System for concentrating magnetic flux of a multi-pole magnetic structure

Information

  • Patent Grant
  • 8937521
  • Patent Number
    8,937,521
  • Date Filed
    Wednesday, December 11, 2013
    11 years ago
  • Date Issued
    Tuesday, January 20, 2015
    10 years ago
Abstract
An improved system for concentrating magnetic flux of a multi-pole magnetic structure at the surface of a ferromagnetic target uses pole pieces having a magnet-to-pole piece interface with a first area and a pole piece-to-target interface with a second area substantially smaller than the first area, where the target can be a ferromagnetic material or a complementary pole pieces. The multi-pole magnetic structure can be a coded magnetic structure or an alternating polarity structure comprising two polarity directions, or can be a hybrid structure comprising more than two polarity directions. A magnetic structure can be made up of discrete magnets or can be a printed magnetic structure.
Description
FIELD OF THE INVENTION

The present invention relates generally to a system for concentrating magnetic flux of a multi-pole magnetic structure. More particularly, the present invention relates to a system for concentrating magnetic flux of a multi-pole magnetic structure using pole pieces having a magnet-to-pole piece interface with a first area and a pole piece-to-target interface with a second area substantially smaller than the first area, where the target can be a ferromagnetic material or complementary pole pieces.


SUMMARY OF THE INVENTION

One embodiment of the invention includes a system for concentrating magnetic flux including a multi-pole magnetic structure comprising one or more pieces of a magnetizable material having a plurality of polarity regions for providing a magnetic flux, the magnetizable material having a first saturation flux density, the plurality of polarity regions being magnetized in a plurality of magnetization directions and a plurality of pole pieces of a ferromagnetic material for integrating the magnetic flux across the plurality of polarity regions and directing the magnetic flux at right angles to at least one target, the ferromagnetic material having a second saturation flux density, each pole piece of the plurality of pole pieces having a magnet-to-pole piece interface with a corresponding polarity region and a pole piece-to-target interface with the at least one target, and having an amount of the ferromagnetic material sufficient to achieve the second saturation flux density at the pole piece-to-target interface when in a closed magnetic circuit, the magnet-to-pole piece interface having a first area, the pole piece-to-target interface having a second area, the magnetic flux being routed into the pole piece via the magnet-to-pole interface and out of the pole piece via the pole piece-to-target interface, the routing of said magnetic flux through the pole piece resulting in an amount of concentration of the magnetic flux at the pole piece-to-target interface corresponding to the ratio of the first area divided by the second area, the amount of concentration of said magnetic flux corresponding to a maximum force density.


The polarity regions can be separate magnets, printed magnetic regions on a single piece of magnetizable material, or a combination thereof.


Printed magnetic regions can be stripes, which can be groups of printed maxels. Printed magnetic regions can be separated by non-magnetized regions.


The polarity regions can have a substantially uniformly alternating polarity pattern.


The polarity regions can have a polarity pattern in accordance with a code having a code length greater than 2 such as a Barker code.


The target can be a ferromagnetic material and can be a complementary pole piece.


The system may also include a shunt plate for producing a magnetic flux circuit between at least two polarity regions of said plurality of polarity regions.


Each of the plurality of polarity regions can have one of a first magnetization direction or a second magnetization direction that is opposite to said first magnetization direction.


Each of the plurality of polarity regions can have one of a first magnetization direction, a second magnetization direction that is opposite to said first magnetization direction, a third magnetization direction that is perpendicular to said first magnetization direction, or a fourth magnetization direction that is opposite to said third magnetization direction.


The thickness of the one or more pieces of magnetizable material can be sufficient to just provide the magnetic flux having the first flux density at the magnet-to-pole interface as required to achieve the maximum force density at the pole piece-to-target interface.


The length of at least one pole piece of the plurality of pole pieces can be substantially equal to a length of at least one polarity region of the plurality of polarity regions.


The length of at least one pole piece of the plurality of pole pieces can be less than a length of at least one polarity region of the plurality of polarity regions.


The length of at least one pole piece of the plurality of pole pieces can be greater than a length of at least one polarity region of the plurality of polarity regions.


At least one pole piece of the plurality of pole pieces and the at least one target can have a male-female type interface.


At least one pole piece of the plurality of pole pieces can be tapered.





BRIEF DESCRIPTION OF THE FIGURES

The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.



FIG. 1A depicts an exemplary magnetic field of a magnet.



FIG. 1B depicts the magnet of FIG. 1A with a pole piece on one side.



FIG. 1C depicts the magnet of FIG. 1A having pole pieces on opposite sides of the magnet.



FIGS. 2A and 2B depict portions of exemplary magnetic fields between two adjacent magnets having an opposite polarity relationship and pole pieces on one side of each magnet.



FIGS. 3A and 3B depict portions of exemplary magnetic fields between two adjacent magnets having an opposite polarity relationship and pole pieces on opposite sides of each magnet.



FIG. 4A depicts an exemplary magnetic structure comprising two spaced magnets having an opposite (or alternating) polarity relationship attached by a shunt plate and attached to a target such as a piece of iron.



FIG. 4B depicts an exemplary magnetic flux circuit created by the shunt plate and the target.



FIG. 4C depicts an exemplary magnetic structure comprising four magnets having an alternating polarity relationship having a shunt plate and attached to a target.



FIG. 4D depicts an oblique projection of the magnetic structure of FIG. 4C approaching the target.



FIG. 5A depicts an exemplary flux concentrator device in accordance with one embodiment of the present invention.



FIG. 5B depicts an exemplary magnetic flux circuit produced using a shunt plate and one side of the magnets and a target that spans two pole pieces on the opposite side of the magnets.



FIG. 5C depicts three exemplary magnetic flux circuits produced by the exemplary flux concentrator device of FIG. 5A and a target.



FIG. 6A shows an exemplary flux concentrator device similar to the device of FIG. 5A except the pole pieces extend both above and below the magnetic structure.



FIG. 6B shows an exemplary flux concentrator device similar to the device of FIG. 5A except the pole pieces are the full length of the magnets making of the magnetic structure and do not extend above or below the magnetic structure.



FIG. 6C shows an exemplary flux concentrator device similar to the device of FIG. 5A except the pole pieces are shorter than the magnets of the magnetic structure where the pole pieces are configured to accept targets at the top of the device.



FIG. 6D shows an exemplary flux concentrator device similar to the device of FIG. 5A except the pole pieces are shorter than the magnets of the magnetic structure where the pole pieces are configured to accept targets at the top and bottom of the device.



FIG. 6E depicts additional pole pieces having been added to the upper portions of the magnets in the device of FIG. 6C in order to provide protection to the surfaces of the magnets.



FIGS. 7A-7E depict various exemplary flux concentrator devices having pole pieces on both sides of the magnetic structures.



FIG. 8A depicts an exemplary flux concentrating device comprising three magnetic structures like those of FIG. 7A except the magnets in the middle structure are each rotated 180° compared to the magnets in the two outer most structures.



FIG. 8B depicts an exemplary flux concentrating device like that of FIG. 8A except the pole pieces in the inside of the device are configured to accept targets the recess into the device.



FIGS. 9A-9G depict various exemplary male-female type interfaces.



FIG. 10A depicts an exemplary flux concentrator device like that shown previously in FIG. 5A, where the magnetic structure has a polarity pattern in accordance with a Barker 4 code.



FIG. 10B depicts another exemplary flux concentrator device like that of FIG. 10A, where the magnetic structure has a polarity pattern that is complementary to the magnetic structure of FIG. 10A.



FIGS. 11A and 11B depict complementary Barker-4 coded flux concentrator devices that like those of FIGS. 10A and 10B.



FIG. 12 depicts four Barker-4 coded flux concentrator devices oriented in an array.



FIGS. 13A and 13B depict two variations of self-complementary Barker4-2 coded flux concentrator devices.



FIG. 14 depicts exemplary tapered pole pieces.



FIG. 15A-15D depict and exemplary printed magnetic structure comprises alternating polarity spaced maxel stripes.



FIG. 16A depicts an oblique view of an exemplary prior art Halbach array.



FIG. 16B depicts a top down view of the same exemplary Halbach array of FIG. 16A.



FIGS. 17A and 17B depict side and oblique views of an exemplary hybrid magnet-pole piece structure in accordance with one aspect of the invention.



