No. 11/641,594, filed Dec. 19, 2006, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRONIC SYSTEM; U.S. Ser. No. 60/950,182, filed Jul. 17, 2007, entitled BATTERY TESTER FOR HYBRID VEHICLE; U.S. Ser. No. 60/973,879, filed Sep. 20, 2007, entitled ELECTRONIC BATTERY TESTER FOR TESTING STATIONARY BATTERIES; U.S. Ser. No. 60/992,798, filed Dec. 6, 2007, entitled STORAGE BATTERY AND BATTERY TESTER; U.S. Ser. No. 61/061,848, filed Jun. 16, 2008, entitled KELVIN CLAMP FOR ELECTRONICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 12/168,264, filed Jul. 7, 2008, entitled BATTERY TESTERS WITH SECONDARY FUNCTIONALITY; U.S. Ser. No. 12/174,894, filed Jul. 17, 2008, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 12/204,141, filed Sep. 4, 2008, entitled ELECTRONIC BATTERY TESTER OR CHARGER WITH DATABUS CONNECTION; U.S. Ser. No. 12/328,022, filed Dec. 4, 2008, entitled STORAGE BATTERY AND BATTERY TESTER; U.S. Ser. No. 12/416,457, filed Apr. 1, 2009, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION; U.S. Ser. No. 12/416,453, filed Apr. 1, 2009, entitled INTEGRATED TAG READER AND ENVIRONMENT SENSOR; U.S. Ser. No. 12/416,445, filed Apr. 1, 2009, entitled SIMPLIFICATION OF INVENTORY MANAGEMENT; U.S. Ser. No. 12/498,642, filed Jul. 7, 2009, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/697,485, filed Feb. 1, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/712,456, filed Feb. 25, 2010, entitled METHOD AND APPARATUS FOR DETECTING CELL DETERIORATION IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Ser. No. 61/311,485, filed Mar. 8, 2010, entitled BATTERY TESTER WITH DATABUS FOR COMMUNICATING WITH VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 61/313,893, filed Mar. 15, 2010, entitled USE OF BATTERY MANUFACTURE/SELL DATE IN DIAGNOSIS AND RECOVERY OF DISCHARGED BATTERIES; U.S. Ser. No. 12/758,407, filed Apr. 12, 2010, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 12/765,323, filed Apr. 22, 2010, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 12/769,911, filed Apr. 29, 2010, entitled STATIONARY BATTERY TESTER; U.S. Ser. No. 61/330,497, filed May 3, 2010, entitled MAGIC WAND WITH ADVANCED HARNESS DETECTION; U.S. Ser. No. 61/348,901, filed May 27, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 61/351,017, filed Jun. 3, 2010, entitled IMPROVED ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE BATTERY MODULE BALANCER; U.S. Ser. No. 12/818,290, filed Jun. 18, 2010, entitled BATTERY MAINTENANCE DEVICE WITH THERMAL BUFFER; U.S. Ser. No. 61/373,045, filed Aug. 12, 2010, entitled ELECTRONIC BATTERY TESTER FOR TESTING STATIONERY STORAGE BATTERY; U.S. Ser. No. 12/888,689, filed Sep. 23, 2010, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 12/894,951, filed Sep. 30, 2010, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLES; U.S. Ser. No. 61/411,162, filed Nov. 8, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 13/037,641, filed Mar. 1, 2011, entitled MONITOR FOR FRONT TERMINAL BATTERIES; U.S. Ser. No. 13/037,641, filed Mar. 1, 2011, entitled MONITOR FOR FRONT TERMINAL BATTERIES; U.S. Ser. No. 13/048,365, filed Mar. 15, 2011, entitled ELECTRONIC BATTERY TESTER WITH BATTERY AGE UNIT; U.S. Ser. No. 13/098,661, filed May 2, 2011, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 13/113,272, filed May 23, 2011, entitled ELECTRONIC STORAGE BATTERY DIAGNOSTIC SYSTEM; U.S. Ser. No. 13/152,711, filed Jun. 3, 2011, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; U.S. Ser. No. 13/205,949, filed Aug. 9, 2011, entitled ELECTRONIC BATTERY TESTER FOR TESTING STORAGE BATTERY; U.S. Ser. No. 13/205,904, filed Aug. 9, 2011, entitled IN-VEHICLE BATTERY MONITOR; U.S. Ser. No. 13/270,828, filed Oct. 11, 2011, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION; U.S. Ser. No. 13/276,639, filed Oct. 19, 2011, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 61/558,088, filed Nov. 10, 2011, entitled BATTERY PACK TESTER; which are incorporated herein by reference in their entirety.


In general, most prior art battery testers/chargers require tester/charger users to enter information related to the battery (such as battery type, battery group size, battery Cold Cranking Amp (CCA) rating, etc.) via a user input such as a keypad. Reliance on user entry of battery information may result in incorrect information being entered, which in turn can result in inaccurate battery test results or improper charging of the battery. Further, the results for the battery test are typically simply displayed to an operator or, in some more advance configurations, transmitted to another location, for example over a communication link.


SUMMARY OF THE INVENTION

A method and apparatus is provided in which a radio frequency identification (RIFD) tag is associated with the storage battery and is used in conjunction with a battery test, battery charger, or other battery maintenance. A cable configured to be affixed to the storage battery. The cable is configured to store information and communicate the information to a battery tester.


A battery maintenance device configured to couple to the battery and to perform battery maintenance on the battery through the cable. The battery maintenance device includes communication circuitry configured to communicate with a memory of the cable.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified block diagram showing components of a battery testing/charging system in accordance with an embodiment of the present invention.



FIG. 2 is a side plan view of a storage battery including a RFID tag in accordance with an embodiment of the present invention.



FIG. 3 is a simplified block diagram of an example battery charging system that is capable of receiving information from the RFID tag.



FIG. 4 is a simplified block diagram of an example battery tester that is capable of receiving information from the RFID tag.



FIG. 5 is a simplified block diagram of a battery maintenance system in accordance with an embodiment of the present invention.



FIG. 6A is a simplified block diagram illustrating the use of information in an RFID tag affixed to a battery at different stages in the life of the battery.



FIG. 6B is a flowchart showing steps of a warranty management method in accordance with one embodiment.



FIG. 7 is a simplified block diagram showing a vehicle having a battery with an affixed RFID tag in accordance with one embodiment.



FIG. 8 is a simplified block diagram showing multiple batteries with each of the batteries including an RFID label with balancing information.



FIG. 9 simplified block diagram showing a method for fraud prevention when RFID tags are used to store battery related information.



FIG. 10 is a simplified block diagram showing a cable affixed to a battery in which the cable includes a RFID tag.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Storage batteries are used in many applications including both automotive vehicles as well as stationary implementations such as for use as a backup power supply, etc. It is frequently desirable to perform tests on the batteries so that they're performance capabilities may be evaluated. In order to be able to perform a test on the battery or other battery maintenance, a battery maintenance device must be coupled to the battery through electrical connections. This connection can be a source of errors and inconsistencies in the test measurements. For example, an unskilled operator may improperly connect the cable to the posts of the battery. This will result in, for example, an error in the battery test measurement. Similarly, even if a skilled operator properly connects the cable to the battery a previously obtained inaccurate test result will affect the ability to observe trending in the test measurements. Further, there are various parameters which can be associated with a battery. It would be beneficial to associate those parameters with the battery. In one aspect, the present invention provides a cable which can be permanently, or semi-permanently, affixed to a battery and coupled to the terminals of the battery. This ensures consistent test results and eliminates errors caused by improper connections of the cables to the battery. Further, in one aspect the present invention includes a memory which is associated with the battery. This memory can be carried in the cable and, in one configuration, can contain information which is wirelessly communicated to a battery maintenance device. This communication can be both from the memory to the device as well as from the device to the memory. This allows parameters related to the battery, such as a battery rating, to be stored and associated with the battery. Further still, test results can be stored in the cable memory whereby trends in the measurements can be observed and used to determine the condition of the battery as well as predict its ultimate failure. These techniques are useful in both storage batteries used in, for example, automotive vehicles as well as storage batteries used in stationary configurations and this is reflected in the following discussion.



FIG. 1 is a simplified block diagram of a battery testing/charging system 100 in accordance with an embodiment of the present invention. System 100 includes a radio frequency identification (RFID) tag 102, which can be affixed to a battery (such as 200 (FIG. 2)). RFID tag 102 is configured to transmit stored battery information in the form of RF signals 106. System 100 also includes a battery tester/charger 104 having an embedded/integrated radio frequency (RF) communicator 108, which is configured to receive the transmitted battery information from RF tag 102 when battery tester/charger 104 is proximate RF tag 102. Further, in some configurations, RF communicator 108 is configured to transmit information RF communicator 112 in RFID tag 100. This information can be, for example, stored in information circuitry 110. The battery information, which is automatically received by RF communicator 108, is utilized by processor 107 and measurement and/or charge signal application circuitry 109 to test/charge the battery (such as 200 (FIG. 2)). Thus, system 100 overcomes problems with prior art testers/chargers that, in general, require a tester/charger user to enter battery information with the help of a keypad, for example, during a testing/charging process. Of course, for battery information transfer to occur from RFID tag 102 to tester/charger 104, tester/charger 104 should be within a perimeter defined by RF signal 106. The perimeter is selected based upon a type of application and environment for which system 100 is required. Also, a memory size and encoding scheme for RFID tag 102 can be different for different applications. In general, system 100 allows for battery charging/testing with minimal or no user intervention, thereby substantially eliminating any inaccuracies associated with manual entry of battery information.


As can be seen in FIG. 1, RFID tag 102 includes, as it primary components, a battery information storage circuit 110 and a RF communicator 112. In embodiments of the present invention, battery information storage circuit 110 is configured to store certain basic information regarding the battery. This information includes battery type, battery group size, cold cranking amp (CCA) rating, battery manufacture date (which could later be used for warranty processing), battery cost, etc. In addition to utilizing RFID tag 102 to store the above-noted battery information, RFID tag 102 can also be used to store tracking information, such as a battery serial number, which is useful during the manufacture of the battery, for example. Further, RFID tag 102 could also store previous test results from factory or later tests that could aid in helping to determine battery condition. Previous test information can also be used to show a customer past and present test results. Battery information and other tracking information can be conveniently encoded and RFID tags 102 can be printed on demand using a suitable printer that includes RFID tag printer/encoder programs. In some embodiments, additional information, such as the date of sale of the battery, can be subsequently encoded into RFID tag 102. In embodiments of the present invention, tag or label 102 includes a coating to dissipate static electricity that may corrupt information stored in the tag. As a battery (such a 200) is often used in a harsh and constrained environment, suitable additional protective layers may be used for coating RFID tag 102.


In some embodiments of the present invention, tag 102 also includes bar-coded battery information 114 in addition to the RFID encoded battery information. In some embodiments, the bar-coded battery information may be a copy of the RFID encoded information. In other embodiments, the bar-coded information may be different from the RFID encoded information. Of course, in such embodiments, battery tester/charger 104 includes a barcode reader 116 in addition to RF communicator 108. Tags/labels with the barcode and RFID battery information can be printed from a single printer that includes the necessary label printer/encoder programs. It should be noted that it is possible to produce bar code tags that can contain previous test information that could be useful in providing previous test result information, which could be used in combination with RFID tags, or stand alone information. Production of bar code tags that contain battery test information is described in U.S. Pat. No. 6,051,976, entitled “METHOD AND APPARATUS FOR AUDITING A BATTERY TEST,” which is incorporated herein by reference.


