The present disclosure relates generally to bypassing a vascular occlusion in a patient, and more particularly to an occlusion bypassing system having a puncturing mechanism with a sleeve and elastically deformed puncture wire within the sleeve having a piercing tip.
Thrombosis is the formation of a thrombus, or blood clot, within the vascular system of a patient. When attached to vessel walls, blood clots and other substances such as plaque or fat may reduce or block blood flow. Chronic total occlusion (CTO) is a complete blockage within the vascular system, commonly formed by fibrous calcified material. Blockage of blood flow by a CTO may prevent critical oxygen from reaching certain tissues. Regardless of the particular location within the vascular system, a CTO, if left untreated, may cause serious damage and, in some cases, may be life threatening.
A wide variety of techniques are available for treating blockage in the vasculature. Some percutaneous techniques include the use of pharmacological agents, to help dissolve the blockage material. Other percutaneous techniques may include the use of a wire guide and/or catheter to cross an occlusion and recanalize the vessel. Crossing a CTO using a wire guide and/or catheter may be difficult and, oftentimes, impossible, due to the hardness of the blockage material. During these recanalization procedures, it is common for the wire guide to be inadvertently advanced into the subintimal space of the vessel wall. Once the wire guide has entered the subintimal space, either inadvertently or intentionally, it may be possible to create a new lumen through the subintimal space that bypasses the clot, such as by performing an angioplasty procedure. However, it is often difficult to redirect the wire guide back into the true lumen of the vessel at a distal location relative to the occlusion.
An exemplary lumen re-entry device is described in U.S. Patent Application Publication No. 2007/0219464 to Davis et al. Specifically, the Davis et al. reference teaches a steerable guide wire having a sharpened re-entry tip. The guide wire comprises a hypotube having a helical coil attached to and extending from a distal end of the hypotube. A retaining ribbon is connected to the distal end of the hypotube and is also connected to the sharpened re-entry tip. A deflection member is slidably disposed within the hypotube and has a distal end connected to the sharpened re-entry tip such that distal movement of the deflection member deflects the sharpened re-entry tip in one direction, while proximal movement of the deflection member deflects the sharpened re-entry tip in an opposite direction. While the lumen re-entry device of Davis et al. might offer certain advantages, there is always room for improvement.
In one aspect, a system for bypassing a vascular occlusion in a patient includes a catheter having an elongate catheter body having formed therein a longitudinally extending wire guide lumen and a longitudinally extending second lumen. The system further includes a puncturing mechanism having a sleeve slidable within the second lumen, and a puncture wire positioned within the sleeve and including a proximal segment defining a longitudinal axis and a distal segment having a piercing tip. The puncture wire is elastically deformable between an access configuration where the distal segment is straightened and the piercing tip is positioned closer to the longitudinal axis, and a deployed configuration where the distal segment is curved and the piercing tip is positioned further from the longitudinal axis. The puncture wire further has a shape memory bias and is at a retracted position where the sleeve holds the puncture wire in opposition to the shape memory bias in the access configuration. The puncture wire is slidable to an advanced position where the distal segment projects out of the sleeve and the shape memory bias positions the puncture wire in the deployed configuration.
In another aspect, a puncturing mechanism for a vascular occlusion bypassing system includes a sleeve having a proximal end, a distal end, a cylindrical outer surface, and a cylindrical inner surface coaxial with the cylindrical outer surface and defining a longitudinally extending central lumen opening at each of the proximal and distal ends. The puncturing mechanism further includes a puncture wire positioned within the central lumen and including a proximal segment defining a longitudinal axis and a distal segment having a piercing tip, for forming an opening between a subintimal space and a vascular lumen in a patient. The puncture wire has a shape memory bias and is elastically deformable between an access configuration where the distal segment is straightened and the piercing tip is positioned closer to the longitudinal axis, and a deployed configuration where the distal segment is curved and the piercing tip is positioned further from the longitudinal axis. The puncture wire is at a retracted position where the sleeve contacts the distal segment and holds the puncture wire in opposition to the shape memory bias in the access configuration, and is slidable within the sleeve to an advanced position where the distal segment projects out of the sleeve and the shape memory bias positions the puncture wire in the deployed configuration.
In still another aspect, a method of bypassing a vascular occlusion in a patient includes advancing a puncturing mechanism having a sleeve and a puncture wire within the sleeve through a subintimal space about a vascular occlusion in a patient, and holding the puncture wire during the advancement in an access configuration where a distal segment of the puncture wire is straightened by the sleeve in opposition to a shape memory bias of the puncture wire. The method further includes sliding the puncture wire through the sleeve such that the distal segment projects out of the sleeve and is curved via the shape memory bias to position the puncture wire in a deployed configuration. The method further includes forming an opening between the subintimal space and a vascular lumen in the patient via a piercing tip of the distal segment in the deployed configuration of the puncture wire, and advancing the sleeve through the opening such that the sleeve forms a conduit extending through the subintimal space from a first side of the vascular occlusion to a second side.