FIG. 17C depicts a target on top of the exemplary hybrid magnet-pole piece structure of FIGS. 17A and 17B where flux lines are shown moving in a clockwise direction.



FIG. 17D depicts a target on bottom of the exemplary hybrid magnet-pole piece structure of FIGS. 17A and 17B where flux lines are shown moving in a counter-clockwise direction.



FIG. 17E depicts separated complementary three magnet-two pole piece arrays.



FIG. 17F depicts the complementary arrays of FIG. 17E in contact.



FIG. 17G depicts an exemplary lateral magnet hybrid structure.



FIG. 17H depicts the exemplary lateral magnet hybrid structure of FIG. 17G with a target attached on a first side such that flux lines move in a clockwise manner.



FIG. 17I depicts the exemplary lateral magnet hybrid structure of FIG. 17G with a target attached on a second side such that flux lines move in a counter-clockwise manner.



FIG. 17J depicts separated complementary lateral magnet hybrid structures like depicted in FIG. 17G.



FIG. 17K depicts complementary lateral magnet hybrid structures like depicted in FIG. 17G in contact.



FIGS. 18A and 18B depict a prior art magnet structure where the magnets in the four corners are magnetized vertically and the side magnets between the corner magnets are magnetized horizontally.



FIGS. 19A and 19B depict a four magnet-four pole piece hybrid structure.



FIGS. 19C and 19D depict magnetic circuits produced by placing a target on the top and on the bottom of hybrid structures of FIGS. 19A and 19B.



FIGS. 19L and 19M depict lateral magnet hybrid structures that are similar to the hybrid structures of FIGS. 19A and 19B.



FIG. 19E depicts a twelve magnet-four pole piece hybrid structure that corresponds to a two-dimensional version of hybrid structure of FIGS. 17A-17F.



FIG. 19F depicts a twelve lateral magnet-four pole piece hybrid structure that corresponds to a two-dimensional version of the lateral magnet hybrid structure of FIGS. 17G-17K.



FIG. 19G depicts use of beveled magnets in a hybrid structure similar to the hybrid structure of FIG. 19E.



FIG. 19H depicts use of different sized magnets in one dimension versus another dimension in a hybrid structure similar to the hybrid structures of FIGS. 19E and 19G.



FIGS. 19I-19K depict movement of the rows of magnets versus the pole pieces and vertical magnets so as to control the flux that is available at the ends of the pole pieces.



FIG. 20 depicts a prior art magnetic structure that directs flux to the top of the structure.



FIGS. 21A and 21B depict a hybrid structure and a lateral magnet hybrid structure each having a pole piece surrounded by eight magnets in the same magnet pattern as the magnetic structure of FIG. 20.



FIG. 22A depicts an exemplary hybrid rotor in accordance with the invention.



FIG. 22B provides an enlarged segment of the rotor of FIG. 22A.



FIGS. 22C and 22D depict exemplary stator coils.



FIG. 22E depicts a first exemplary hybrid rotor and stator coil arrangement.



FIG. 22F depicts a second exemplary hybrid rotor and stator coil arrangement



FIG. 22G depicts a third exemplary hybrid rotor and stator coil arrangement.



FIG. 22H depicts a fourth exemplary hybrid rotor and stator coil arrangement.



FIG. 22I depicts an exemplary saddle core type stator-rotor interface.



FIG. 22J depicts a fifth exemplary hybrid rotor and stator coil arrangement.



FIG. 23A-C depict various views of an exemplary metal separator lateral magnet hybrid structure.



FIGS. 24A and 24C depict assemblies having magnets arranged in accordance with complementary cyclic Barker 4 codes.



FIGS. 25A and 25B depict cyclic lateral magnet assemblies similar to those of FIGS. 24A-24C except lateral magnets are combined with conventional magnets.



FIGS. 26A and 26B depict exemplary cyclic lateral magnet assemblies similar to those of FIGS. 25A and 25B where the individual conventional magnets are each replaced with four conventional magnets having polarities in accordance with a cyclic Barker 4 code.





DETAILED DESCRIPTION OF THE INVENTION

The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.


Certain described embodiments may relate, by way of example but not limitation, to systems and/or apparatuses comprising magnetic structures, magnetic and non-magnetic materials, methods for using magnetic structures, magnetic structures having magnetic elements produced via magnetic printing, magnetic structures comprising arrays of discrete magnetic elements, combinations thereof, and so forth. Example realizations for such embodiments may be facilitated, at least in part, by the use of an emerging, revolutionary technology that may be termed correlated magnetics. This revolutionary technology referred to herein as correlated magnetics was first fully described and enabled in the co-assigned U.S. Pat. No. 7,800,471 issued on Sep. 21, 2010, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A second generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 7,868,721 issued on Jan. 11, 2011, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A third generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 8,179,219 issued on May 15, 2012, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. Another technology known as correlated inductance, which is related to correlated magnetics, has been described and enabled in the co-assigned U.S. Pat. No. 8,115,581 issued on Feb. 14, 2012, and entitled “A System and Method for Producing an Electric Pulse”. The contents of this document are hereby incorporated by reference.


Material presented herein may relate to and/or be implemented in conjunction with multilevel correlated magnetic systems and methods for producing a multilevel correlated magnetic system such as described in U.S. Pat. No. 7,982,568 issued Jul. 19, 2011 which is all incorporated herein by reference in its entirety. Material presented herein may relate to and/or be implemented in conjunction with energy generation systems and methods such as described in U.S. Pat. No. 8,222,986 issued on Jul. 17, 2012, which is all incorporated herein by reference in its entirety. Such systems and methods described in U.S. Pat. No. 7,681,256 issued Mar. 23, 2010, U.S. Pat. No. 7,750,781 issued Jul. 6, 2010, U.S. Pat. No. 7,755,462 issued Jul. 13, 2010, U.S. Pat. No. 7,812,698 issued Oct. 12, 2010, U.S. Pat. Nos. 7,817,002, 7,817,003, 7,817,004, 7,817,005, and 7,817,006 issued Oct. 19, 2010, U.S. Pat. No. 7,821,367 issued Oct. 26, 2010, U.S. Pat. Nos. 7,823,300 and 7,824,083 issued Nov. 2, 2011, U.S. Pat. No. 7,834,729 issued Nov. 16, 2011, U.S. Pat. No. 7,839,247 issued Nov. 23, 2010, U.S. Pat. Nos. 7,843,295, 7,843,296, and 7,843,297 issued Nov. 30, 2010, U.S. Pat. No. 7,893,803 issued Feb. 22, 2011, U.S. Pat. Nos. 7,956,711 and 7,956,712 issued Jun. 7, 2011, U.S. Pat. Nos. 7,958,575, 7,961,068 and 7,961,069 issued Jun. 14, 2011, U.S. Pat. No. 7,963,818 issued Jun. 21, 2011, and U.S. Pat. Nos. 8,015,752 and 8,016,330 issued Sep. 13, 2011, and U.S. Pat. No. 8,035,260 issued Oct. 11, 2011 are all incorporated by reference herein in their entirety.


Material presented herein may relate to and/or be implemented in conjunction with systems and methods described in U.S. Provisional Patent Application 61/640,979, filed May 1, 2012 titled “System for Detaching a Magnetic Structure from a Ferromagnetic Material”, which is incorporated herein by reference. Material may also relate to systems and methods described in U.S. Provisional Patent Application 61/796,253, filed Nov. 5, 2012 titled “System for Controlling Magnetic Flux of a Multi-pole Magnetic Structure”, which is incorporated herein by reference. Material may also relate to systems and methods described in U.S. Provisional Patent Application 61/735,460 filed Dec. 10, 2012 titled “An Intelligent Magnetic System”, which is incorporated herein by reference.