In addition to helping automate the battery testing/charging process, battery information stored in RFID tag 102 has other uses such as to help determine whether or not a particular battery is too “old” to be sold. It should be noted that batteries may not be suitable for sale after the expiration of a certain period (16 months, for example). The age of the battery can easily be determined by reading the battery date of manufacture from RFID tag 102. An RFID reader that can automatically detect, identify and accept battery information from all RFID tags in its reading field is especially suitable for a retailer to rapidly identify “old” batteries. Information, such as the date of sale of the battery, included in RFID tag 102, can be used for automating warranty claims processing which is based on the battery age, date of sale, etc. Thus, RFID tag 102 is useful for battery production, storage, monitoring and tracking.


In some embodiments of the present invention, RFID tag 102 includes security circuitry 118, which may be coupled to RF communicator 112 and may also include a receiver (not shown in FIG. 1) which is capable of receiving signals from an external transmitter (not shown in FIG. 1) that transmits security signals. Details regarding such a security system are included in U.S. Ser. No. 10/823,140, filed Apr. 13, 2004, entitled “THEFT PREVENTION DEVICE FOR AUTOMOTIVE VEHICLE SERVICE CENTERS,” which is incorporated herein by reference. Details regarding components of battery tester/charger 104 are provided below in connection with FIGS. 3 and 4.



FIG. 3 is a simplified block diagram of a battery charging system 300 in accordance with an embodiment of the present invention. System 300 is shown coupled to battery 200. System 300 includes battery charger circuitry 310 and test circuitry 312. Battery charger circuitry 310 generally includes an alternating current (AC) source 314, a transformer 316 and a rectifier 318. System 300 couples to battery 200 through electrical connection 320 which couples to the positive battery contact 304 and electrical connection 322 which couples to the negative battery contact 306. In one preferred embodiment, a four point (or Kelvin) connection technique is used in which battery charge circuitry 310 couples to battery 300 through electrical connections 320A and 322A while battery testing circuitry 312 couples to battery 200 through electrical connections 320B and 322B.


Battery testing circuitry 312 includes voltage measurement circuitry 324 and current measurement circuitry 326 which provide outputs to microprocessor 328. Microprocessor 328 also couples to a system clock 330 and memory 332 which is used to store information and programming instructions. In the embodiment of the invention shown in FIG. 3, microprocessor 328 also couples to RF communicator 108, user output circuitry 334, user input circuitry 336 and barcode scanner 116, which may be included in some embodiments.


Voltage measurement circuitry 324 includes capacitors 338 which couple analog to digital converter 340 to battery 200 thorough electrical connections 320B and 322B. Any type of coupling mechanism may be used for element 338 and capacitors are merely shown as one preferred embodiment. Further, the device may also couple to DC signals. Current measurement circuitry 326 includes a shunt resistor (R) 342 and coupling capacitors 344. Shunt resistor 342 is coupled in series with battery charging circuitry 310. Other current measurement techniques are within the scope of the invention including Hall-Effect sensors, magnetic or inductive coupling, etc. An analog to digital converter 346 is connected across shunt resistor 342 by capacitors 344 such that the voltage provided to analog to digital converter 346 is proportional to a current I flowing through battery 200 due to charging circuitry 310. Analog to digital converter 346 provides a digitized output representative of this current to microprocessor 328.


During operation, AC source 314 is coupled to battery 200 through transformer 316 and rectifier 318. Rectifier 318 provides half wave rectification such that current I has a non-zero DC value. Of course, full wave rectification or other AC sources may also be used. Analog to digital converter 346 provides a digitized output to microprocessor 328 which is representative of current I flowing through battery 200. Similarly, analog to digital converter 324 provides a digitized output representative of the voltage across the positive and negative terminals of battery 200. Analog to digital converters 324 and 346 are capacitively coupled to battery 200 such that they measure the AC components of the charging signal.


Microprocessor 328 determines the conductance of battery 200 based upon the digitized current and voltage information provided by analog to digital converters 346 and 324, respectively. Microprocessor 328 calculates the conductance of battery 200 as follows:









Conductance
=

G
=

I
V






Eq
.




1







where I is the AC charging current and V is the AC charging voltage across battery 200. Note that in one preferred embodiment the Kelvin connections allow more accurate voltage determination because these connections do not carry substantial current to cause a resultant drop in the voltage measured.


The battery conductance is used to monitor charging of battery 200. Specifically, it has been discovered that as a battery is charged the conductance of the battery rises which can be used as feedback to the charger. This rise in conductance can be monitored in microprocessor 328 to determine when the battery has been fully charged.


In accordance with the present invention, as described above, RF communicator 108 and/or barcode scanner 116 are included to substantially eliminate the need for user entry of the necessary battery information.



FIG. 4 is a simplified block diagram of a battery testing system 400 in accordance with an embodiment of the present invention. System 400 is shown coupled to battery 200. System 400 includes battery testing circuitry 404 and microprocessor 406. System 400 couples to battery contacts 408 and 410 through electrical connections 412 and 414, respectively. In one preferred embodiment, a four point (or Kelvin) connection technique is used. Here, electrical connection 412 includes a first connection 412A and second connection 412B and connection 414 includes a first connection 414A and a second connection 414B. As in the case of battery charging system 300 (FIG. 3), battery testing system 400 also includes RF communicator 108 and barcode scanner 116 to substantially eliminate the need for user entry of the necessary battery information. Battery tester 400 utilizes received battery information to determine a condition of storage battery 200. A description of example components which can be employed to form battery testing circuitry 404 is set forth in U.S. Pat. No. 6,323,650, issued Nov. 27, 2001, and entitled “ELECTRONIC BATTERY TESTER,” which is incorporated herein by reference.


The above-described invention can be employed in either portable or “bench” (non-portable) battery charging and testing systems, and other similar applications such as starter and alternator testing systems. Although the example embodiments described above relate to wireless communication (or transfer of battery information) using RF signals, other wireless communication techniques (for example, diffused infrared signals) that are known in the industry or are developed in the future may be employed without departing from the scope and spirit of the present invention. A general embodiment of a tag (which can be associated with a storage battery) that can wirelessly transmit information to, or receive information from, a battery maintenance tool (tester, charger, etc.) is shown in FIG. 5. Tag 502 includes information circuitry 110 similar to that described in FIG. 1 and a transceiver 504 for communicating with maintenance tool 506, which also includes a transceiver 508. Different embodiments of tag 502 and maintenance tool 506 can use different wireless communication techniques. Transceivers 504 and 508 can be configured to send and/or receive information. The battery maintenance tool 506 can be any tool which is used to perform maintenance on a battery. Two examples include a battery tester and a battery charger.


There are several factors that relate to the manufacture, distribution, purchase and treatment of batteries, such as automotive batteries, that impact battery life. For example, when an battery such as automotive battery is purchased, the freshness of the new battery has an impact on the life of the battery because the longer the battery remains in storage without being recharged, the more damaging sulfation there may be on the plates within the battery. Also, consistent and accurate testing and recording of battery test results is important. Thus, in some embodiments, a RFID tag is used to store information about the battery and battery test results at different stages in the life a battery. FIG. 6A illustrates an example of such an embodiment. As can be seen in block diagram 600 of FIG. 6A, battery 604 is assembled on assembly line 606 at manufacturing plant 602. At the end of the assembly of battery 604, RFID tag 608 is affixed to battery housing 610. In one embodiment, battery housing 610 includes a recessed portion 612 within which the RFID tag 608 is affixed. This prevents damage of the RFID tag 608 during transportation and storage of the battery 604, for example. In general, at manufacturing plant 602, battery manufacturing information is stored into RFID tag 608. This can include manufacturing plant and assembly line identification information. In addition to the particular assembly line, the shift during which the battery was assembled can also be stored into the RFID tag 608. Such detailed information related to the manufacture of the battery is useful for quality control audit purposes. Battery manufacturing information stored into RFID tag 608 also includes battery parameters and other battery information such as battery type (for example, flooded (wet), gelled, AGM (Absorbed Glass Mat, etc.), battery rating (for example, cold cranking ampere (CCA) rating), battery post configuration (top post or side post), etc. This battery-specific information facilitates the formation/coding of an algorithm that is tailored to the specific battery type, battery post configuration, etc. The algorithm can be stored into the RFID tag 608 and read and utilized by a battery tester each time the battery is tested, thereby making the type of battery test carried out on the battery consistent and substantially independent of any need for data entry by a battery tester user. After the above-described manufacturing information is loaded in to RFID tag 608 at the manufacturing plant, the battery is tested. As can be seen in FIG. 6A, in manufacturing plant 602, battery 604 is tested using information for RFID tag 608 and a timestamp for the test along with the battery test results are written into RFID Tag 608.


Batteries such as 604 are shipped from a manufacturing plant such as 602 to a distribution center 614. In some embodiments, upon arrival at the distribution center 614, the battery 602 is tested and a timestamp for the test along with the battery test results are written into the RFID tag 608. The battery storage location in the distribution center can also be stored in the RFID tag 608. In some embodiments, prior to shipping the battery 604 to a destination 616, a battery test is again performed at distribution center 614. A timestamp for the test along with the battery test results are written into the RFID Tag 606. Upon arrival at a destination such as a dealership, backup power station, etc., as illustrated at 616 in FIG. 6A, battery manufacturing information is read from RFID tag 608.


Using the information read from tag 608, a battery test is conducted on battery 604 at the automobile destination 616. A battery test result is obtained and the battery test result and a corresponding timestamp stored into the RFID tag 608.


In some embodiments, a battery sale activation code is programmed into RFID tag 608 at the automotive destination 616. The battery sale activation code is stored in a database. The database also stores information that indicates that the battery is currently for sale at the automotive destination 616. When selling battery 604 to a customer, the battery sale activation code is read from the RFID tag and utilized to update the database to reflect that the battery has been sold. In general, the sale of battery 64 is proper only if the RFID tag 608 is properly activated. This prevents situations such as a person stealing battery 604 and then returning it to claim a refund, for example. Specifically, this security feature will show that the battery/RFID tag was not properly activated at the time of sale if a return of a stolen battery is attempted.


Selling the battery 604 to the customer may also involve storing battery warranty information and a date of sale of the battery into the RFID tag 608. One embodiment of a warranty management method is described below in connection with FIG. 6B.



FIG. 6B is a flowchart 650 showing steps of a warranty management method in accordance with one embodiment. At step 652, battery warranty information is stored in an RFID tag affixed to an original battery upon sale of the original battery. Also, at step 654, identification information for the original battery and the corresponding battery warranty information are stored in a database. At step 656, if the original battery is returned prior to expiration of the warranty, a replacement battery with an affixed RFID tag is provided to the customer, and any unused warranty is transferred to the RFID tag affixed to the replacement battery. At step 658, the unused warranty is cancelled from the RFID tag affixed to the original battery. Further, at step 660, the database is updated to reflect the transference of the unused warranty from the original battery to the replacement battery.


