This disclosure relates generally to inkjet printers, and more particularly, to maintenance systems for cleaning printheads in inkjet printers.
Inkjet printers have one or more printheads that eject drops of liquid material, referred to generally as ink, onto a substrate or previously ejected drops of material. Each printhead includes a plurality of inkjets typically arranged in an array. Each inkjet has a nozzle that communicates with an opening in a faceplate of the printhead to enable one or more drops of material to be ejected from the inkjet and through the opening with which the inkjet nozzle communicates in the faceplate. The inkjets can be implemented with a variety of different configurations known to those skilled in the art. Some well-known configurations use piezoelectric and thermal ejectors in the inkjets.
Some of the ink ejected from the inkjets adheres to the faceplate and can collect dust and other debris. If the ink and debris are not removed from the faceplate, then the residual ink and debris may block one or more openings in the faceplate. Printhead cleaning is typically performed within a maintenance station mounted within the printer chassis so the printhead and maintenance station can be moved relative to one another for cleaning. Most maintenance stations include wipers that move across the faceplates of the printheads to remove residual ink and debris that have collected on the faceplates. The wipers are positioned to direct the residual ink and debris into a receptacle for collection. The receptacle is removed and cleaned from time to time.
The wipers and the components that support and maneuver the wipers also collect residual ink and debris. Therefore, the wipers and related components require cleaning as well. Technicians typically perform this cleaning daily and the results can vary from technician to technician. Efficiently cleaning the wipers and related components without operator intervention or further contaminating other components in the printer is beneficial in inkjet printers.
A cleaning system that enables efficient cleaning of the components used to clean printheads in an inkjet printer includes a pair of parallel members, at least two cross-members that intersect the pair of parallel members to form a frame, an actuator configured with a bi-directionally rotating output shaft, a shaft operatively connected to the rotating output shaft of the actuator to rotate with the output shaft when it rotates, a member having a plurality of openings and the member being pneumatically connected to a fluid source to enable a fluid from the fluid source to flow to the member and egress through the openings, the member being parallel to the at least two cross-members, and at least one cord having a first end and a second end, the first end and the second end being wound around the shaft in opposite directions and the at least one cord being operatively connected to the member to enable the actuator to rotate the shaft and move the member from a first position at one end of the pair of parallel members to a second position at another end of the pair of parallel members as the fluid egresses through the openings in the member and to return the member to the first position.
The foregoing aspects and other features of a cleaning system that efficiently cleans components used to clean printheads in the printer are explained in the following description, taken in connection with the accompanying drawings.
For a general understanding of the present embodiments, reference is made to the drawings. In the drawings, like reference numerals have been used throughout to designate like elements.
With further reference to
With reference to
Each mechanical link 408 works around two axes, one of which is fixed and is defined by the cross member around which the link is mounted and the other one rotates around the cross member and is defined by the shaft 420. The pulleys 412 guide the cord 220 and ensure reduced friction when the cord is moving because shaft 116 is rotating. The cord 220 is routed around the pulleys 412 to ensure tension stability as the length of the path of the cord varies when the rinsing bar 112 leaves its position near the actuator 120 and moves along the guide rails 104. As the cord path length decreases, torsion springs 416 move the rotating shaft 420 downwards to compensate for the cord path length variation and to maintain tension in the cord. As the cord path length increases, torsion springs 416 are compressed and the rotating shaft 420 moves upwards to compensate for the cord path length variation and to limit the tension increase in the cord. The tensioning mechanisms 148 also enable nominal tension of the cords 220 and 224 to be adjusted.
In operation, the printhead cleaning system is moved from time to time so the rinsing bar 112 of the cleaning system 100 can pass over the printhead cleaning system. Once in place, the controller 140 operates the actuator 120 to rotate in the counterclockwise direction to unwind the portion of the cords 220 and 224 wrapped in the clockwise direction around the ribbed nuts 216 at the ends of the shaft 116. As this unwinding of the cords occurs, the other ends of the cords 220 and 224 receive a portion of the cords and wrap them around the other portion of the ribbed nuts on the ends of the shaft at the second ends of the cords. The tensioning mechanisms 148 keep the cords taut as this unwinding and winding of the cords occurs and the wheels 156 of the rinsing member 112 roll along the pair of guide rails 104. The controller 140 also operates the pump 136 to move cleaning fluid from the fluid source 132 into the passageway 208 of the shaft 116 and tube 124 to enter the rinsing member 112. The pressure of the flowing cleaning fluid enables the openings 228 in the rinsing member to release the cleaning fluid onto the components of the printhead cleaning system and the receptacle begins to receive the fluid as it drips off the components. When the controller 140 receives a signal from the sensor 152 that the rinsing member 112 has reached the distal end of the frame, the controller 140 operates the actuator 120 to reverse the direction of its output shaft rotation. This clockwise rotation unwinds the portion of the cords 220 and 224 wrapped in the counterclockwise direction around the ribbed nuts 216 at the ends of the shaft 116. As this unwinding of the cords occurs, the other ends of the cords 220 and 224 receive a portion of the cords and wrap them around the ribbed nuts 216 on the ends of the shaft 116 at the first ends of the cords. The tensioning mechanisms 148 keep the cords taut as this unwinding and winding of the cords occurs and the wheels 156 of the rinsing member 112 roll along the pair of guide rails 104 to return the rinsing member 112 to the first position. When the controller 140 detects that the signal from the sensor 160 indicates the rinsing member 112 has reached its first position, it deactivates the actuator 120 and the pump 136. The printhead cleaning system can be returned to a position where it can be used to clean the faceplates of printheads.
It will be appreciated that variations of the above-disclosed apparatus and other features, and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art, which are also intended to be encompassed by the following claims.
This application claims priority from pending U.S. patent application Ser. No. 15/228,431, which is entitled “Improved System For Cleaning Components Used To Clean Inkjet Printheads In Inkjet Printers” and was filed on Aug. 4, 2016, and which claims priority to U.S. Provisional Patent Application Ser. No. 62/369,892, which is entitled “Improved System For Cleaning Components Used To Clean Inkjet Printheads In Inkjet Printers” and was filed on Aug. 2, 2016.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3706109 | Bevier | Dec 1972 | A |
| 4123301 | Pope | Oct 1978 | A |
| 5419347 | Carruth | May 1995 | A |
| 5891001 | Carnes et al. | Apr 1999 | A |
| 6291146 | Chang et al. | Sep 2001 | B1 |
| 6343850 | Domagall | Feb 2002 | B1 |
| 6810889 | Flaxman | Nov 2004 | B2 |
| 7210761 | Mott et al. | May 2007 | B2 |
| 7313165 | Kim et al. | Dec 2007 | B2 |
| 7815282 | Hibbard et al. | Oct 2010 | B2 |
| 8777214 | Naoi | Jul 2014 | B2 |
| 10046566 | Raoust | Aug 2018 | B2 |
| 20020148490 | Flaxman | Oct 2002 | A1 |
| 20030063150 | Saito | Apr 2003 | A1 |
| 20160031221 | Fernando | Feb 2016 | A1 |
| Number | Date | Country | |
|---|---|---|---|
| 20180319167 A1 | Nov 2018 | US |
| Number | Date | Country | |
|---|---|---|---|
| 62369892 | Aug 2016 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 15228431 | Aug 2016 | US |
| Child | 16037096 | US |