The present invention relates to a system for concentrating magnetic flux of a multi-pole magnetic structure having rectangular or striped polarity regions having either a positive or negative polarity that are separated by non-magnetic regions, where the polarity regions may have an alternating polarity pattern or have a polarity pattern in accordance with a code, where herein an alternating polarity pattern corresponds to polarity regions having substantially the same size such that produced magnetic fields alternate in polarity substantially uniformly. In contrast, a coded polarity pattern may comprise adjacent regions having the same polarity (e.g., two North polarity stripes separated by a non-magnetized region) and adjacent regions having opposite polarity or may comprise alternating polarity regions that have different sizes (e.g., a North polarity region of width 2X next to a South polarity region of width X). As described in patents referenced above, coded magnetic structures have at least three code elements and produce peak forces when aligned with a complementary coded magnetic structure but have forces that substantially cancel when such structures are misaligned, whereas complementary (uniformly) alternating polarity magnetic structures produce either all attract forces or all repel forces when their respective magnetic regions are in various alignments. Several examples of coded magnetic structures based on Barker 4 codes are provided herein but one skilled in the art will understand that other Barker codes and other types of codes can be employed such as those described in the patents referenced above.


In accordance with the invention, polarity regions can be separated magnets or can be printed magnetic regions on a single piece of magnetizable material. Such printed regions can be stripes made up of groups of printed maxels such as described in patents referenced above. Pole pieces are magnetically attached to the magnets or (maxel stripes) using a magnet-to-pole piece interface with a first area. The pole pieces can then be attached to a target such as a piece of ferromagnetic material or to complementary pole pieces using a pole piece-to-target interface that has a second area substantially smaller than the first area. As such, flux provided by the magnetic structure is routed into the pole piece via the magnet-to-pole interface and out of the pole piece using the pole piece-to-target interface, where the amount of flux concentration corresponds to the ratio of the first area divided by the second area.


Although the subject of this invention is the concentration of flux, the goal and methods are quite different than prior art. Prior art methods produce regions of flux concentration somewhere on a surface of magnetic material, where most of the area required to concentrate the flux has low flux density such that when it is taken into account the average flux density across the whole surface is only modestly higher, or may be even lower, than the density that can be achieved with the surface of an ordinary magnet. Thus the force density across the surface of the structure, or the achieved pounds per square inch (psi), is not improved. The primary object of this invention is to produce a surface that when taken as a whole achieves a substantial increase in total flux and therefore force density when in proximity to a ferromagnetic material or another magnet. This is achieved by integrating the flux across a magnetic surface at right angles to the working surface, and then conducting it to the working surface. In this regard, a maximum force density or maximum force produced over an area (e.g., psi) is achieved when the cross section of the pole pieces where they interface with the working surface of a target are just in saturation when in a closed magnetic circuit, where the maximum force density, is not achieved when the cross section of the pole pieces where they interface with the working surface of a target is over or under saturated. Furthermore, it is preferable that the magnetic material that sources the flux be as thin as possible but still provide magnetic flux at the flux saturation density of the magnetic material since a larger cross sectional area would act to dilute the force density since no flux emerges from its area. This ‘lateral magnet’ technique relies on the fact that the saturation flux density of known magnetic materials is substantially lower than the saturation flux density of materials such as low carbon steel or iron, where a saturation flux density corresponds to the maximum amount of flux that can be achieved for a given unit of area. Using this technique, force densities of four or more times the density of the strongest magnetic materials are possible. When inexpensive magnetic materials are used to supply the flux, the multiplication factor can be twenty or more permitting very strong magnetic structures to be constructed very inexpensively.



FIG. 1A depicts an exemplary magnet field 100 of a magnet 102, where the magnetic flux lines pass from the South (−) pole to the North (+) pole and then wrap around the magnet to the South pole in a symmetrical manner. When a rectangular pole piece 104 having sufficient ferromagnetic material to achieve saturation is placed onto one side of the magnet 102 as shown in FIG. 1B, the magnetic flux passing from the South pole to the North pole is redirected substantially perpendicular to the magnet 102 by the pole piece 104 such that it exits the top and bottom of the pole piece 104 and again wraps around to the South pole of the magnet 102. As shown the pole piece 104 contacts the magnet 102 using a magnet-to-pole piece interface 106 that is substantially larger than the area of the ends 108 of the pole piece 104 from which the magnetic flux is shown exiting the pole piece 104.



FIG. 1C depicts a magnet 102 having two such rectangularpole pieces 104, where there is a pole piece 104 on each side of the magnet 102. As shown the flux is shown being primarily above and below the magnet 102 such that it's attachment interface has been fully rotated 90°.



FIGS. 2A and 2B depict portions of exemplary magnetic fields 100 between two adjacent magnets 102 having an opposite polarity relationship, where each magnet 102 has a pole piece 104 on one side.



FIGS. 3A and 3B depict portions of exemplary magnetic fields 100 between two adjacent magnets 102 having an opposite polarity relationship, where each magnet 102 has pole pieces 104 on both sides of the magnet 102. Exemplary magnetic fields between the bottom of the pole pieces 104 and the magnets 102, and between the bottoms of the pole pieces 104 are not shown in FIG. 3A.



FIG. 4A depicts an exemplary magnetic structure 400 comprising two spaced magnets 102 having an opposite (or alternating) polarity relationship attached by a shunt plate 402 and attached to a target 404 such as a piece of iron.



FIG. 4B depicts an exemplary magnetic flux circuit created by the shunt plate 402 and the target 404 as indicated by the dotted oval shape. Note that the spacing between magnets 102 can be air or it can be any form of non-magnetic material such as plastic, Aluminum, or the like.



FIG. 4C depicts an exemplary magnetic structure 406 comprising four magnets 102 having an alternating polarity relationship having a shunt plate 402 and attached to a target 404 such that three magnetic flux circuits are created.



FIG. 4D depicts an oblique projection of the magnetic structure 406 of FIG. 4C approaching the target 404, where the target interface area 408 of each magnet 102 has an area equal to the magnet's height (h) multiplied by the magnet's width (d1).



FIG. 5A depicts an exemplary flux concentrator device 500 in accordance with one embodiment of the present invention, which corresponds to the magnetic structure and shunt plate of FIG. 4C with four rectangularpole pieces 104 that each have magnet-to-pole piece interface 502 that interface fully with the target interface surfaces 408 of each of the four magnets 102 of the magnetic structure. The pole pieces 104 are each shown to have a pole piece-to-target interface 504 having an area equal to each pole piece's width (d1) to the pole piece's thickness (d2), where each pole piece width may be equal to the width of the magnet 102 to which it is attached. As such, the flux that is directed to the target 404 is concentrated from a first surface area (d1×h) of the magnet-to-pole piece interface 502 to the second surface area (d1×d2), of the pole piece-to-target interface 504 where the amount of flux concentration corresponds to the ratio of the two areas. Generally, a flux concentrator device 500 may include a magnetic structure comprising a plurality of discrete magnets separated by spacings or may include a printed magnetic structure with maxel stripes separated by spacings (i.e., non-magnetized regions or stripes) and pole pieces 104 that interface with the discrete magnets 102 or the maxel stripes. Maxel stripes are depicted in FIGS. 15A-15D. The pole pieces may extend at least the height of the magnet structure (or beyond) with the purpose of directing flux 90 degrees thereby achieving a greater (pounds force per square inch) psi at the top and/or bottom of the pole pieces 104 than can be achieved at the sides of the magnets 102 to which they are interfacing. Optional shunt plates 402 are shown on the sides of the magnets 102 opposite the pole pieces 104.



FIG. 5B depicts an exemplary magnetic flux circuit 506, where on one side of the magnets 102 the circuit is made using a shunt plate 402 and on the other side of the magnets 102 the circuit is made using two pole pieces 104 attached to a target 404 that spans the two pole pieces 102.



FIG. 5C depicts the exemplary flux concentrator device 500 of FIG. 5A that has been attached to a target 404 that spans the four pole pieces 104 of the device 500. As such, FIG. 5C depicts the three magnetic flux circuits resulting from the use of the shunt plate 402, the pole pieces 104, and the target 404 with the magnets 102.



FIG. 6A shows an exemplary flux concentrator device 500 similar to the device 500 of FIG. 5A except the pole pieces 104 extend both above and below the magnetic structure made up of magnets 102. In FIG. 6B, the pole pieces 104 are the full length of the magnets 102 making up the magnetic structure but do not otherwise extend above or below the magnetic structure. In FIG. 6C, the pole pieces 104 are shorter than the magnets 102 of the magnetic structure where it is intended that the target 404 (not shown) interface with both the magnets 102 and the pole pieces 104. Similarly, in FIG. 6D, the pole pieces 104 are configured to accept targets 404 bottom that interface with the magnets 102 and the pole pieces 104 at the top of the device pole pieces 104.