Referring back to FIG. 6A, after entry of battery warranty information into RFID tag 608, battery 604 is installed in a vehicle owned by the customer. Battery 604 is tested upon installation in the vehicle. As described earlier, testing of battery 604 involves reading the battery manufacturing information from the RFID tag 608, conducting a battery test using the battery manufacturing information, and obtaining a battery test result. The battery test result and a corresponding timestamp is stored into the RFID tag 608. In some embodiments, test technician information is also stored into the RFID tag 608. Details about linking vehicle information with battery manufacturing information and battery warranty information in the RFID tag is described below in connection with FIG. 7.



FIG. 7 is a simplified block diagram showing a vehicle 700 having a battery 702 with an affixed RFID tag 704 in accordance with one embodiment. Vehicle 700 has an on-board diagnostic II (OBDII) connection 706. OBDII connections are known in the art and are used to couple to the OBDII databus (not shown) of modern vehicles. Although, in FIG. 7, vehicle OBDII connection 708 is shown positioned in dashboard 706, connection 708 can be positioned in any suitable location within vehicle 700. The OBD databus, and therefore OBDII connection 708, can be used to retrieve information related to various parameters, such as engine parameters, of the vehicle. Additionally, the OBDII connection 708 provides a connection to the vehicle battery 702. In general, engine parameters, vehicle battery voltage and the vehicle identification number (VIN) can be obtained from the OBDII connection 708. Thus, any suitable connector from a device separate from, or external to, vehicle 700 can be coupled to OBDII connection 708 to obtain the VIN, engine parameters, battery voltage, etc., of vehicle 700. The devices used to obtain the OBDII information can include an OBDII reader 710, which can be separate from, or a part of, a computing device or battery maintenance tool 712. The VIN, engine parameters and battery voltage can be obtained from the OBDII connection 708 and can be programmed into memory of RFID tag 704 using battery maintenance tool 712 or any other suitable device at a vehicle dealership, for example. This, stored information can be read from RFID tag 704 prior to subsequent testing and can help in diagnosing and isolating battery, alternator and/or vehicle starter problems more rapidly and accurately. As indicated above, whether the VIN is obtained via OBDII connection 708, entered manually into a computing device capable of storing the information if RFID tag 704, or obtained using any other suitable method, a VIN stored in RFID tag 704 is useful to tie battery warranty to a specific vehicle. As noted above, the serial number of the battery and warranty information is also stored into the RFID tag.


In some embodiments, balancing information for multiple battery packs is stored into the RFID tag(s). FIG. 8 shows multiple batteries 800-1 through 800-4, each including a corresponding one of RFID tags 802-1 through 802-4. Battery balancing information in the RFID tags can be used in applications for heavy trucks or stationary power supplies, for example. In such applications, information stored in the RFID tags (802-1, 802-2, 802-3 and 802-4) can include cranking capacity, time in service, miles in service, geographical location, the results of prior battery tests, the number of charged, discharged cycles a battery has undergone, a total number of battery tests performed on the battery, the age of the battery, the battery rating, etc. Specifically, information from individual RFID tags (802-1, 802-2, 802-3, 802-4) can be obtained using RFID receiver 804 and transferred to computing device/battery maintenance tool 806 that includes a memory and a processor that executes program code, which utilizes the information obtained from the individual RFID tags to automatically sort and match appropriate batteries for fleet maintenance, for example. In FIG. 8, RFID receiver 804 is shown as a separate component coupled to computing device/battery maintenance tool 806. However, in some embodiments, RFID receiver 804 is a part of, or integrated with, computing device/battery maintenance tool 806.


As indicated above, in some embodiments, a battery purchase location identifier (store identification number or any other suitable equivalent) is stored into the RFID tag affixed to the battery. Also, as indicated above, storing the date of purchase of the battery into the RFID tag starts the warranty clock.


In some embodiments, a name or other identification information for a technician who tests the storage battery is stored into the RFID tag. This allows for automatic statistical checking of technician proficiency, for example, with the help of a computing device that employs the technician-related information in the RFID tag to determine technician proficiency.


As noted above, in some embodiments, battery test related information, such as battery test results are stored in an RFID tag affixed to the battery. Additionally, in some embodiments, battery trending information (for example, results of multiple tests over time) is stored into the RFID tag affixed to the battery. In such embodiments, battery degradation can be more accurately determined than by using a simple one point snapshot test. Also, data relating to a series of test steps can be stored into the RFID tag. For example, pre-charge test results and a corresponding time stamp and post-charge test results and a corresponding time stamp can be stored. This can be read by a battery maintenance tool and can be used, for example, to determine if enough time has elapsed to allow a proper battery charge.


As noted above, test results and test related data over multiple battery tests over time can be stored in the RFID tag affixed to the battery. The enables a battery maintenance tool having a memory and a processor to carry out a method for retrieving data from a previous test from the RFID tag and comparing the retrieved data to present test data. Also, prior test data from the RFID tag is, in some embodiments, utilized by the battery maintenance tool to determine a “slope” or rate of degradation of the battery to which the RFID tag is associated. Both pre and post load test results can be stored in the RFID tag, affixed to the battery, and utilized for computations by a battery maintenance tool. The stored battery test-related information, read from the RFID tag and utilized by a battery maintenance tool for battery analysis, could be from two completely different points in time and can be accumulated each time the battery is tested.



FIG. 9 simplified block diagram showing a method for fraud prevention when RFID tags are used to store battery related information. In essence, this method involves retrieving data stored in an RFID tag (such as 902) affixed to a battery (such as 900) and comparing the retrieved data with independent data at a remote database (such as 908). In FIG. 9, RFID receiver 904 is used to retrieve data from RFID tag 902 and computing device/battery maintenance tool 906 is used to compare the retrieved data with independent data retrieved from database 908. Database 908 can be stored in memory of a remote computer, which communicates with computing device/battery maintenance tool 906 using wired or wireless communication. Database 908 can store a copy of warranty information stored in RFID tag 902 at the time of sale of battery 900 by a dealership, for example. Thus, at a later time, when the battery 900 is brought to the dealership, the above data comparisons can be used, for example, to determine whether warranty information stored in the RFID tag 902 has been altered subsequent to purchase to improperly gain additional warranty. In general, this data comparison technique is particularly useful for the purpose of fraud prevention and/or warranty verification.


As noted above, in some embodiments, the battery manufacturing date and the data of sale of the battery or the battery in-service date (date the battery was put in service) are stored into the RFID tag associated with the battery. In one embodiment, the battery manufacturing date from the RFID tag is used, by a battery maintenance tool or other computing device, to compare with the battery in-service date for tracking battery shelf life and supply chain stock rotation problems (i.e., improper first in, first out (FIFO) inventory control).


As noted earlier, in some embodiments, manufacturing plant or assembly line information is stored into the RFID tag associated to the battery. In addition to the particular assembly line, the shift during which the battery was assembled can also be stored in the RFID tag. Such detailed information related to the manufacture of the battery is useful for quality control audit purposes. Obtaining manufacturing related information from the RFID tags and processing of this information for quality control audit purposes is carried out by a suitable computing device having an RFID receiver, a processor and a memory with necessary programmed instructions.



FIG. 10 shows another example configuration of RFID tag 902 associated with a storage battery 900. In the configuration of FIG. 10, battery maintenance cable 920 is permanently or semi-permanently attached to terminals 922 and 924 of battery 900. Cable 920 is illustrated as providing Kelvin connections 926 and 928 to terminals 922 and 924, respectively. A battery maintenance device, for example maintenance tool 506 shown in FIG. 5, can couple to cable 920 through, for example, plugs 930 and 932. The Kelvin connection to the device 506 is continued from plug 932 through wiring 934, 936. An RFID communicator 938 is coupled to the cable and is configured to read and/or write information to RFID tag 902 from battery tester 506 through data bus 940. Although the communication device 938 is shown as separate from tester 506 and associated with the cabling, the device 938 could also be located within battery tester 506. When the battery maintenance device 506 is coupled to cable 920, the device will be in sufficiently close proximity to RFID tag 902 to allow communication there between. This configuration allows existing batteries to be easily retrofit with an RFID tag 902 simply by coupling a cable 920 to the battery 900. During operation, information regarding various battery tests can be stored in the memory of RFID tag 902. This allows battery 506 tester to retrieve stored information for use in monitoring the storage battery 900. For example, stored test results can be recovered and used to provide trending information about the battery. This can be used, for example, to predict a failure of the battery or a time at which the battery should be replaced.


As discussed previously, the connection between the battery and battery maintenance device can be a source of errors due to inconsistencies in the connection when performing battery tests. Technicians, with varying levels of training and experience, may encounter difficulties with the set up and use of the test equipment. With the present invention, the cabling can be permanently or semi-permanently coupled to the battery thereby eliminating the connection as a source of errors in measurements. Further, the RFID tag 902 can include information related to the battery 900. This information can be read by the tester whereby the amount of information which must be manually entered into the tester is reduced or substantially eliminated. Such information includes reference values for various parameters of the battery, nominal voltage, information from prior tests, etc. This information can be stored in the memory of the RFID tag 902 during manufacture or installation of the battery, for example. This allows the manufacturer or installer to set these values based upon a particular battery, lot of batteries, particular use of the battery, etc. For example, a battery identifier such as a unique serial number may be associated with the battery, nominal battery voltage, the amp per hour rating of the battery, a conductance reference of the battery, the manufacturing date of the battery, the installation date of the battery, etc.


Additionally, information can be written into the memory of the RFID tag 902 following manufacture. This includes the installation date, as well as information about subsequent measurements. For example a time or date stamp can be stored, measured voltage, measured temperature, measured conductance, identification of the technician performing the test, etc. A temperature measurement can be obtained by using a temperature sensor contained within the battery tester 506, or, for example in a temperature sensor 950 associated directly with a specific battery 900. In one example configuration, the memory contains 80 registers for storing this information. Additional memory can be added simply by adding an additional RFID tag. The RFID tag 902 can be activated when it is in close proximity to the RFID tag reader/writer 938. For example, an inductive connection can occur between the components. As discussed previously, the battery tester 506 can collect previous test measurements or other information from the memory and use this information for developing trends in the battery operation. This can be used to identify a battery which is rapidly failing, or predict an ultimate end of life of the battery, or use by a manufacturer to improve the manufacturing process. For example, input/output circuitry 952 which can be used to read back information from tester 506. This can be, for example, USB connection whereby a PC or other device can be used to recover information read back from the RFID tag 902. A manufacturer can use this information to determine how a particular battery is being used, identify failing batteries, improve the manufacturing process, etc. As a more specific example, any alarms or anomalies which are noted can be used to trigger an alert or e-mail which is transmitted.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. It should be noted that the barcode(s) (used in some embodiments of the tag) and the corresponding barcode scanner (used in some embodiments of the tester/charger) are optional and therefore the invention can operate only with the RFID encoded battery information in the tag and a corresponding RF receiver in the tester/charger. It should be noted that the above invention is suitable for use in battery testers, chargers or a combined battery tester and charger. Although the above description has been directed to battery maintenance devices such as battery testers and battery chargers, the present invention is applicable to any type of battery test device. Further, the RFID tags can be associated with a particular battery using any appropriate technique. The invention is not limited to the above examples of mounting the RFID tag to the battery or affixing a test cable to the battery. In one configuration, additional memory is provided by associating more than one RFID tag. For example, if an RFID tag is low on memory for storage of information, an additional RFID tag may be associated with the battery. Both tags can be used by the battery maintenance device and communicated therewith. For example, the RFID tags may include different addresses so that they may be communicated with individually. The RFID tags are configured to store battery information. Examples of battery information include information related to the rating of the battery, the result(s) of prior battery tests, temperature information, environment information, geographic information, information related to manufacturing such as manufacturing date or location, warranty information, information related to the person who performed the battery test or installed the battery, information related to anomalies regarding the battery, etc. In one configuration, the RFID tag may include information related to more than one battery. In another example configuration, the RFID tag may be configured to store notes or other information which is inputted by an operator. This information can be retrieved by an operator during a subsequent examination of the battery. For example, the information may indicate that an operator noted a manufacturing defect or observed a failure or impending failure in the external casing of the battery, notations regarding the location of the battery or condition of the site, etc. In one aspect, the RFID tag includes information such as an address which uniquely or semi-uniquely identifies the battery to which it is associated. Additionally, by storing parameters in the RFID tag, this reduces or eliminates errors that may occur when an operator inputs these parameters a battery maintenance device. The configuration also improves the efficiency of the testing because an operator can quickly plug the tester into the Kelvin connection of the battery. Further, because the operator does not need to input test parameters, this step is also eliminated from the testing.

Claims
  • 1. A method comprising: associating a radio frequency identification (RFID) tag with a storage battery;storing battery information into the RFID tag;wirelessly reading the battery information from the RFID tag;testing the battery with an external electronic battery tester using the battery information by measuring a response of the storage battery to an applied signal and responsively obtaining a battery test result; andwirelessly storing the battery test result into the RFID tag using an RF communicator in the electronic battery tester, including a plurality of battery test results obtained over time carried out on the battery as a basis for subsequent testing of the battery.
  • 2. The method of claim 1 including the step of identifying trends in the battery test results based upon the battery information retrieved from the RFID tag.
  • 3. The method of claim 1 wherein the testing is performed at a manufacturing plant.
  • 4. The method of claim 1 wherein the testing is performed at a stationary location of the battery during normal operation of the battery.
  • 5. The method of claim 1 and further comprising storing test technician information into the RFID tag.
  • 6. The method of claim 1 and further comprising: obtaining information related to the vehicle in which the battery is installed; andstoring the information related to the vehicle in the RFID tag.
  • 7. The method of claim 1 wherein the battery information comprises battery temperature information.
  • 8. The method of claim 1 including storing timestamp information in the RFID tag.
  • 9. The method of claim 1 including identifying trends in battery test results.
  • 10. The method of claim 1 wherein associating comprises attaching the RFID tag to the storage battery.
  • 11. The method of claim 1 wherein associating comprises of attaching a cable which includes the RFID tag to the battery.
  • 12. The method of claim 1 including adding an additional RFID tag to provide additional memory.
  • 13. The method of claim 1 wherein the battery information comprises battery rating.
  • 14. An apparatus comprising: a radio frequency identification (RFID) configured to be associated with a storage battery, the RFID tag is configured to store and wirelessly transmit information related to the battery;an external electronic battery tester configured to perform a battery test on the storage battery by measuring a response of the storage battery to an applied signal and responsively obtaining a battery test result, the electronic battery tester including:a computing device comprising: a computing device memory;a processor; anda receiver, which operates under the control of the processor, configured to receive the transmitted information related to the battery,wherein the RFID tag is configured to store information received wirelessly, related to a plurality of battery test results obtained over time carried out on the battery, and as a basis for subsequent testing of the battery.
  • 15. The apparatus of claim 14 and wherein the RFID tag is further configured to store information related to a vehicle in which the battery is used.
  • 16. The apparatus of claim 14 and wherein the computing device comprises a battery tester.
  • 17. The method of claim 16 including performing a battery test using the cable.
  • 18. The apparatus of claim 16 and wherein the battery tester is configured to program test technician information into the RFID tag.
  • 19. The apparatus of claim 16 and wherein the battery tester is configured to identify degradation of the storage battery based on the stored information related to the plurality of battery tests.
  • 20. The apparatus of claim 14 and wherein the battery tester is further configured to determine a slope of degradation of the battery.
  • 21. The apparatus of claim 14 including a cable configured to be affixed to the battery, the cable for use in performing a battery test on the battery.
  • 22. The apparatus of claim 21 wherein the RFID tag is coupled to the cable.
  • 23. The apparatus of claim 21 wherein the cable provides a Kelvin connection to the battery.
  • 24. The apparatus of claim 21 including a temperature sensor configured to sense a temperature of the battery and wherein the RFID tag is configured to store battery temperature information.
  • 25. The apparatus of claim 14 including a label affixed to the battery and wherein the RFID tag in included in the label.
  • 26. The apparatus of claim 14 including an additional RFID tag to provide additional storage memory.
  • 27. An apparatus comprising: a radio frequency identification (RFID) tag configured to be associated with a storage battery, the RFID tag configured to store battery information related to a plurality of battery tests obtained over time carried out on the battery, to transmit the stored battery information wirelessly to a battery tester, to wirelessly receive battery test results based on battery tests performed in response to the stored and transmitted battery information, and to store the wirelessly received test results; andan external electronic battery tester configured to perform a battery test on the storage battery by measuring a response of the storage battery to an applied signal and responsively obtaining a battery test result comprising:a computing device memory; a processor; andan RF communicator, which operates under the control of the processor, configured to receive the transmitted stored battery information, and to transmit battery test results to the RFID tag.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation-in-Part and claims priority of U.S. Ser. No. 12/416,457, filed Apr. 1, 2009, which is a Continuation-In-Part of and claims priority of U.S. patent application Ser. No. 11/207,419, filed Aug. 19, 2005, which is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/603,078, filed Aug. 20, 2004; the present application is also a Continuation-in-Part and claims priority of U.S. Ser. No. 12/416,453, filed Apr. 1, 2009, which is a Continuation-In-Part of and claims priority of U.S. patent application Ser. No. 11/207,419, filed Aug. 19, 2005, which is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/603,078, filed Aug. 20, 2004; the present invention is also a Continuation-in-Part and claims priority of U.S. Ser. No. 12/416,445, filed Apr. 1, 2009, which is a Continuation-In-Part of and claims priority of U.S. patent application Ser. No. 11/207,419, filed Aug. 19, 2005, which is based on and claims the benefit of U.S. provisional patent application Ser. No. 60/603,078, filed Aug. 20, 2004, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (870)
Number Name Date Kind
85553 Adams Jan 1869 A
2000665 Neal May 1935 A
2417940 Lehman Mar 1947 A
2437772 Wall Mar 1948 A
2514745 Dalzell Jul 1950 A
2727221 Springg Dec 1955 A
3025455 Jonsson Mar 1962 A
3178686 Mills Apr 1965 A
3215194 Sununu et al. Nov 1965 A
3223969 Alexander Dec 1965 A
3267452 Wolf Aug 1966 A
3356936 Smith Dec 1967 A
3562634 Latner Feb 1971 A
3593099 Scholl Jul 1971 A
3607673 Seyl Sep 1971 A
3652341 Halsall et al. Mar 1972 A
3676770 Sharaf et al. Jul 1972 A
3699433 Smith, Jr. Oct 1972 A
3729989 Little May 1973 A
3745441 Soffer Jul 1973 A
3750011 Kreps Jul 1973 A
3753094 Furuishi et al. Aug 1973 A
3776177 Bryant et al. Dec 1973 A
3796124 Crosa Mar 1974 A
3808522 Sharaf Apr 1974 A
3811089 Strzelewicz May 1974 A
3816805 Terry Jun 1974 A
3850490 Zehr Nov 1974 A
3857082 Van Opijnen Dec 1974 A
3873911 Champlin Mar 1975 A
3876931 Godshalk Apr 1975 A
3886426 Daggett May 1975 A
3886443 Miyakawa et al. May 1975 A
3889248 Ritter Jun 1975 A
3906329 Bader Sep 1975 A
3909708 Champlin Sep 1975 A
3920284 Lane et al. Nov 1975 A
3936744 Perlmutter Feb 1976 A
3946299 Christianson et al. Mar 1976 A
3947757 Grube et al. Mar 1976 A
3969667 McWilliams Jul 1976 A
3979664 Harris Sep 1976 A
3984762 Dowgiallo, Jr. Oct 1976 A
3984768 Staples Oct 1976 A
3989544 Santo Nov 1976 A
3997830 Newell et al. Dec 1976 A
4008619 Alcaide et al. Feb 1977 A
4023882 Pettersson May 1977 A
4024953 Nailor, III May 1977 A
4047091 Hutchines et al. Sep 1977 A
4053824 Dupuis et al. Oct 1977 A
4056764 Endo et al. Nov 1977 A
4057313 Polizzano Nov 1977 A
4070624 Taylor Jan 1978 A
4086531 Bernier Apr 1978 A
4106025 Katz Aug 1978 A
4112351 Back et al. Sep 1978 A
4114083 Benham et al. Sep 1978 A
4126874 Suzuki et al. Nov 1978 A
4160916 Papasideris Jul 1979 A
4178546 Hulls et al. Dec 1979 A
4193025 Frailing et al. Mar 1980 A
4207610 Gordon Jun 1980 A
4207611 Gordon Jun 1980 A
4217645 Barry et al. Aug 1980 A
4218745 Perkins Aug 1980 A
4280457 Bloxham Jul 1981 A
4297639 Branham Oct 1981 A
4307342 Peterson Dec 1981 A
4315204 Sievers et al. Feb 1982 A
4316185 Watrous et al. Feb 1982 A
4322685 Frailing et al. Mar 1982 A
4351405 Fields et al. Sep 1982 A
4352067 Ottone Sep 1982 A
4360780 Skutch, Jr. Nov 1982 A
4361809 Bil et al. Nov 1982 A
4363407 Buckler et al. Dec 1982 A
4369407 Korbell Jan 1983 A
4379989 Kurz et al. Apr 1983 A
4379990 Sievers et al. Apr 1983 A
4385269 Aspinwall et al. May 1983 A
4390828 Converse et al. Jun 1983 A
4392101 Saar et al. Jul 1983 A
4396880 Windebank Aug 1983 A
4408157 Beaubien Oct 1983 A
4412169 Dell'Orto Oct 1983 A
4423378 Marino et al. Dec 1983 A
4423379 Jacobs et al. Dec 1983 A
4424491 Bobbett et al. Jan 1984 A
4425791 Kling Jan 1984 A
4441359 Ezoe Apr 1984 A
4459548 Lentz et al. Jul 1984 A
4514694 Finger Apr 1985 A
4520353 McAuliffe May 1985 A
4521498 Juergens Jun 1985 A
4564798 Young Jan 1986 A
4620767 Woolf Nov 1986 A
4626765 Tanaka Dec 1986 A
4633418 Bishop Dec 1986 A
4637359 Cook Jan 1987 A
4659977 Kissel et al. Apr 1987 A
4663580 Wortman May 1987 A
4665370 Holland May 1987 A
4667143 Cooper et al. May 1987 A
4667279 Maier May 1987 A
4678998 Muramatsu Jul 1987 A
4679000 Clark Jul 1987 A
4680528 Mikami et al. Jul 1987 A
4686442 Radomski Aug 1987 A
4697134 Burkum et al. Sep 1987 A
4707795 Alber et al. Nov 1987 A
4709202 Koenck et al. Nov 1987 A
4710861 Kanner Dec 1987 A
4719428 Liebermann Jan 1988 A
4723656 Kiernan et al. Feb 1988 A
4743855 Randin et al. May 1988 A
4745349 Palanisamy et al. May 1988 A
4773011 VanHoose Sep 1988 A
4781629 Mize Nov 1988 A
D299909 Casey Feb 1989 S
4816768 Champlin Mar 1989 A
4820966 Fridman Apr 1989 A
4825170 Champlin Apr 1989 A
4847547 Eng, Jr. Jul 1989 A
4849700 Morioka et al. Jul 1989 A
4874679 Miyagawa Oct 1989 A
4876495 Palanisamy et al. Oct 1989 A
4881038 Champlin Nov 1989 A
4885523 Koenck Dec 1989 A
4888716 Ueno Dec 1989 A
4901007 Sworm Feb 1990 A
4907176 Bahnick et al. Mar 1990 A
4912416 Champlin Mar 1990 A
4913116 Katogi et al. Apr 1990 A
4926330 Abe et al. May 1990 A
4929931 McCuen May 1990 A
4931738 MacIntyre et al. Jun 1990 A
4932905 Richards Jun 1990 A
4933845 Hayes Jun 1990 A
4934957 Bellusci Jun 1990 A
4937528 Palanisamy Jun 1990 A
4947124 Hauser Aug 1990 A
4949046 Seyfang Aug 1990 A
4956597 Heavey et al. Sep 1990 A
4965738 Bauer et al. Oct 1990 A
4968941 Rogers Nov 1990 A
4968942 Palanisamy Nov 1990 A
4969834 Johnson Nov 1990 A
4983086 Hatrock Jan 1991 A
5004979 Marino et al. Apr 1991 A
5030916 Bokitch Jul 1991 A
5032825 Kuznicki Jul 1991 A
5034893 Fisher Jul 1991 A
5037778 Stark et al. Aug 1991 A
5047722 Wurst et al. Sep 1991 A
5081565 Nabha et al. Jan 1992 A
5087881 Peacock Feb 1992 A
5095223 Thomas Mar 1992 A
5108320 Kimber Apr 1992 A
5109213 Williams Apr 1992 A
5126675 Yang Jun 1992 A
5130658 Bohmer Jul 1992 A
5140269 Champlin Aug 1992 A
5144218 Bosscha Sep 1992 A
5144248 Alexandres et al. Sep 1992 A
D330338 Wang Oct 1992 S
5159272 Rao et al. Oct 1992 A
5160881 Schramm et al. Nov 1992 A
5164653 Reem Nov 1992 A
5168208 Schultz et al. Dec 1992 A
5170124 Blair et al. Dec 1992 A
5179335 Nor Jan 1993 A
5187381 Iwasa et al. Feb 1993 A
5187382 Kondo Feb 1993 A
5194799 Tomantschger Mar 1993 A
5204611 Nor et al. Apr 1993 A
5214370 Harm et al. May 1993 A
5214385 Gabriel et al. May 1993 A
5223747 Tschulena Jun 1993 A
5241275 Fang Aug 1993 A
5254952 Salley et al. Oct 1993 A
5266880 Newland Nov 1993 A
5278759 Berra et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5281920 Wurst Jan 1994 A
5295078 Stich et al. Mar 1994 A
5298797 Redl Mar 1994 A
5300874 Shimamoto et al. Apr 1994 A
5302902 Groehl Apr 1994 A
5309052 Kim May 1994 A
5313152 Wozniak et al. May 1994 A
5315287 Sol May 1994 A
5321626 Palladino Jun 1994 A
5321627 Reher Jun 1994 A
5323337 Wilson et al. Jun 1994 A
5325041 Briggs Jun 1994 A
5331268 Patino et al. Jul 1994 A
5332927 Paul et al. Jul 1994 A
5336993 Thomas et al. Aug 1994 A
5338515 Dalla Betta et al. Aug 1994 A
5339018 Brokaw Aug 1994 A
5343380 Champlin Aug 1994 A
5345384 Przybyla et al. Sep 1994 A
5347163 Yoshimura Sep 1994 A
5349535 Gupta Sep 1994 A
5352968 Reni et al. Oct 1994 A
5357519 Martin et al. Oct 1994 A
5365160 Leppo et al. Nov 1994 A
5365453 Startup et al. Nov 1994 A
5369364 Renirie et al. Nov 1994 A
5381096 Hirzel Jan 1995 A
5384540 Dessel Jan 1995 A
5387871 Tsai Feb 1995 A
5394093 Cervas Feb 1995 A
5402007 Center et al. Mar 1995 A
5410754 Klotzbach et al. Apr 1995 A
5412308 Brown May 1995 A
5412323 Kato et al. May 1995 A
5425041 Seko et al. Jun 1995 A
5426371 Salley et al. Jun 1995 A
5426416 Jefferies et al. Jun 1995 A
5430645 Keller Jul 1995 A
5432025 Cox Jul 1995 A
5432426 Yoshida Jul 1995 A
5434495 Toko Jul 1995 A
5435185 Eagan Jul 1995 A
5442274 Tamai Aug 1995 A
5445026 Eagan Aug 1995 A
5449996 Matsumoto et al. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5451881 Finger Sep 1995 A
5453027 Buell et al. Sep 1995 A
5457377 Jonsson Oct 1995 A
5459660 Berra Oct 1995 A
5462439 Keith Oct 1995 A
5469043 Cherng et al. Nov 1995 A
5485090 Stephens Jan 1996 A
5488300 Jamieson Jan 1996 A
5504674 Chen et al. Apr 1996 A
5508599 Koenck Apr 1996 A
5519383 De La Rosa May 1996 A
5528148 Rogers Jun 1996 A
5537967 Tashiro et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5546317 Andrieu Aug 1996 A
5548273 Nicol et al. Aug 1996 A
5550485 Falk Aug 1996 A
5561380 Sway-Tin et al. Oct 1996 A
5562501 Kinoshita et al. Oct 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5573611 Koch et al. Nov 1996 A
5574355 McShane et al. Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5583416 Klang Dec 1996 A
5585416 Audett et al. Dec 1996 A
5585728 Champlin Dec 1996 A
5589757 Klang Dec 1996 A
5592093 Klingbiel Jan 1997 A
5592094 Ichikawa Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5598098 Champlin Jan 1997 A
5602462 Stich et al. Feb 1997 A
5606242 Hull et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5621298 Harvey Apr 1997 A
5631536 Tseng May 1997 A
5631831 Bird et al. May 1997 A
5633985 Severson et al. May 1997 A
5637978 Kellett et al. Jun 1997 A
5642031 Brotto Jun 1997 A
5644212 Takahashi Jul 1997 A
5650937 Bounaga Jul 1997 A
5652501 McClure et al. Jul 1997 A
5653659 Kunibe et al. Aug 1997 A
5654623 Shiga et al. Aug 1997 A
5656920 Cherng et al. Aug 1997 A
5661368 Deol et al. Aug 1997 A
5666040 Bourbeau Sep 1997 A
5675234 Greene Oct 1997 A
5677077 Faulk Oct 1997 A
5684678 Barrett Nov 1997 A
5685734 Kutz Nov 1997 A
5691621 Phuoc et al. Nov 1997 A
5699050 Kanazawa Dec 1997 A
5701089 Perkins Dec 1997 A
5705929 Caravello et al. Jan 1998 A
5707015 Guthrie Jan 1998 A
5710503 Sideris et al. Jan 1998 A
5711648 Hammerslag Jan 1998 A
5712795 Layman et al. Jan 1998 A
5717336 Basell et al. Feb 1998 A
5717937 Fritz Feb 1998 A
5721688 Bramwell Feb 1998 A
5732074 Spaur et al. Mar 1998 A
5739667 Matsuda et al. Apr 1998 A
5744962 Alber et al. Apr 1998 A
5745044 Hyatt, Jr. et al. Apr 1998 A
5747189 Perkins May 1998 A
5747909 Syverson et al. May 1998 A
5747967 Muljadi et al. May 1998 A
5754417 Nicollini May 1998 A
5757192 McShane et al. May 1998 A
5760587 Harvey Jun 1998 A
5772468 Kowalski et al. Jun 1998 A
5773962 Nor Jun 1998 A
5773978 Becker Jun 1998 A
5778326 Moroto et al. Jul 1998 A
5780974 Pabla et al. Jul 1998 A
5780980 Naito Jul 1998 A
5789899 van Phuoc et al. Aug 1998 A
5793359 Ushikubo Aug 1998 A
5796239 van Phuoc et al. Aug 1998 A
5808469 Kopera Sep 1998 A
5811979 Rhein Sep 1998 A
5818201 Stockstad et al. Oct 1998 A
5818234 McKinnon Oct 1998 A
5820407 Morse et al. Oct 1998 A
5821756 McShane et al. Oct 1998 A
5821757 Alvarez et al. Oct 1998 A
5825174 Parker Oct 1998 A
5831435 Troy Nov 1998 A
5832396 Moroto et al. Nov 1998 A
5850113 Weimer et al. Dec 1998 A
5862515 Kobayashi et al. Jan 1999 A
5865638 Trafton Feb 1999 A
5869951 Takahashi Feb 1999 A
5870018 Person Feb 1999 A
5871858 Thomsen et al. Feb 1999 A
5872443 Williamson Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5883306 Hwang Mar 1999 A
5884202 Arjomand Mar 1999 A
5895440 Proctor et al. Apr 1999 A
5903154 Zhang et al. May 1999 A
5903716 Kimber et al. May 1999 A
5912534 Benedict Jun 1999 A
5914605 Bertness Jun 1999 A
5916287 Arjomand et al. Jun 1999 A
5927938 Hammerslag Jul 1999 A
5929609 Joy et al. Jul 1999 A
5935180 Fieramosca et al. Aug 1999 A
5939855 Proctor et al. Aug 1999 A
5939861 Joko et al. Aug 1999 A
5945829 Bertness Aug 1999 A
5946605 Takahisa et al. Aug 1999 A
5950144 Hall et al. Sep 1999 A
5951229 Hammerslag Sep 1999 A
5953322 Kimball Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5961561 Wakefield, II Oct 1999 A
5961604 Anderson et al. Oct 1999 A
5963012 Garcia et al. Oct 1999 A
5969625 Russo Oct 1999 A
5973598 Beigel Oct 1999 A
5978805 Carson Nov 1999 A
5982138 Krieger Nov 1999 A
5990664 Rahman Nov 1999 A
6002238 Champlin Dec 1999 A
6005489 Siegle et al. Dec 1999 A
6005759 Hart et al. Dec 1999 A
6008652 Theofanopoulos et al. Dec 1999 A
6009369 Boisvert et al. Dec 1999 A
6016047 Notten et al. Jan 2000 A
6031354 Wiley et al. Feb 2000 A
6031368 Klippel et al. Feb 2000 A
6037745 Koike et al. Mar 2000 A
6037749 Parsonage Mar 2000 A
6037751 Klang Mar 2000 A
6037777 Champlin Mar 2000 A
6037778 Makhija Mar 2000 A
6046514 Rouillard et al. Apr 2000 A
6051976 Bertness Apr 2000 A
6055468 Kaman et al. Apr 2000 A
6061638 Joyce May 2000 A
6064372 Kahkoska May 2000 A
6072299 Kurle et al. Jun 2000 A
6072300 Tsuji Jun 2000 A
6075339 Reipur et al. Jun 2000 A
6081098 Bertness et al. Jun 2000 A
6081109 Seymour et al. Jun 2000 A
6081154 Ezell et al. Jun 2000 A
6087815 Pfeifer et al. Jul 2000 A
6088652 Abe Jul 2000 A
6091238 McDermott Jul 2000 A
6091245 Bertness Jul 2000 A
6094033 Ding et al. Jul 2000 A
6097193 Bramwell Aug 2000 A
6100670 Levesque Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104167 Bertness et al. Aug 2000 A
6113262 Purola et al. Sep 2000 A
6114834 Parise Sep 2000 A
6121880 Scott et al. Sep 2000 A
6136914 Hergenrother et al. Oct 2000 A
6137269 Champlin Oct 2000 A
6140797 Dunn Oct 2000 A
6141608 Rother Oct 2000 A
6144185 Dougherty et al. Nov 2000 A
6147598 Murphy et al. Nov 2000 A
6150793 Lesesky et al. Nov 2000 A
6158000 Collins Dec 2000 A
6161640 Yamaguchi Dec 2000 A
6163156 Bertness Dec 2000 A
6164063 Mendler Dec 2000 A
6167349 Alvarez Dec 2000 A
6172483 Champlin Jan 2001 B1
6172505 Bertness Jan 2001 B1
6177737 Palfey et al. Jan 2001 B1
6181545 Amatucci et al. Jan 2001 B1
6184656 Karunasiri et al. Feb 2001 B1
6191557 Gray et al. Feb 2001 B1
6202739 Pal et al. Mar 2001 B1
6211651 Nemoto Apr 2001 B1
6211653 Stasko Apr 2001 B1
6215275 Bean Apr 2001 B1
6218805 Melcher Apr 2001 B1
6218936 Imao Apr 2001 B1
6222342 Eggert et al. Apr 2001 B1
6222369 Champlin Apr 2001 B1
D442503 Lundbeck et al. May 2001 S
6225808 Varghese et al. May 2001 B1
6225898 Kamiya et al. May 2001 B1
6236186 Helton et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6236949 Hart May 2001 B1
6238253 Qualls May 2001 B1
6242887 Burke Jun 2001 B1
6249124 Bertness Jun 2001 B1
6250973 Lowery et al. Jun 2001 B1
6254438 Gaunt Jul 2001 B1
6255826 Ohsawa Jul 2001 B1
6259170 Limoge et al. Jul 2001 B1
6259254 Klang Jul 2001 B1
6262563 Champlin Jul 2001 B1
6262692 Babb Jul 2001 B1
6263268 Nathanson Jul 2001 B1
6263322 Kirkevold et al. Jul 2001 B1
6271643 Becker et al. Aug 2001 B1
6271748 Derbyshire et al. Aug 2001 B1
6272387 Yoon Aug 2001 B1
6275008 Arai et al. Aug 2001 B1
6285191 Gollomp et al. Sep 2001 B1
6294896 Champlin Sep 2001 B1
6294897 Champlin Sep 2001 B1
6304087 Bertness Oct 2001 B1
6307349 Koenck et al. Oct 2001 B1
6310481 Bertness Oct 2001 B2
6313607 Champlin Nov 2001 B1
6313608 Varghese et al. Nov 2001 B1
6316914 Bertness Nov 2001 B1
6320351 Ng et al. Nov 2001 B1
6323650 Bertness et al. Nov 2001 B1
6324042 Andrews Nov 2001 B1
6329793 Bertness et al. Dec 2001 B1
6331762 Bertness Dec 2001 B1
6332113 Bertness Dec 2001 B1
6346795 Haraguchi et al. Feb 2002 B2
6347958 Tsai Feb 2002 B1
6351102 Troy Feb 2002 B1
6356042 Kahlon et al. Mar 2002 B1
6356083 Ying Mar 2002 B1
6359441 Bertness Mar 2002 B1
6359442 Henningson et al. Mar 2002 B1
6363303 Bertness Mar 2002 B1
RE37677 Irie Apr 2002 E
6363790 Flogel et al. Apr 2002 B1
6377031 Karuppana et al. Apr 2002 B1
6384608 Namaky May 2002 B1
6388448 Cervas May 2002 B1
6389337 Kolls May 2002 B1
6392414 Bertness May 2002 B2
6396278 Makhija May 2002 B1
6407554 Godau et al. Jun 2002 B1
6411098 Laletin Jun 2002 B1
6417669 Champlin Jul 2002 B1
6420852 Sato Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6424158 Klang Jul 2002 B2
6433512 Birkler et al. Aug 2002 B1
6437957 Karuppana et al. Aug 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6448778 Rankin Sep 2002 B1
6449726 Smith Sep 2002 B1
6456036 Thandiwe Sep 2002 B1
6456045 Troy et al. Sep 2002 B1
6465908 Karuppana et al. Oct 2002 B1
6466025 Klang Oct 2002 B1
6466026 Champlin Oct 2002 B1
6469511 Vonderhaar et al. Oct 2002 B1
6473659 Shah et al. Oct 2002 B1
6477478 Jones et al. Nov 2002 B1
6495990 Champlin Dec 2002 B2
6497209 Karuppana et al. Dec 2002 B1
6500025 Moenkhaus et al. Dec 2002 B1
6501243 Kaneko Dec 2002 B1
6505507 Imao et al. Jan 2003 B1
6507196 Thomsen et al. Jan 2003 B2
6526361 Jones et al. Feb 2003 B1
6529723 Bentley Mar 2003 B1
6531848 Chitsazan et al. Mar 2003 B1
6532425 Boost et al. Mar 2003 B1
6533316 Breed et al. Mar 2003 B2
6534992 Meissner et al. Mar 2003 B2
6534993 Bertness Mar 2003 B2
6536536 Gass et al. Mar 2003 B1
6544078 Palmisano et al. Apr 2003 B2
6545599 Derbyshire et al. Apr 2003 B2
6556019 Bertness Apr 2003 B2
6566883 Vonderhaar et al. May 2003 B1
6570385 Roberts et al. May 2003 B1
6577107 Kechmire Jun 2003 B2
6586941 Bertness et al. Jul 2003 B2
6597150 Bertness et al. Jul 2003 B1
6599243 Woltermann et al. Jul 2003 B2
6600815 Walding Jul 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6614349 Proctor et al. Sep 2003 B1
6618644 Bean Sep 2003 B2
6621272 Champlin Sep 2003 B2
6623314 Cox et al. Sep 2003 B1
6624635 Lui Sep 2003 B1
6628011 Droppo et al. Sep 2003 B2
6629054 Makhija et al. Sep 2003 B2
6633165 Bertness Oct 2003 B2
6635974 Karuppana et al. Oct 2003 B1
6667624 Raichle et al. Dec 2003 B1
6679212 Kelling Jan 2004 B2
6686542 Zhang Feb 2004 B2
6696819 Bertness Feb 2004 B2
6707303 Bertness et al. Mar 2004 B2
6732031 Lowrey et al. May 2004 B1
6736941 Oku et al. May 2004 B2
6737831 Champlin May 2004 B2
6738697 Breed May 2004 B2
6740990 Tozuka et al. May 2004 B2
6744149 Karuppana et al. Jun 2004 B1
6745153 White et al. Jun 2004 B2
6759849 Bertness et al. Jul 2004 B2
6771073 Henningson et al. Aug 2004 B2
6777945 Roberts et al. Aug 2004 B2
6781344 Hedegor et al. Aug 2004 B1
6781382 Johnson Aug 2004 B2
6784635 Larson Aug 2004 B2
6784637 Raichle et al. Aug 2004 B2
6788025 Bertness et al. Sep 2004 B2
6795782 Bertness et al. Sep 2004 B2
6796841 Cheng et al. Sep 2004 B1
6805090 Bertness et al. Oct 2004 B2
6806716 Bertness et al. Oct 2004 B2
6825669 Raichle et al. Nov 2004 B2
6832141 Skeen et al. Dec 2004 B2
6842707 Raichle et al. Jan 2005 B2
6845279 Gilmore et al. Jan 2005 B1
6850037 Bertness Feb 2005 B2
6856162 Greatorex et al. Feb 2005 B1
6856972 Yun et al. Feb 2005 B1
6871151 Bertness Mar 2005 B2
6885195 Bertness Apr 2005 B2
6888468 Bertness May 2005 B2
6891378 Bertness et al. May 2005 B2
6904796 Pacsai et al. Jun 2005 B2
6906522 Bertness et al. Jun 2005 B2
6906523 Bertness et al. Jun 2005 B2
6906624 McClelland et al. Jun 2005 B2
6909287 Bertness Jun 2005 B2
6909356 Brown et al. Jun 2005 B2
6911825 Namaky Jun 2005 B2
6913483 Restaino et al. Jul 2005 B2
6914413 Bertness et al. Jul 2005 B2
6919725 Bertness et al. Jul 2005 B2
6930485 Bertness et al. Aug 2005 B2
6933727 Bertness et al. Aug 2005 B2
6941234 Bertness et al. Sep 2005 B2
6957133 Hunt et al. Oct 2005 B1
6967484 Bertness Nov 2005 B2
6972662 Ohkawa et al. Dec 2005 B1
6983212 Burns Jan 2006 B2
6988053 Namaky Jan 2006 B2
6993421 Pillar et al. Jan 2006 B2
6998847 Bertness et al. Feb 2006 B2
7003410 Bertness et al. Feb 2006 B2
7003411 Bertness Feb 2006 B2
7012433 Smith et al. Mar 2006 B2
7015674 VonderHaar Mar 2006 B2
7029338 Orange et al. Apr 2006 B1
7034541 Bertness et al. Apr 2006 B2
7039533 Bertness et al. May 2006 B2
7042346 Paulsen May 2006 B2
7049822 Kung May 2006 B2
7058525 Bertness et al. Jun 2006 B2
7069979 Tobias Jul 2006 B2
7081755 Klang et al. Jul 2006 B2
7089127 Thibedeau et al. Aug 2006 B2
7098666 Patino Aug 2006 B2
7102556 White Sep 2006 B2
7106070 Bertness et al. Sep 2006 B2
7116109 Klang Oct 2006 B2
7119686 Bertness et al. Oct 2006 B2
7120488 Nova et al. Oct 2006 B2
7126341 Bertness et al. Oct 2006 B2
7129706 Kalley Oct 2006 B2
7154276 Bertness Dec 2006 B2
7170393 Martin Jan 2007 B2
7173182 Katsuyama Feb 2007 B2
7177925 Carcido et al. Feb 2007 B2
7182147 Cutler et al. Feb 2007 B2
7184866 Squires Feb 2007 B2
7184905 Stefan Feb 2007 B2
7198510 Bertness Apr 2007 B2
7200424 Tischer et al. Apr 2007 B2
7202636 Reynolds et al. Apr 2007 B2
7208914 Klang Apr 2007 B2
7209850 Brott et al. Apr 2007 B2
7209860 Trsar et al. Apr 2007 B2
7212887 Shah et al May 2007 B2
7219023 Banke et al. May 2007 B2
7233128 Brost et al. Jun 2007 B2
7235977 Koran et al. Jun 2007 B2
7246015 Bertness et al. Jul 2007 B2
7251551 Mitsueda Jul 2007 B2
7272519 Lesesky et al. Sep 2007 B2
7287001 Falls et al. Oct 2007 B1
7295936 Bertness et al. Nov 2007 B2
7319304 Veloo et al. Jan 2008 B2
7339477 Puzio et al. Mar 2008 B2
7363175 Bertness et al. Apr 2008 B2
7376497 Chen May 2008 B2
7398176 Bertness Jul 2008 B2
7408358 Knopf Aug 2008 B2
7425833 Bertness et al. Sep 2008 B2
7446536 Bertness Nov 2008 B2
7453238 Melichar Nov 2008 B2
7479763 Bertness Jan 2009 B2
7498767 Brown et al. Mar 2009 B2
7501795 Bertness et al. Mar 2009 B2
7505856 Restaino et al. Mar 2009 B2
7545146 Klang et al. Jun 2009 B2
7557586 Vonderhaar et al. Jul 2009 B1
7590476 Shumate Sep 2009 B2
7592776 Tsukamoto et al. Sep 2009 B2
7595643 Klang Sep 2009 B2
7598699 Restaino et al. Oct 2009 B2
7598743 Bertness Oct 2009 B2
7598744 Bertness et al. Oct 2009 B2
7619417 Klang Nov 2009 B2
7642786 Philbrook Jan 2010 B2
7642787 Bertness et al. Jan 2010 B2
7656162 Vonderhaar et al. Feb 2010 B2
7657386 Thibedeau et al. Feb 2010 B2
7667437 Johnson et al. Feb 2010 B2
7679325 Seo Mar 2010 B2
7684908 Ogilvie et al. Mar 2010 B1
7688074 Cox et al. Mar 2010 B2
7698179 Leung et al. Apr 2010 B2
7705602 Bertness Apr 2010 B2
7706991 Bertness et al. Apr 2010 B2
7710119 Bertness May 2010 B2
7723993 Klang May 2010 B2
7728556 Yano et al. Jun 2010 B2
7728597 Bertness Jun 2010 B2
7743788 Schmitt Jun 2010 B2
7751953 Namaky Jul 2010 B2
7772850 Bertness Aug 2010 B2
7774130 Pepper Aug 2010 B2
7774151 Bertness Aug 2010 B2
7777612 Sampson et al. Aug 2010 B2
7791348 Brown et al. Sep 2010 B2
7808375 Bertness et al. Oct 2010 B2
7848857 Nasr et al. Dec 2010 B2
7883002 Jin et al. Feb 2011 B2
7902990 Delmonico et al. Mar 2011 B2
7924015 Bertness Apr 2011 B2
7940053 Brown et al. May 2011 B2
7990155 Henningson Aug 2011 B2
7999505 Bertness Aug 2011 B2
8024083 Chenn Sep 2011 B2
8164343 Bertness Apr 2012 B2
8222868 Buckner Jul 2012 B2
8306690 Bertness Nov 2012 B2
8449560 Roth May 2013 B2
8594957 Gauthier Nov 2013 B2
8827729 Gunreben Sep 2014 B2
9037394 Fernandes May 2015 B2
20010012738 Duperret et al. Aug 2001 A1
20010035737 Nakanishi et al. Nov 2001 A1
20010048215 Breed et al. Dec 2001 A1
20010048226 Nada Dec 2001 A1
20020003423 Bertness et al. Jan 2002 A1
20020004694 McLeod et al. Jan 2002 A1
20020007237 Phung et al. Jan 2002 A1
20020010558 Bertness et al. Jan 2002 A1
20020021135 Li et al. Feb 2002 A1
20020027346 Breed et al. Mar 2002 A1
20020030495 Kechmire Mar 2002 A1
20020036504 Troy et al. Mar 2002 A1
20020041175 Lauper et al. Apr 2002 A1
20020044050 Derbyshire et al. Apr 2002 A1
20020047711 Bertness et al. Apr 2002 A1
20020050163 Makhija et al. May 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020116140 Rider Aug 2002 A1
20020118111 Brown et al. Aug 2002 A1
20020121901 Hoffman Sep 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130665 Bertness et al. Sep 2002 A1
20020171428 Bertness Nov 2002 A1
20020176010 Wallach et al. Nov 2002 A1
20030006779 Youval Jan 2003 A1
20030009270 Breed Jan 2003 A1
20030017753 Palmisano et al. Jan 2003 A1
20030025481 Bertness Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030040873 Lesesky et al. Feb 2003 A1
20030060953 Chen Mar 2003 A1
20030078743 Bertness et al. Apr 2003 A1
20030088375 Bertness et al. May 2003 A1
20030124417 Bertness et al. Jul 2003 A1
20030128011 Bertness et al. Jul 2003 A1
20030128036 Henningson et al. Jul 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030169018 Berels et al. Sep 2003 A1
20030169019 Oosaki Sep 2003 A1
20030171111 Clark Sep 2003 A1
20030177417 Malhotra et al. Sep 2003 A1
20030184262 Makhija Oct 2003 A1
20030184306 Bertness et al. Oct 2003 A1
20030187556 Suzuki Oct 2003 A1
20030194672 Roberts et al. Oct 2003 A1
20030197512 Miller et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030214395 Flowerday et al. Nov 2003 A1
20030236656 Dougherty Dec 2003 A1
20040000590 Raichle et al. Jan 2004 A1
20040000891 Raichle et al. Jan 2004 A1
20040000893 Raichle et al. Jan 2004 A1
20040000913 Raichle et al. Jan 2004 A1
20040000915 Raichle et al. Jan 2004 A1
20040002824 Raichle et al. Jan 2004 A1
20040002825 Raichle et al. Jan 2004 A1
20040002836 Raichle et al. Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040036443 Bertness Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040044454 Ross et al. Mar 2004 A1
20040049361 Hamdan et al. Mar 2004 A1
20040051532 Smith et al. Mar 2004 A1
20040051533 Namaky Mar 2004 A1
20040051534 Kobayashi et al. Mar 2004 A1
20040054503 Namaky Mar 2004 A1
20040064225 Jammu et al. Apr 2004 A1
20040065489 Aberle Apr 2004 A1
20040088087 Fukushima et al. May 2004 A1
20040113588 Mikuriya et al. Jun 2004 A1
20040145342 Lyon Jul 2004 A1
20040164706 Osborne Aug 2004 A1
20040172177 Nagai et al. Sep 2004 A1
20040178185 Yoshikawa et al. Sep 2004 A1
20040189309 Bertness et al. Sep 2004 A1
20040199343 Cardinal et al. Oct 2004 A1
20040207367 Taniguchi et al. Oct 2004 A1
20040221641 Moritsugu Nov 2004 A1
20040227523 Namaky Nov 2004 A1
20040239332 Mackel et al. Dec 2004 A1
20040251876 Bertness Dec 2004 A1
20040257084 Restaino Dec 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050009122 Whelan et al. Jan 2005 A1
20050017726 Koran et al. Jan 2005 A1
20050017952 Hsi Jan 2005 A1
20050021197 Zimmerman Jan 2005 A1
20050021294 Trsar et al. Jan 2005 A1
20050025299 Tischer et al. Feb 2005 A1
20050043868 Mitcham Feb 2005 A1
20050057256 Bertness Mar 2005 A1
20050060070 Kapolka et al. Mar 2005 A1
20050073314 Bertness et al. Apr 2005 A1
20050076381 Gross Apr 2005 A1
20050096809 Skeen et al. May 2005 A1
20050102073 Ingram May 2005 A1
20050119809 Chen Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128902 Tsai Jun 2005 A1
20050133245 Katsuyama Jun 2005 A1
20050134282 Averbuch Jun 2005 A1
20050143882 Umezawa Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050162172 Bertness Jul 2005 A1
20050168226 Quint et al. Aug 2005 A1
20050173142 Cutler et al. Aug 2005 A1
20050182536 Doyle et al. Aug 2005 A1
20050212521 Bertness et al. Sep 2005 A1
20050213874 Kline Sep 2005 A1
20050218902 Restaino et al. Oct 2005 A1
20050231205 Bertness et al. Oct 2005 A1
20050254106 Silverbrook et al. Nov 2005 A9
20050256617 Cawthorne et al. Nov 2005 A1
20050258241 McNutt et al. Nov 2005 A1
20050269880 Konishi Dec 2005 A1
20050273218 Breed Dec 2005 A1
20060012330 Okumura et al. Jan 2006 A1
20060017447 Bertness Jan 2006 A1
20060026017 Walker Feb 2006 A1
20060030980 St. Denis Feb 2006 A1
20060043976 Gervais Mar 2006 A1
20060079203 Nicolini Apr 2006 A1
20060089767 Sowa Apr 2006 A1
20060095230 Grier et al. May 2006 A1
20060102397 Buck May 2006 A1
20060152224 Kim et al. Jul 2006 A1
20060155439 Slawinski Jul 2006 A1
20060161313 Rogers et al. Jul 2006 A1
20060161390 Namaky et al. Jul 2006 A1
20060217914 Bertness Sep 2006 A1
20060244457 Henningson et al. Nov 2006 A1
20060282323 Walker et al. Dec 2006 A1
20070005201 Chenn Jan 2007 A1
20070024460 Clark Feb 2007 A1
20070026916 Juds et al. Feb 2007 A1
20070046261 Porebski Mar 2007 A1
20070088472 Ganzhorn et al. Apr 2007 A1
20070108942 Johnson et al. May 2007 A1
20070159177 Bertness et al. Jul 2007 A1
20070182576 Proska et al. Aug 2007 A1
20070194791 Huang Aug 2007 A1
20070194793 Bertness Aug 2007 A1
20070205983 Naimo Sep 2007 A1
20070259256 Le Canut et al. Nov 2007 A1
20080036421 Seo Feb 2008 A1
20080059014 Nasr et al. Mar 2008 A1
20080064559 Cawthorne Mar 2008 A1
20080086246 Bolt et al. Apr 2008 A1
20080094068 Scott Apr 2008 A1
20080103656 Lipscomb May 2008 A1
20080169818 Lesesky et al. Jul 2008 A1
20080179122 Sugawara Jul 2008 A1
20080303528 Kim Dec 2008 A1
20080303529 Nakamura et al. Dec 2008 A1
20080315830 Bertness Dec 2008 A1
20090006476 Andreasen et al. Jan 2009 A1
20090024266 Bertness Jan 2009 A1
20090024419 McClellan Jan 2009 A1
20090085571 Bertness Apr 2009 A1
20090146800 Grimlund et al. Jun 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090203247 Fifelski Aug 2009 A1
20090247020 Gathman et al. Oct 2009 A1
20090265121 Rocci Oct 2009 A1
20090276115 Chen Nov 2009 A1
20100023198 Hamilton Jan 2010 A1
20100066283 Kitanaka Mar 2010 A1
20100145780 Nishikawa et al. Jun 2010 A1
20100214055 Fuji Aug 2010 A1
20100314950 Rutkowski et al. Dec 2010 A1
20110004427 Gorbold et al. Jan 2011 A1
20110015815 Bertness Jan 2011 A1
20110215767 Johnson et al. Sep 2011 A1
20110273181 Park et al. Nov 2011 A1
20120046824 Ruther et al. Feb 2012 A1
20120062237 Robinson Mar 2012 A1
20120074904 Rutkowski et al. Mar 2012 A1
20120116391 Houser May 2012 A1
20120249069 Ohtomo Oct 2012 A1
20120256494 Kesler Oct 2012 A1
20120256568 Lee Oct 2012 A1
20130158782 Bertness et al. Jun 2013 A1
20130311124 Van Bremen Nov 2013 A1
20140002094 Champlin Jan 2014 A1
Foreign Referenced Citations (73)
Number Date Country
2470964 Jan 2002 CN
201063352 May 2008 CN
29 26 716 Jan 1981 DE
196 38 324 Sep 1996 DE
10 2008 036 5 Feb 2010 DE
0 022 450 Jan 1981 EP
0 391 694 Apr 1990 EP
0 476 405 Sep 1991 EP
0 637 754 Feb 1995 EP
0 772 056 May 1997 EP
0 982 159 Mar 2000 EP
1 810 869 Nov 2004 EP
1 807 710 Jul 2007 EP
1 807 710 Jan 2010 EP
749 397 Dec 1997 FR
154 016 Nov 1920 GB
2 029 586 Mar 1980 GB
2 088 159 Jun 1982 GB
2 246 916 Oct 1990 GB
2 275 783 Jul 1994 GB
2 387 235 Oct 2003 GB
59-17892 Jan 1984 JP
59-17893 Jan 1984 JP
59017894 Jan 1984 JP
59215674 Dec 1984 JP
60225078 Nov 1985 JP
62-180284 Aug 1987 JP
63027776 Feb 1988 JP
03274479 Dec 1991 JP
03282276 Dec 1991 JP
4-8636 Jan 1992 JP
04095788 Mar 1992 JP
04131779 May 1992 JP
04372536 Dec 1992 JP
05211724 Aug 1993 JP
5216550 Aug 1993 JP
7-128414 May 1995 JP
09061505 Mar 1997 JP
10056744 Feb 1998 JP
10232273 Sep 1998 JP
11103503 Apr 1999 JP
11-150809 Jun 1999 JP
11-271409 Oct 1999 JP
2001057711 Feb 2001 JP
2003-346909 Dec 2003 JP
2006331976 Dec 2006 JP
2009-244166 Oct 2009 JP
2089015 Aug 1997 RU
WO 9322666 Nov 1993 WO
WO 9405069 Mar 1994 WO
WO 9601456 Jan 1996 WO
WO 9606747 Mar 1996 WO
WO 9628846 Sep 1996 WO
WO 9701103 Jan 1997 WO
WO 9744652 Nov 1997 WO
WO 9804910 Feb 1998 WO
9821132 May 1998 WO
WO 9858270 Dec 1998 WO
WO 9923738 May 1999 WO
WO 9956121 Nov 1999 WO
WO 0016083 Mar 2000 WO
WO 0062049 Oct 2000 WO
WO 0067359 Nov 2000 WO
WO 0159443 Feb 2001 WO
WO 0116614 Mar 2001 WO
WO 0116615 Mar 2001 WO
WO 0151947 Jul 2001 WO
WO 03047064 Jun 2003 WO
WO 03076960 Sep 2003 WO
WO 2004047215 Jun 2004 WO
WO 2010007681 Jan 2010 WO
WO 2011153419 Dec 2011 WO
WO 2012078921 Jun 2012 WO
Non-Patent Literature Citations (96)
Entry
Second Chinese Office Action for Chinese Patent Application No. 200810190887.X, dated Jan. 22, 2013, 11 pages.
“Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
“Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
“Determining The End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
“A Look at the Impedance of a Cell”, by S. Debardelaben, IEEE, 1988, pp. 394-397.
“The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
“A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State Ionics, 1986, pp. 136-140.
“Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”, by J. Macdonald et al., J. Electroanal, Chem., 1991, pp. 1-11.
Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., At&T Bell Laboratories, 1987 IEEE, 2477, pp. 128,131.
IEEE Recommended Practice for Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.
“Field and Laboratory Studies to assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
“JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
“Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5.
“A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941, pp. 253-258.
National Semiconductor Corporation, “High Q Notch Filter”, 3/69, Linear Brief 5, Mar. 1969.
Burr-Brown Corporation, “Design a 60 Hz Notch Filter with the UAF42”, 1/94, AB-071, 1994.
National Semiconductor Corporation, “LMF90-4th -Order Elliptic Notch Filter”, 12/94, RRD-B30M115, Dec. 1994.
“Alligator Clips with Wire Penetrators” J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.
“#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www.pcbcafe.corn, prior to Oct. 1, 2002.
“Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://wwwelexp.com/t—dc-dc.htm, prior to Oct. 1, 2002.
“DC-DC Converter Basics”, Power Designers, downloaded from http://www.powederdesigners.com/InfoWeb.design—center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US02/29461, filed Sep. 17, 2002 and mailed Jan. 3, 2003.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/07546, filed Mar. 13, 2003 and mailed Jul. 4, 2001.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/06577, filed Mar. 5, 2003 and mailed Jul. 24, 2003.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/07837, filed Mar. 14, 2003 and mailed Jul. 4, 2003.
“Improved Impedance Spectroscopy Technique for Status Determination of Production Li/SO2 Batteries” Terrill Atwater et al., pp. 10-113, (1992).
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/41561; Search Report completed Apr. 13, 2004, mailed May 6, 2004.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/27696, filed Sep. 4, 2003 and mailed Apr. 15, 2004.
“Programming Training Course, 62-000 Series Smart Engine Analyzer”, Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984).
“Operators Manual, Modular Computer Analyzer Model MCA 3000”, Sun Electric Corporation, Crystal Lake, Illinois pp. 1-1-14-13, (1991).
Supplementary European Search Report Communication for Appl. No. 99917402.2; Sep. 7, 2004.
“Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification”, Journal of Power Sources, pp. 69-84, (1997).
Notification of Transmittal of the International Search Report for PCT/US03/30707, filed Sep. 30, 2003 and mailed Nov. 24, 2004.
“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, pp. 59-69, (1998).
“Search Report Under Section 17” for Great Britain Application No. GB0421447.4, date of search Jan. 27, 2005, date of document Jan. 28, 2005.
“Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries”, by K.S. Champlin et al., Proceedings of 23rd International Teleco Conference (INTELEC), published Oct. 2001, IEE, pp. 433-440.
“Examination Report” from the UK Patent Office for App. No. 0417678.0; Jan. 24, 2005.
Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.
“Professional BCS System Analyzer Battery-Charger-Starting”, pp. 2-8, (2001).
Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.
“DSP Applications in Hybrid Electric Vehicle Powertrain”, Miller et al., Proceedings of the American Control Conference, Sand Diego, CA, Jun. 1999; 2 ppg.
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for PCT/US2008/008702 filed Jul. 2008; 15 pages.
“A Microprocessor-Based Control System for a Near-Term Electric Vehicle”, Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 1981; 0093-9994/81/1100-0626$00.75 © 1981 IEEE, 6 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/038279 filed May 27, 2011, date of mailing Sep. 16, 2011, 12 pages.
U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S. Pat. No. 7,089,127.
“Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health”, by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I-Conductance/Capacity Correlation Studies”, by D. Feder at al., Oct. 1992, pp. 1-15; (19 total pgs.).
“Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-of-Health in Electric Power Utility Applications”, by M. Hlavac et al., Apr. 1993, pp. 1-14; (19 total pgs.).
“Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health”, by S. McShane, Apr. 1993, pp. 1-9; (14 total pgs.).
“Condutance Monitoring of Recombination Lead Acid Batteries”, by B. Jones, May 1993, pp. 1-6; (11 total pgs.).
“Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods”, by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).
“Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries”, by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).
“Field and Laboratory Studies to Access the State-of-Health of Valve-Regulated Lead-Acid Battery Technologies Using Conductance Testing Part II-Further Conductance/Capacity Correlation Studies”, by M. Hlavac et al., Sep. 1993, pp. 1-9; (14 total pgs.).
“Field Experience of Testing VRLA Batteries by Measuring Conductance”, by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.).
“Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications”, by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).
“Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques”, by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).
“Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology”, by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention”, by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments”, by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.).
“Midpoint Conductance Technology Used in Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications”, by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.).
“Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies”, M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).
“A Fundamentally New Approach to Battery Performance Analysis Using DFRA™ /DTIS™ Technology”, by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).
“Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis”, by D. Cox et la., Mar. 2000, 6 pgs; (10 total pgs.).
Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pgs.
Examination Report under section 18(3) for corresponding Great Britain Application No. GB1000773.0, dated Feb. 6, 2012, 2 pages.
First Office Action (with English translation) for Chinese Application No. 200810190887.X, issued May 3, 2012, 12 pages.
Office Actions for corresponding U.S. Appl. No. 11/207,419, 55 pages.
Office Actions for corresponding U.S. Appl. No. 12/416,445, 23 pages.
Office Actions for corresponding U.S. Appl. No. 12/416,453, 26 pages.
Office Actions for corresponding U.S. Appl. No. 12/416,457, 22 pages.
Communication from GB1216105.5, dated Sep. 21, 2012, 4 pages.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/039043, dated Jul. 26, 2012, 9 pages.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/053886, dated Jul. 27, 2012, 11 pages.
“Field Evaluation of Honda's EV Plus Battery Packs”, by A. Paryani, IEEE AES Systems Magazine, Nov. 2000, pp. 21-24.
Search Report for PCT/US2011/047354, dated Nov. 11, 2011, 4 pages.
Written Opinion for PCT/US2011/047354, dated Nov. 11, 2011, 7 pages.
Office Action from U.S. Appl. No. 12/416,453, dated Jan. 14, 2013.
First Office Action (Notification of Reasons for Rejections) dated Dec. 3, 2013 in related Japanese patent application No. 2013-513370, 9 pgs. Including English Translation.
Official Action dated Jan. 22, 2014 in Korean patent application No. 10-2012-7033020, 2 pgs. including English Translation.
Official Action dated Feb. 20, 2014 in Korean patent application No. 10-2013-7004814, 6 pgs. including English Translation.
First Office Action for Chinese Patent Application No. 201180011597.4, dated May 6, 2014, 20 pages.
Office Action from Korean Application No. 10-2012-7033020, dated Jul. 29, 2014.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jul. 1, 2014.
Office Action for Chinese Patent Application No. 201180030045.8, dated Jul. 21, 2014.
Office Action for German Patent Application No. 1120111030643 dated Aug. 28, 2014.
Office Action from Japanese Patent Application No. 2013-513370, dated Aug. 5, 2014.
Office Action from Japanese Patent Application No. 2013-531839, dated Jul. 8, 2014.
Office Action for German Patent Application No. 103 32 625.1, dated Nov. 7, 2014, 14 pages.
Office Action from Chinese Patent Application No. 201180038844.X, dated Dec. 8, 2014.
Office Action from CN Application No. 201180011597.4, dated Jan. 6, 2015.
Office Action for Chinese Patent Application No. 201180030045.8, dated Mar. 24, 2015.
Office Action for Japanese Patent Application No. 2013-531839, dated Mar. 31, 2015.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2014/069661, dated Mar. 26, 2015.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jun. 8, 2015.
Office Action from Chinese Patent Application No. 201180011597.4 dated Jun. 3, 2015.
European Search Report from European Application No. EP 15151426.2, dated Jun. 1, 2015.
Related Publications (1)
Number Date Country
20120182132 A1 Jul 2012 US
Provisional Applications (1)
Number Date Country
60603078 Aug 2004 US
Continuation in Parts (6)
Number Date Country
Parent 12416457 Apr 2009 US
Child 13357306 US
Parent 11207419 Aug 2005 US
Child 12416457 US
Parent 13357306 US
Child 12416457 US
Parent 12416453 Apr 2009 US
Child 13357306 US
Parent 13357306 US
Child 13357306 US
Parent 12416445 Apr 2009 US
Child 13357306 US