Referring to
Referring also now to
As noted above, sleeve 42 is slidable within second lumen 18, meaning that the assembly of sleeve 42 and puncture wire 44 forming puncturing mechanism 40 can be slid out of second lumen 18 as an assembly. Alternatively, puncture wire 44 can be slid out of sleeve 42 without extending sleeve 42 out of second lumen 18. Embodiments are contemplated where a clinician can move puncture wire and sleeve 42 together out of second lumen 18, then advance puncture wire out of sleeve 42 to puncture tissue, and then further advance sleeve 42 to re-sheath puncture wire 44. Puncture wire 44 might then be withdrawn while holding sleeve 42 stationary, and swapped with a softer wire guide that can be used for the guiding and placement of other interventional devices such as a balloon for restoring blood flow through a vessel. These and other capabilities of the present system will be understood by way of the example implementations discussed below.
The ability to advance sleeve 42 and puncture wire 44 together, or independently, is facilitated at least in part through the use of a locking mechanism 63 coupled to sleeve 42 and puncture wire 44. In a practical implementation strategy, locking mechanism 63 has an unlocked configuration where sleeve 42 and puncture wire 44 are slidable relative one another, and a locked configuration where sleeve 42 and puncture wire 44 are locked against sliding relative one another. Mechanism 63 may include a base 64 attached, for example, to sleeve 42, and a sliding tab 66 or the like slidably coupled to base 64. In one example strategy, tab 66 is slidable between a first position at which it does not contact puncture wire 44 to a second position at which tab 66 contacts and frictionally engages with puncture wire 44, allowing a clinician to alternately unlock and lock mechanism 63 as desired. In other instances, mechanism 63 might include a lever, a button, or any other suitable device that can be selectively actuated to alternate puncture wire 44 and sleeve 42 between a state where they can be slid relative one another and a state where they are locked against sliding relative one another. Base 64 may be attached to a proximal sleeve end 54, and puncture wire 44 may be slidable out of distal sleeve end 56.
In a further practical implementation strategy, sleeve 42 may include a skeleton 58 extending circumferentially around a central lumen 60. Puncture wire 44 may be slidable within central lumen 60 between its refracted position where sleeve 42 holds puncture wire 44 in opposition to its shape memory bias in the access configuration, and its advanced position where distal segment 50 projects out of sleeve 42 and the shape memory bias positions puncture wire 44 in the deployed configuration. In the illustrated embodiment, skeleton 58 has the form of a helical wire, forming a plurality of turns about longitudinal axis 48 of puncture wire 44 when puncture wire 44 is positioned therein. The turns formed by skeleton 58 may be relatively denser at the proximal and distal sleeve ends 54 and 56, and relatively less dense between ends 54 and 56. Sleeve 42 may further include a tubular jacket 62 formed of a polymeric material, such as a fluoropolymer material, attached to helical wire 58 which may be metallic. Tubular jacket 62 may encase helical wire 58, such that sleeve 42 has both sufficient stiffness to oppose the shape memory bias of puncture wire 44 and straighten puncture wire 44 when refracted, and also sufficient column strength to enable puncturing mechanism 44 to be pushed out of second lumen 18, or to enable catheter 12 to be retracted while puncturing mechanism 40 is held at a fixed position. Jacket 62 and skeleton/wire 58 may thus work together to inhibit curving of puncture wire 44 and enable manipulation and adjustment of puncturing mechanism 40 within a patient.
It may further be noted from
Referring to the drawings generally, but in particular now to
With sleeve 42 extending through subintimal space 116 from the first to second sides of vascular occlusion 122, puncture wire 44 may be withdrawn from sleeve 42 and withdrawn from the patient altogether. Catheter 12 may also be withdrawn, potentially such that no part of system 10 is positioned in the patient apart from sleeve 42. Typically but not necessarily prior to withdrawing catheter 12, a substitute wire guide 80 as shown in
Those skilled in the art will appreciate that the techniques depicted in
The present description is for illustrative purposes only, and should not be construed to narrow the breadth of the present disclosure in any way. Thus, those skilled in the art will appreciate that various modifications might be made to the presently disclosed embodiments without departing from the full and fair scope and spirit of the present disclosure. Other aspects, features and advantages will be apparent upon an examination of the attached drawings and appended claims.
Number | Date | Country | |
---|---|---|---|
61920121 | Dec 2013 | US |