FIG. 6E depicts additional pole pieces 602 having been added to the upper portions of the magnets 102 in the device 500 of FIG. 6C in order to provide protection to the surfaces of the magnets 102.



FIGS. 7A-7E depict various exemplary flux concentrator devices 700 having pole pieces on both sides of the magnetic structures. FIG. 7A depicts a magnetic structure comprising four alternating polarity magnets 102, which could be four alternating polarity maxel stripes (i.e., a printed magnetic structure), sandwiched between pole pieces 104 that extend from the bottom of the magnets 102 and then slightly above the magnets 102. FIG. 7B depicts pole pieces 104 that extend both above and below the magnets 102. FIG. 7C depicts pole pieces 104 that are the same height and are attached flush with the magnets 102. FIG. 7D depict pole pieces 104 that are shorter than the magnets 102 for receiving a target 404 (not shown) having a corresponding shape (e.g., an elongated C or U shape) or two bar shaped targets 404. FIG. 7E depicts pole pieces 104 configured for receiving two targets 404 having a corresponding shape or four bar shaped targets 404.



FIG. 8A depicts an exemplary flux concentrating device 800 comprising three magnetic structures like those of FIG. 7A except the magnets 102 in the middle structure are each rotated 180° compared to the magnets 102 in the two outer most structures. Because the eight pole pieces 104 in the inside of the device 800 are receiving twice the flux as the eight pole pieces 104 on the outside of the device 800, those pole pieces on the outside are reduced by half such that their PSI is substantially the same as those inside the device 800. FIG. 8B depicts an exemplary flux concentrating device 800 like that of FIG. 8A except the pole pieces 104 in the inside of the device are configured to accept targets 404 (not shown) that recess into the device 800. Such recessing into the device 800 provides a male-female type connection that can provide mechanical strength in addition to magnetic forces.


The concept of male-female type interfaces is further depicted in FIGS. 9A-9G where various shapes are shown, where one skilled in the art will recognize that all sorts of interfaces are possible other than flat interfaces between pole pieces 104 of flux concentrator devices 500/700/800 and targets 404, which may be pole pieces 104 of another flux concentrator device 500/700/800.



FIG. 10A depicts an exemplary flux concentrator device 1000 like that shown previously in FIG. 5A, where the magnetic structure comprises four spaced magnets 102 (or maxel stripes) having a polarity pattern in accordance with a Barker 4 code. FIG. 10B depicts another exemplary flux concentrator device 1000 like that of FIG. 10A, where the magnets 102 of the magnetic structure have a polarity pattern that is complementary to the magnets 102 of the magnetic structure of FIG. 10A. As such, either of the flux concentrator devices 800 of FIGS. 10A and 10B can be turned upside down where the pole pieces 104 of one of the flux concentrator devices 800 is attached to the pole pieces 104 of the other flux concentrator device 800 in accordance with the Barker 4 correlation function.



FIGS. 11A and 11B depict complementary Barker-4 coded flux concentrator devices 1100 that like those of FIGS. 10A and 10B that can be turned upside down and aligned with the other device 1100 so as to produce a peak attractive force. It should be noted that if either structure is placed on top of a duplicate of itself that a peak repel force can be produced, which is effectively inverting the correlation function of the Barker 4 code.



FIG. 12 depicts four Barker-4 coded flux concentrator devices 1000 oriented in an array where they are spaced apart that produce a Barker-4 by Barker-4 coded composite flux concentrator device 1200.



FIGS. 13A and 13B depict two variations of self-complementary Barker4-2 coded flux concentrator devices 1300, where each device can be placed on top of a duplicate device 1300 and aligned to produce a peak attract force and where the devices will align in the direction perpendicular to the code because each Barker-4 code element is represented by a ‘+−’ or ‘−+’ symbol implemented perpendicular to the code.



FIG. 14 depicts exemplary tapered pole pieces 104. In FIG. 14 the pole pieces 104 are tapered such that they are thinner at the bottom of the magnets 102 and grow thicker and thicker towards the pole piece-to-target interface 504. By tapering the pole pieces 104, there can be less flux leakage between adjacent pole pieces 104.



FIGS. 15A and 15B depict and exemplary printed magnetic structure 1500 that comprises alternating polarity spaced maxel stripes 15021504, where each of the overlapping circles represents a printed positive polarity maxel 1506 or negative polarity maxel 1508. FIGS. 15C and 15D depicts an exemplary printed magnetic structure 1510 comprising spaced maxel stripes 15021504 having a polarity pattern in accordance with a Barker 4 pattern.


In accordance with another embodiment of the invention, a magnetic structure is moveable relative to one or more pole pieces enabling force at a pole piece-to-target interface to be turned on, turned off, or controlled between some minimum and maximum value. One skilled in the art will recognize that the magnetic structure may be tilted relative to pole pieces or may be moved such that the pole pieces span between opposite polarity magnets (or stripes) so as to substantially prevent the magnetic flux from being provided to the pole piece-to-target interface. Systems and methods for moving pole pieces relative to a magnetic structure are described in patent filings previously referenced.



FIG. 16A depicts an oblique view of an exemplary prior art Halbach array 1600 constructed of five discreet magnets 102 having magnetization directions in accordance with the directions of the arrows, where X represents the back end (or tail) of an arrow and the circle with a dot in the middle represents the front end (or tip) of an arrow. Such an array causes the magnetic flux to be concentrated beneath the structure as shown. FIG. 16B depicts a top down view of the same exemplary Halbach array 1600 of FIG. 16A.



FIGS. 17A and 17B depict side and oblique views of an exemplary hybrid magnet-pole piece structure 1700 in accordance with one aspect of the invention. The hybrid magnet-pole piece structure 1700 comprises three magnets 102 sandwiching two pole pieces 104, where the magnets 104 have a polarity arrangement like those of the first, third, and fifth magnets of the Halbach array 1600 of FIGS. 16A and 16B. The magnetic behavior however, is substantially different. With the Halbach array of magnets 102, the field is always concentrated on one side of the magnetic structure 1600. With the hybrid magnet-pole piece structure (or hybrid structure) 1700, when a target material 404 such as a ferromagnetic material is not present to complete a circuit between the two pole pieces 104, the opposite polarity fields emitted by the pole pieces are emitted on all sides of the poles substantially equally. But, when a target material 404 is placed on any of the four sides of the hybrid structure, a magnetic circuit is closed, where the direction of the fields through the pole pieces depends on which side the target 404 is placed. For example, in FIG. 17C the flux lines are shown moving in a clockwise direction, whereas in FIG. 17D the flux lines are shown moving in a clockwise direction, where the flux through the magnet 102 and target 404 is the same in both instances but the flux direction through the poles 104 is reversed. Similarly, the targets could be placed on the front or back of the hybrid structure 1700 and the flux lines going through the pole pieces 104 would rotate plus or minus ninety degrees.


Similarly, as shown in FIGS. 17J and 17K, two complementary hybrid structures 1700 can be near each other but separated and they will not substantially react magnetically until the pole pieces 104 of the hybrid structures 1700 are substantially close or they come in contact at which time a circuit is completed between them and the flux is concentrated at the ends of the contacting pole pieces 104.



FIG. 17G depicts a lateral magnet hybrid structure 1702 where without a target 404 the fields emitted at the ends of the poles pieces 104 are substantially the same and are not concentrated. Like with the hybrid structure 1700 shown in FIGS. 17A-17D, the flux direction through the pole pieces 104 depends on which ends of the pole pieces 104 that the target 404 is placed. In FIG. 17H, the flux is shown moving in a clockwise manner but in FIG. 17I, the flux is shown moving in a counter-clockwise direction.


Similarly, as shown in FIGS. 17J and 17K, two complementary lateral magnet hybrid structures 1702 can be near each other but separated and they will not substantially react magnetically until the pole pieces 104 of the hybrid structures 1702 are substantially close or they come in contact at which time a circuit is completed between them and the flux is concentrated at the ends of the contacting pole pieces 104.



FIGS. 18A and 18B depict a prior art magnet structure 1800 where the magnets in the four corners are magnetized vertically and the side magnets between the corner magnets are magnetized horizontally. The side magnets are oriented such that flux moves towards the corner magnets where the flux is moving downwards and away from the corner magnets where the flux is moving upwards. The resulting effect is that flux is always concentrated beneath the structure.



FIGS. 19A and 19B depict a four magnet-four pole piece hybrid structure 1900 similar to the magnetic structures 1800 of FIGS. 18A and 18B where the corner magnets 102 are replaced with pole pieces 104. In a manner similar to the hybrid structures 1700 of FIGS. 17A and 17B, when a target material 404 such as a ferromagnetic material is not present to complete a circuit between any two pole pieces 104 of adjacent corners, the pole pieces 104 of the hybrid structure 1900 of FIGS. 19A and 19B will emit opposite polarity fields on all sides of the poles substantially equally. However, when a target 404 is placed on top of the hybrid structure 1900, magnetic circuits are produced between poles 104 of adjacent corners where the direction of the flux passing through the poles 104 depends on where the target 404 is placed. As shown, the flux changes direction through the pole pieces 104 when the target 404 is moved from the top of the hybrid structure 1900, as depicted in FIG. 19C, to the bottom of the hybrid structure 1900, as depicted in FIG. 19D.



FIGS. 19L and 19M depict lateral magnet hybrid structures 1902 that are similar to the hybrid structures 1900 of FIGS. 19A and 19B.



FIG. 19E depicts a twelve magnet-four pole piece hybrid structure 1904 that corresponds to a two-dimensional version of the hybrid structure 1700 of FIGS. 17A-17F.



FIG. 19F depicts a twelve lateral magnet-four pole piece hybrid structure 1906 that corresponds to a two-dimensional version of the lateral magnet hybrid structure 1702 of FIGS. 17G-17K.



FIG. 19G depicts use of beveled magnets 102 in a hybrid structure 1908 similar to the hybrid structure 1904 of FIG. 19E.



FIG. 19H depicts use of different sized magnets 102 in one dimension versus another dimension in a hybrid structure 1910 similar to the hybrid structures 19041908 of FIGS. 19E and 19G.



FIGS. 19I-19K depict movement of the rows of magnets versus the pole pieces 104 and vertical magnets 102 so as to control the flux that is available at the ends of the pole pieces 104.



FIG. 20 depicts a prior art magnetic structure that directs flux to the top of the structure.



FIGS. 21A and 21B depict a hybrid structure and a lateral magnet hybrid structure each having a pole piece surrounded by eight magnets in the same magnet pattern as the magnetic structure of FIG. 20, where the direction of the flux through the pole piece will depend on which end a target is placed.



FIG. 22A depicts an exemplary hybrid rotor 2200 in accordance with the invention where lateral magnets 102 on either side of pole pieces 104 alternate such that their magnetization is as depicted with the arrows shown. FIG. 22B provides an enlarged segment 2202 of the rotor 2200. Stator coils 2204 having cores 2206 such as depicted in FIGS. 22C and 22D would be placed on a corresponding stator (not shown), where there could be a one-to-one relationship between the number of stator coils 2204 and pole pieces 104 on a rotor 2200 or there could be less stator coils 2204 by some desired ratio of stator coils 2204 to pole pieces 104. The pole pieces 104 and the cores 2206 of each stator coil 2204 are configured such that flux from the pole piece 104 can traverse a small gap between a given pole piece 104 and a given core 2206 of a given stator coil 2204. One skilled in the art will recognize that this arrangement corresponds to a pole piece 104 to stator coil 2204 interface that can be used to enable motors, generators, actuators, and the like based on the use of lateral magnet arrangements.



FIG. 22E depicts an exemplary hybrid rotor and stator coil arrangement 2210 where the cores 2206 of paired stator coils 2204 have shunts plates 402 that join the cores 2206.



FIG. 22F depicts an exemplary hybrid rotor and stator coil arrangement 2212 where the cores 2206 of paired stator coils 2204 are all joined by a single shunt plate 402.



FIG. 22G depicts an exemplary hybrid rotor and stator coil arrangement 2214 where two stator coils 2204 are used with one rotor where the cores 2206 of the paired stator coils 2204 have shunts plates 402 that join the cores 2206. One skilled in the art will understand that when flux from the lateral magnets 102 is being routed to both ends of the pole pieces 104, the material making up the pole pieces 104 can be made thinner.



FIG. 22H depicts an exemplary hybrid rotor and stator coil arrangement 2216 where two stator coils 2204 are used with one rotor 2200 where the cores 2206 of the paired stator coils 2204 are all joined by a single shunt plate 402.



FIG. 22I depicts an exemplary saddle core type stator-rotor interface 2220 where core material 2206 wraps around from one side of the pole piece 104 to the other side providing a complete circuit. A coil 2204 can be placed around the core material 2206 anywhere along the core material 2206 to include the entire core material 2206. This saddle core arrangement is similar to that described in U.S. Non-provisional patent application Ser. No. 13/236,413, filed Sep. 19, 2011, titled “An Electromagnetic Structure Having A Core Element That Extends Magnetic Coupling Around Opposing Surfaces Of A Circular Magnetic Structure”, which is incorporated by reference herein.



FIG. 22J depicts an exemplary hybrid rotor and stator coil arrangement 2222 involving two rotors 2200 that are either side of a stator coil array where the opposing pole pieces of the two rotors have opposite polarities.



FIG. 23A depicts an exemplary metal separator lateral magnet hybrid structure 2300 comprising long pole pieces 104 sandwiched between magnets 1021 having magnetizations as shown in FIG. 23B. A target 404 placed on top can be used to separate metal from material striking it. Under one arrangement the pole pieces 104 and the target would be shaped to provide a rounded upper surface.


Cyclic lateral magnet assemblies can be arranged to correspond to cyclic codes. FIGS. 24A and 24B depict assemblies 2400 having magnetic structures made up of magnets arranged in accordance with complementary cyclic Barker 4 codes. As shown in FIG. 24C, the two complementary cyclic lateral magnet assemblies 2400 can be brought together such that their magnetic structures correlate. Either assembly 2400 can then be turned to de-correlate the magnetic structures. A sleeve 2404 is shown that can be used to constrain the relative movement of the two assemblies 2400 relative to each other to rotational movement while allowing the two assemblies 2400 to be brought together or pulled apart.



FIGS. 25A and 25B depict cyclic lateral magnet assemblies 2500 similar to those of FIGS. 24A-24C except lateral magnets around the perimeter 102a/104 are combined with conventional magnets 102b in the center. As such, when the complementary lateral magnet assemblies 2500 begin to approach each other, the opposite polarity magnets 102b in the center of the assemblies 2500, which will have a farther reach than the lateral magnets 102a/104, begin to attract each other so to bring the two assemblies 2500 together and, once together, either lateral magnet assembly 2500 can be rotated relative to the other to achieve a correlated peak attract force position. One skilled in the art will recognize that for the cyclic Barker 4 code also requires physical constraint of the two assemblies 2500 so that they can only rotate relative to each other such that the two ends of the assemblies 2500 are always fully facing each other. Various types of mechanisms can be employed such as an outer cylinder or sleeve 2404 that would provide for a male-female connector type attachment.



FIGS. 26A and 26B depict exemplary cyclic lateral magnet assemblies 2600 similar to those of FIGS. 25A and 25B where the individual conventional magnets 102b are each replaced with four conventional magnets 102b having polarities in accordance with a cyclic Barker 4 code. Whereas the conventional magnets 102b of FIGS. 25A and 25B would provide an attract force regardless of rotational alignment, the conventional magnets 102b of FIGS. 26A and 26B have a correlation function where there is a peak attract force and substantially zero off peak forces.


Lateral magnet assemblies as described herein can be used for attachment of any two objects such as electronics devices to walls or vehicle dashes. In particular, anywhere that there is room for a magnet to recess into an object the present invention enables a small external attachment point to be provided. One such application could involve a screw-like lateral magnet device that would screw into a sheet rock wall and provide a very strong attachment point for metal or for a complementary lateral magnet device associated with another object (e.g., a picture frame).


Moreover, a coded magnetic structure comprising conventional magnets or which is a piece of magnet material having had maxels printed onto it can also interact with lateral magnet structures to included complementary coded magnetic and lateral magnet structures.


While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.

Claims
  • 1. A system for concentrating magnetic flux, comprising: a multi-pole magnetic structure comprising one or more pieces of a magnetizable material having a plurality of polarity regions for providing a magnetic flux, said magnetizable material having a first saturation flux density, said plurality of polarity regions being magnetized in a plurality of magnetization directions; anda plurality of pole pieces of a ferromagnetic material for integrating said magnetic flux across said plurality of polarity regions and directing said magnetic flux at right angles to at least one target, said ferromagnetic material having a second saturation flux density, each pole piece of said plurality of pole pieces having a magnet-to-pole piece interface with a corresponding polarity region and a pole piece-to-target interface with said at least one target, and having an amount of said ferromagnetic material sufficient to achieve said second saturation flux density at the pole piece-to-target interface when in a closed magnetic circuit, said magnet-to-pole piece interface having a first area, said pole piece-to-target interface having a second area, said magnetic flux being routed into said pole piece via said magnet-to-pole interface and out of said pole piece via said pole piece-to-target interface, said routing of said magnetic flux through said pole piece resulting in an amount of concentration of said magnetic flux at said pole piece-to-target interface corresponding to the ratio of the first area divided by the second area, said amount of concentration of said magnetic flux corresponding to a maximum force density.
  • 2. The system of claim 1, wherein said polarity regions are separate magnets.
  • 3. The system of claim 1, wherein said polarity regions have a substantially uniformly alternating polarity pattern.
  • 4. The system of claim 1, wherein said polarity regions have a polarity pattern in accordance with a code having a code length greater than 2.
  • 5. The system of claim 4, wherein said code is a Barker code.
  • 6. The system of claim 1, wherein said polarity regions are printed magnetic regions on a single piece of magnetizable material.
  • 7. The system of claim 6, wherein said printed magnetic regions are separated by non-magnetized regions.
  • 8. The system of claim 6, wherein said printed magnetic regions are stripes.
  • 9. The system of claim 8, wherein said stripes are groups of printed maxels.
  • 10. The system of claim 1, wherein said target is a ferromagnetic material.
  • 11. The system of claim 1, wherein said target is a complementary pole piece.
  • 12. The system of claim 1, further comprising: a shunt plate for producing a magnetic flux circuit between at least two polarity regions of said plurality of polarity regions.
  • 13. The system of claim 1, wherein each of said plurality of polarity regions has one of a first magnetization direction or a second magnetization direction that is opposite to said first magnetization direction.
  • 14. The system of claim 1, wherein each of said plurality of polarity regions has one of a first magnetization direction, a second magnetization direction that is opposite to said first magnetization direction, a third magnetization direction that is perpendicular to said first magnetization direction, or a fourth magnetization direction that is opposite to said third magnetization direction.
  • 15. The system of claim 1, wherein a thickness of said one or more pieces of magnetizable material is sufficient to just provide said magnetic flux having said first flux density at said magnet-to-pole interface as required to achieve said maximum force density at said pole piece-to-target interface.
  • 16. The system of claim 1, wherein a length of at least one pole piece of said plurality of pole pieces is substantially equal to a length of at least one polarity region of said plurality of polarity regions.
  • 17. The system of claim 1, wherein a length of at least one pole piece of said plurality of pole pieces is less than a length of at least one polarity region of said plurality of polarity regions.
  • 18. The system of claim 1, wherein a length of at least one pole piece of said plurality of pole pieces is greater than a length of at least one polarity region of said plurality of polarity regions.
  • 19. The system of claim 1, wherein at least one pole piece of said plurality of pole pieces and said at least one target have a male-female type interface.
  • 20. The system of claim 1, wherein at least one pole piece of said plurality of pole pieces is tapered.
RELATED APPLICATIONS

This application claims the benefit under 35 USC 119(e) of provisional application 61/735,403, titled “System for Concentrating Magnetic Flux of a Multi-pole Magnetic Structure”, filed Dec. 12, 2012 by Fullerton et al. and this application claims the benefit under 35 USC 119(e) of provisional application 61/852,431, titled “System for Concentrating Magnetic Flux of a Multi-pole Magnetic Structure”, filed Mar. 15, 2013 by Fullerton et al.

US Referenced Citations (301)
Number Name Date Kind
493858 Edison Mar 1893 A
687292 Armstrong Nov 1901 A
996933 Lindquist Jul 1911 A
1171351 Neuland Feb 1916 A
1236234 Troje Aug 1917 A
1312546 Karasick Aug 1919 A
1554236 Simmons Jan 1920 A
1624741 Leppke et al. Dec 1926 A
1784256 Stout Dec 1930 A
1895129 Jones Jan 1933 A
2048161 Klaiber Jul 1936 A
2147482 Butler Dec 1936 A
2186074 Koller Jan 1940 A
2240035 Catherall Apr 1941 A
2243555 Faus May 1941 A
2269149 Edgar Jan 1942 A
2327748 Smith Aug 1943 A
2337248 Koller Dec 1943 A
2337249 Koller Dec 1943 A
2389298 Ellis Nov 1945 A
2401887 Sheppard Jun 1946 A
2414653 Lokholder Jan 1947 A
2438231 Schultz Mar 1948 A
2471634 Vennice May 1949 A
2475456 Norlender Jul 1949 A
2508305 Teetor May 1950 A
2513226 Wylie Jun 1950 A
2514927 Bernhard Jul 1950 A
2520828 Bertschi Aug 1950 A
2565524 Phelon Aug 1951 A
2570625 Zimmerman et al. Oct 1951 A
2690349 Teelor Sep 1954 A
2694164 Geppelt Nov 1954 A
2694613 Williams Nov 1954 A
2701158 Schmitt Feb 1955 A
2722617 Cluwen et al. Nov 1955 A
2770759 Ahlgren Nov 1956 A
2837366 Loeb Jun 1958 A
2853331 Teetor Sep 1958 A
2888291 Scott et al. May 1959 A
2896991 Martin, Jr. Jul 1959 A
2932545 Foley Apr 1960 A
2935353 Loeb May 1960 A
2936437 Fraser et al. May 1960 A
2953352 Heppner May 1960 A
2962318 Teetor Nov 1960 A
3055999 Lucas Sep 1962 A
3089986 Gauthier May 1963 A
3102314 Alderfer Sep 1963 A
3151902 Ahlgren Oct 1964 A
3204995 Teeter Sep 1965 A
3208296 Baermann Sep 1965 A
3238399 Johanees et al. Mar 1966 A
3273104 Krol Sep 1966 A
3288511 Tavano Nov 1966 A
3301091 Reese Jan 1967 A
3351368 Sweet Nov 1967 A
3382386 Schlaeppi May 1968 A
3408104 Raynes Oct 1968 A
3414309 Tresemer Dec 1968 A
3425729 Bisbing Feb 1969 A
3468576 Beyer et al. Sep 1969 A
3474366 Barney Oct 1969 A
3500090 Baermann Mar 1970 A
3521216 Tolegian Jul 1970 A
3645650 Laing Feb 1972 A
3668670 Andersen Jun 1972 A
3684992 Huguet et al. Aug 1972 A
3690393 Guy Sep 1972 A
3696258 Anderson et al. Oct 1972 A
3790197 Parker Feb 1974 A
3791309 Baermann Feb 1974 A
3802034 Bookless Apr 1974 A
3803433 Ingenito Apr 1974 A
3808577 Mathauser Apr 1974 A
3836801 Yamashita et al. Sep 1974 A
3845430 Petkewicz et al. Oct 1974 A
3893059 Nowak Jul 1975 A
3976316 Laby Aug 1976 A
4079558 Gorham Mar 1978 A
4117431 Eicher Sep 1978 A
4129846 Yablochnikov Dec 1978 A
4209905 Gillings Jul 1980 A
4222489 Hutter Sep 1980 A
4296394 Ragheb Oct 1981 A
4340833 Sudo et al. Jul 1982 A
4352960 Dormer et al. Oct 1982 A
4355236 Holsinger Oct 1982 A
4399595 Yoon et al. Aug 1983 A
4416127 Gomez-Olea Naveda Nov 1983 A
4451811 Hoffman May 1984 A
4453294 Morita Jun 1984 A
4517483 Hucker et al. May 1985 A
4535278 Asakawa Aug 1985 A
4547756 Miller et al. Oct 1985 A
4629131 Podell Dec 1986 A
4645283 MacDonald et al. Feb 1987 A
4680494 Grosjean Jul 1987 A
381968 Tesla May 1988 A
4764743 Leupold et al. Aug 1988 A
4808955 Godkin et al. Feb 1989 A
4837539 Baker Jun 1989 A
4849749 Fukamachi et al. Jul 1989 A
4862128 Leupold Aug 1989 A
H693 Leupold Oct 1989 H
4893103 Leupold Jan 1990 A
4912727 Schubert Mar 1990 A
4941236 Sherman et al. Jul 1990 A
4956625 Cardone et al. Sep 1990 A
4980593 Edmundson Dec 1990 A
4993950 Mensor, Jr. Feb 1991 A
4994778 Leupold Feb 1991 A
4996457 Hawsey et al. Feb 1991 A
5013949 Mabe, Jr. May 1991 A
5020625 Yamauchi et al. Jun 1991 A
5050276 Pemberton Sep 1991 A
5062855 Rincoe Nov 1991 A
5123843 Van der Zel et al. Jun 1992 A
5179307 Porter Jan 1993 A
5190325 Doss-Desouza Mar 1993 A
5213307 Perrillat-Amede May 1993 A
5302929 Kovacs Apr 1994 A
5309680 Kiel May 1994 A
5345207 Gebele Sep 1994 A
5349258 Leupold et al. Sep 1994 A
5367891 Furuyama Nov 1994 A
5383049 Carr Jan 1995 A
5394132 Poil Feb 1995 A
5399933 Tsai Mar 1995 A
5425763 Stemmann Jun 1995 A
5440997 Crowley Aug 1995 A
5461386 Knebelkamp Oct 1995 A
5485435 Matsuda et al. Jan 1996 A
5492572 Schroeder et al. Feb 1996 A
5495221 Post Feb 1996 A
5512732 Yagnik et al. Apr 1996 A
5570084 Ritter et al. Oct 1996 A
5582522 Johnson Dec 1996 A
5604960 Good Feb 1997 A
5631093 Perry et al. May 1997 A
5631618 Trumper et al. May 1997 A
5633555 Ackermann et al. May 1997 A
5635889 Stelter Jun 1997 A
5637972 Randall et al. Jun 1997 A
5730155 Allen Mar 1998 A
5742036 Schramm, Jr. et al. Apr 1998 A
5759054 Spadafore Jun 1998 A
5788493 Tanaka et al. Aug 1998 A
5838304 Hall Nov 1998 A
5852393 Reznik et al. Dec 1998 A
5935155 Humayun et al. Aug 1999 A
5956778 Godoy Sep 1999 A
5983406 Meyerrose Nov 1999 A
6000484 Zoretich et al. Dec 1999 A
6039759 Carpentier et al. Mar 2000 A
6047456 Yao et al. Apr 2000 A
6072251 Markle Jun 2000 A
6074420 Eaton Jun 2000 A
6104108 Hazelton et al. Aug 2000 A
6115849 Meyerrose Sep 2000 A
6118271 Ely et al. Sep 2000 A
6120283 Cousins Sep 2000 A
6125955 Zoretich et al. Oct 2000 A
6142779 Siegel et al. Nov 2000 A
6170131 Shin Jan 2001 B1
6187041 Garonzik Feb 2001 B1
6188147 Hazelton et al. Feb 2001 B1
6205012 Lear Mar 2001 B1
6210033 Karkos, Jr. et al. Apr 2001 B1
6224374 Mayo May 2001 B1
6234833 Tsai et al. May 2001 B1
6241069 Mazur et al. Jun 2001 B1
6273918 Yuhasz et al. Aug 2001 B1
6275778 Shimada et al. Aug 2001 B1
6285097 Hazelton et al. Sep 2001 B1
6387096 Hyde, Jr. May 2002 B1
6422533 Harms Jul 2002 B1
6457179 Prendergast Oct 2002 B1
6467326 Garrigus Oct 2002 B1
6535092 Hurley et al. Mar 2003 B1
6540515 Tanaka Apr 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6607304 Lake et al. Aug 2003 B1
6652278 Honkura et al. Nov 2003 B2
6653919 Shih-Chung et al. Nov 2003 B2
6720698 Galbraith Apr 2004 B2
6747537 Mosteller Jun 2004 B1
6841910 Gery Jan 2005 B2
6842332 Rubenson et al. Jan 2005 B1
6847134 Frissen et al. Jan 2005 B2
6850139 Dettmann et al. Feb 2005 B1
6862748 Prendergast Mar 2005 B2
6864773 Perrin Mar 2005 B2
6913471 Smith Jul 2005 B2
6927657 Wu Aug 2005 B1
6936937 Tu et al. Aug 2005 B2
6971147 Halstead Dec 2005 B2
7009874 Deak Mar 2006 B2
7016492 Pan et al. Mar 2006 B2
7031160 Tillotson Apr 2006 B2
7033400 Currier Apr 2006 B2
7038565 Chell May 2006 B1
7065860 Aoki et al. Jun 2006 B2
7066739 McLeish Jun 2006 B2
7066778 Kretzschmar Jun 2006 B2
7101374 Hyde, Jr. Sep 2006 B2
7135792 Devaney et al. Nov 2006 B2
7137727 Joseph et al. Nov 2006 B2
7186265 Sharkawy et al. Mar 2007 B2
7224252 Meadow, Jr. et al. May 2007 B2
7264479 Lee Sep 2007 B1
7276025 Roberts et al. Oct 2007 B2
7339790 Baker et al. Mar 2008 B2
7358724 Taylor et al. Apr 2008 B2
7362018 Kulogo et al. Apr 2008 B1
7381181 Lau et al. Jun 2008 B2
7402175 Azar Jul 2008 B2
7438726 Erb Oct 2008 B2
7444683 Prendergast et al. Nov 2008 B2
7453341 Hildenbrand Nov 2008 B1
7498914 Miyashita et al. Mar 2009 B2
7583500 Ligtenberg et al. Sep 2009 B2
7715890 Kim et al. May 2010 B2
7775567 Ligtenberg et al. Aug 2010 B2
7796002 Hashimoto et al. Sep 2010 B2
7799281 Cook et al. Sep 2010 B2
7808349 Fullerton et al. Oct 2010 B2
7812697 Fullerton et al. Oct 2010 B2
7817004 Fullerton et al. Oct 2010 B2
7832897 Ku Nov 2010 B2
7837032 Smeltzer Nov 2010 B2
7839246 Fullerton et al. Nov 2010 B2
7843297 Fullerton et al. Nov 2010 B2
7868721 Fullerton et al. Jan 2011 B2
7874856 Schriefer et al. Jan 2011 B1
7889037 Cho Feb 2011 B2
7903397 McCoy Mar 2011 B2
7905626 Shantha et al. Mar 2011 B2
8002585 Zhou Aug 2011 B2
8009001 Cleveland Aug 2011 B1
8099964 Saito et al. Jan 2012 B2
8264314 Sankar Sep 2012 B2
8354767 Pennander et al. Jan 2013 B2
20020125977 VanZoest Sep 2002 A1
20030136837 Amon et al. Jul 2003 A1
20030170976 Molla et al. Sep 2003 A1
20030179880 Pan et al. Sep 2003 A1
20030187510 Hyde Oct 2003 A1
20040003487 Reiter Jan 2004 A1
20040155748 Steingroever Aug 2004 A1
20040244636 Meadow et al. Dec 2004 A1
20040251759 Hirzel Dec 2004 A1
20050102802 Sitbon et al. May 2005 A1
20050196484 Khoshnevis Sep 2005 A1
20050231046 Aoshima Oct 2005 A1
20050240263 Fogarty et al. Oct 2005 A1
20050263549 Scheiner Dec 2005 A1
20050283839 Cowburn Dec 2005 A1
20060066428 McCarthy et al. Mar 2006 A1
20060189259 Park et al. Aug 2006 A1
20060198047 Xue et al. Sep 2006 A1
20060198998 Raksha et al. Sep 2006 A1
20060214756 Elliott et al. Sep 2006 A1
20060290451 Prendergast et al. Dec 2006 A1
20060293762 Schulman et al. Dec 2006 A1
20070072476 Milan Mar 2007 A1
20070075594 Sadler Apr 2007 A1
20070103266 Wang et al. May 2007 A1
20070138806 Ligtenberg et al. Jun 2007 A1
20070255400 Parravicini et al. Nov 2007 A1
20070267929 Pulnikov et al. Nov 2007 A1
20080119250 Cho et al. May 2008 A1
20080139261 Cho et al. Jun 2008 A1
20080174392 Cho Jul 2008 A1
20080181804 Tanigawa et al. Jul 2008 A1
20080186683 Ligtenberg et al. Aug 2008 A1
20080218299 Arnold Sep 2008 A1
20080224806 Ogden et al. Sep 2008 A1
20080272868 Prendergast et al. Nov 2008 A1
20080282517 Claro Nov 2008 A1
20090021333 Fiedler Jan 2009 A1
20090209173 Arledge et al. Aug 2009 A1
20090250576 Fullerton et al. Oct 2009 A1
20090251256 Fullerton et al. Oct 2009 A1
20090254196 Cox et al. Oct 2009 A1
20090278642 Fullerton et al. Nov 2009 A1
20090289090 Fullerton et al. Nov 2009 A1
20090289749 Fullerton et al. Nov 2009 A1
20090292371 Fullerton et al. Nov 2009 A1
20100033280 Bird et al. Feb 2010 A1
20100126857 Polwart et al. May 2010 A1
20100167576 Zhou Jul 2010 A1
20110026203 Ligtenberg et al. Feb 2011 A1
20110085157 Bloss et al. Apr 2011 A1
20110101088 Marguerettaz et al. May 2011 A1
20110210636 Kuhlmann-Wilsdorf Sep 2011 A1
20110234344 Fullerton et al. Sep 2011 A1
20110248806 Michael Oct 2011 A1
20110279206 Fullerton et al. Nov 2011 A1
20120064309 Kwon et al. Mar 2012 A1
20120235519 Dyer et al. Sep 2012 A1
Foreign Referenced Citations (19)
Number Date Country
1615573 May 2005 CN
2938782 Apr 1981 DE
0 345 554 Dec 1989 EP
0 545 737 Jun 1993 EP
823395 Jan 1938 FR
1 495 677 Dec 1977 GB
S57-55908 Apr 1982 JP
S57-189423 Dec 1982 JP
60-091011 Jun 1985 JP
60-221238 Nov 1985 JP
64-30444 Feb 1989 JP
2001-328483 Nov 2001 JP
2008035676 Feb 2008 JP
2008165974 Jul 2008 JP
05-038123 Oct 2012 JP
WO-0231945 Apr 2002 WO
WO-2007081830 Jul 2007 WO
WO-2009124030 Oct 2009 WO
WO-2010141324 Dec 2010 WO
Non-Patent Literature Citations (71)
Entry
Atallah, K., Calverley, S.D., D. Howe, 2004, “Design, analysis and realisation of a high-performance magnetic gear”, IEE Proc.-Electr. Power Appl., vol. 151, No. 2, Mar. 2004.
Atallah, K., Howe, D. 2001, “A Novel High-Performance Magnetic Gear”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, p. 2844-46.
Bassani, R., 2007, “Dynamic Stability of Passive Magnetic Bearings”, Nonlinear Dynamics, V. 50, p. 161-68.
BNS 33 Range, Magnetic safety sensors, Rectangular design, http://www.farnell.com/datasheets/36449.pdf, 3 pages, date unknown.
Boston Gear 221S-4, One-stage Helical Gearbox, http://www.bostongear.com/pdf/product—sections/200—series—helical.pdf, referenced Jun. 2010.
Charpentier et al., 2001, “Mechanical Behavior of Axially Magnetized Permanent-Magnet Gears”, IEEE Transactions on Magnetics, vol. 37, No. 3, May 2001, p. 1110-17.
Chau et al., 2008, “Transient Analysis of Coaxial Magnetic Gears Using Finite Element Comodeling”, Journal of Applied Physics, vol. 103.
Choi et al., 2010, “Optimization of Magnetization Directions in a 3-D Magnetic Structure”, IEEE Transactions on Magnetics, vol. 46, No. 6, Jun. 2010, p. 1603-06.
Correlated Magnetics Research, 2009, Online Video, “Innovative Magnetics Research in Huntsville”, http://www.youtube.com/watch?v=m4m81JjZCJo.
Correlated Magnetics Research, 2009, Online Video, “Non-Contact Attachment Utilizing Permanent Magnets”, http://www.youtube.com/watch?v=3xUm25CNNgQ.
Correlated Magnetics Research, 2010, Company Website, http://www.correlatedmagnetics.com.
Furlani 1996, “Analysis and optimization of synchronous magnetic couplings”, J. Appl. Phys., vol. 79, No. 8, p. 4692.
Furlani 2001, “Permanent Magnet and Electromechanical Devices”, Academic Press, San Diego.
Furlani, E.P., 2000, “Analytical analysis of magnetically coupled multipole cylinders”, J. Phys. D: Appl. Phys., vol. 33, No. 1, p. 28-33.
General Electric DP 2.7 Wind Turbine Gearbox, http://www.gedrivetrain.com/insideDP27.cfm, referenced Jun. 2010.
Ha et al., 2002, “Design and Characteristic Analysis of Non-Contact Magnet Gear for Conveyor by Using Permanent Magnet”, Conf. Record of the 2002 IEEE Industry Applications Conference, p. 1922-27.
Huang et al., 2008, “Development of a Magnetic Planetary Gearbox”, IEEE Transactions on Magnetics, vol. 44, No. 3, p. 403-12.
International Search Report and Written Opinion dated Jun. 1, 2009, directed to counterpart application No. PCT/US2009/002027. (10 pages).
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US12/61938 dated Feb. 26, 2013.
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/028095 dated May 13, 2013.
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/047986 dated Nov. 21, 2013.
International Search Report and Written Opinion, dated Apr. 8, 2011 issued in related International Application No. PCT/US2010/049410.
International Search Report and Written Opinion, dated Aug. 18, 2010, issued in related International Application No. PCT/US2010/036443.
International Search Report and Written Opinion, dated Jul. 13, 2010, issued in related International Application No. PCT/US2010/021612.
International Search Report and Written Opinion, dated May 14, 2009, issued in related International Application No. PCT/US2009/038925.
Jian et al., “Comparison of Coaxial Magnetic Gears With Different Topologies”, IEEE Transactions on Magnetics, vol. 45, No. 10, Oct. 2009, p. 4526-29.
Jian, L., Chau, K.T., 2010, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays”, IEEE Transactions on Energy Conversion, vol. 25, No. 2, Jun. 2010, p. 319-28.
Jørgensen et al., “The Cycloid Permanent Magnetic Gear”, IEEE Transactions on Industry Applications, vol. 44, No. 6, Nov./Dec. 2008, p. 1659-65.
Jørgensen et al., 2005, “Two dimensional model of a permanent magnet spur gear”, Conf. Record of the 2005 IEEE Industry Applications Conference, p. 261-5.
Kim, “A future cost trends of magnetizer systems in Korea”, Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, Aug. 5, 1996, pp. 991-996.
Krasil'nikov et al., 2008, “Calculation of the Shear Force of Highly Coercive Permanent Magnets in Magnetic Systems With Consideration of Affiliation to a Certain Group Based on Residual Induction”, Chemical and Petroleum Engineering, vol. 44, Nos. 7-8, p. 362-65.
Krasil'nikov et al., 2009, “Torque Determination for a Cylindrical Magnetic Clutch”, Russian Engineering Research, vol. 29, No. 6, pp. 544-547.
Liu et al., 2009, “Design and Analysis of Interior-magnet Outer-rotor Concentric Magnetic Gears”, Journal of Applied Physics, vol. 105.
Lorimer, W., Hartman, A., 1997, “Magnetization Pattern for Increased Coupling in Magnetic Clutches”, IEEE Transactions on Magnetics, vol. 33, No. 5, Sep. 1997.
Mezani, S., Atallah, K., Howe, D. , 2006, “A high-performance axial-field magnetic gear”, Journal of Applied Physics vol. 99.
Mi, “Magnetreater/Charger Model 580” