1. Field of Invention
The present invention relates to an accident detection and prevention system, and particularly relates to a system that sends a message to designated parties when a certain speed has been detected and when an accident has been detected with a resulting speed below a certain threshold. The present invention also relates to a method that may implement the system which notifies parties when a certain speed has been exceeded and when an accident occurs with a resulting speed below a certain level.
2. Related Art
In many locations, the number of vehicle accidents increases every year. The accidents are due to any number of factors, including, but not limited to: vehicle malfunction, road maintenance, and human error. Since the reasons for an accident vary to such a large extent, the community has found it difficult to develop a standard system to reduce or prevent all forms of accidents. Human error accounts for the vast majority of accidents. Therefore, it would be favorable to develop ways to reduce or prevent such errors.
Human error can be classified in two forms. The first form involves errors that occur before driving. Such errors include negligence, poor maintenance, and lack of driving skills. The second form of human error involves errors that occur during driving. These errors include, but are not limited to, not wearing seat belts, speeding, inattention, alcohol, drugs, and utilizing mobile devices. The human errors from the second category often results in more damaging accidents.
When an accident occurs, emergency services are not automatically notified. This delays typically results in increased severity of the injury and lessens the chance of recovery. As such, it is desirable to implement a system that informs emergency responders of the accident. It is further desirable to inform emergency services of the type of error and the potential severity of the error.
There have been some attempts to develop a system which helps solve this problem, though they have numerous shortcomings. One such system was proposed by Albert Montague (U.S. Pat. No. 6,642,844). The system uses a global positioning system (GPS) to determine the location of a vehicle in need. The location is used to route the distress call, via a mobile telephone, to the nearest emergency responder. The emergency responder is chosen by a fleet management system. If the nearest responder does not reply within a fixed amount of time, the call will automatically be routed to the next nearest responder. A potential draw back to this system is that it relies entirely on the mobile service in the area of the accident and the location of the emergency responder. If the accident occurs in a remote location without adequate cellular service, the system will not function. Okada (U.S. Pat. No. 6,166,656) claims to improve the Montague system by including an accident detection means, a vehicle location estimation system, and an external communication means of notifying the nearest emergency service provider. Despite these potential improvements, the system would most likely fail in remote areas.
In one aspect, a vehicle notification and prevention device is provided in the present invention, and the device comprises a microcontroller, a nock sensor electrically connected to the microcontroller, a speed selection box electrically connected between the microcontroller, a modem electrically connected to the microcontroller, and a system reset button electrically connected to the microcontroller. The speed selection box assists in determining the speed of the vehicle. The speed can be measured by means such as GPS or engine pulses. A GPS may also be added to provide positioning information. The system may further comprise an alarm, such as an LED.
In another aspect, a method is implemented using the above device according to the present invention. A modem, such as a GSM modem, is initialized. The speed of the vehicle is also measured. An accident takes place during the method. If an accident has occurred, then a message will be sent. If an accident has occurred and a message has been sent, then the system will wait for the rest. The system may also send a message if a certain predetermined speed is exceeded.
In yet another aspect, a GSM modem is initialized. A speed measurement is taken to determine if the vehicle exceeds a third predefined. A determination is made to discover the presence of an accident. If an accident has occurred, the speed needs to be remeasured. If the speed is above a certain limit, then a message is send and the system waits for the rest. If the speed is below a certain limit, a message will be sent and an alarm will be activated. The system will then wait for reset.
The features of the invention believed to be novel are set forth with particularity in the appended claims. The invention itself, however, may be best understood by reference to the following detailed description of the invention, which describes an exemplary embodiment of the invention, taken in conjunction with the accompanying drawings, in which:
In cooperation with the attached drawings, the technical contents and detailed description of the present invention are described thereinafter according to a preferable embodiment, being not used to limit its executing scope. Any equivalent variation and modification made according to appended claims is covered by the claims claimed by the present invention.
A speed selection box 50 is electrically connected to the PIC microcontroller 10 and the nock sensor 40. The speed selection box 50 contains a plurality of speed selection units 51, 53, 55. It is preferable that the system contain at least three speed selection units 51, 53, 55. The speed selection units 51, 53, 55 allow a user to select a speed with the system is programmed to monitor the speed. The speed selection units 51, 53, 55 are depicted as switches for convenience and ease of understanding. It should be noted that these speed selection units 51, 53, 55 are not actual switches. They represent the various voltage outputs of the corresponding voltage regulators, described below. The speed selection box 50 operates under Ohm's law. The current of the system depends on the resistance values. As the speed of the vehicle changes, the resistance within the circuit will change.
In
AT commands for GSM/GPRS wireless modems are several. In particular this section describes the AT-command based messages exchanged between a vehicle that commit accidents and rescue/emergency units. Table 1 below contains some information about commands that will be used by the proposed system.
In this embodiment, after the initialization step(s), the speed is measured (step 20). The speed will be placed into three categories. The first category is below a first predetermined speed, for example 50 Km/h. The second category is above the first predetermined speed and below a second predetermined speed, for example above 50 Km/h and below 119 Km/h. The third category is above a third predetermined speed, for example 120 Km/h. Step 30 determines if the measured speed falls within the third category. If so, then a message is sent in step 35. The message sent may be a text message sent via the GSM modem. The message contains the information that the speed has exceeded the third predetermined speed.
Step 40 detects if an accident has occurred. Detection means can be any means which may detect that an accident has occurred. For example, a crush sensor may be implemented to show an accident has occurred. During the accident detection step, the system will determine if the speed is outside the first category (step 60) and if the accident occurred (step 50). If no accident is detected, the system is reset. If an accident occurs and the speed falls within the first category, then an alarm will be activated (step 63). An example of the type of alarm that may be used is an LED. A further example of the alarm is a red LED. After the alarm is sent, the system will wait for reset (step 66). Reset can occur automatically or by physical action of a user. If the speed falls within a category other than the first category and an accident is detected, a message will be sent (step 70). The message can be sent via text message over the GSM modem. After sending the message (step 70), the alarm will be activated (step 80). The alarm can be an LED, for example. The message sent in step 70 includes information indicating that an accident has occurred and the speed category at the time of accident.
If the GPS unit has been included within the system, then the message may also contain the coordinates of the accident site. In this embodiment, the PIC microcontroller 10 would detect the accident and send a special AT command to the GPS module. This command would cause a reading of the GPS coordinates and relay it to the PIC microcontroller 10. The PIC microcontroller 10 would then send include the coordinates in the message and relay them to rescue staff. The GPS module could also be used to determine the speed of the vehicle, which could then be relayed to the rescue staff.
While the invention has been described according to what is presently considered to be the most practical and preferred embodiments, it must be understood that the invention is not limited to the disclosed embodiments. Those ordinarily skilled in the art will understand that various modifications and equivalent structures and functions may be made without departing from the scope of the invention as defined in the claims. Therefore, the invention, as defined in the claims, must be accorded the broadest possible interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of the filing date of provisional application number 61,538,862, filed on Sep. 24, 2011. The contents of the provisional application are incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61538862 | Sep 2011 | US |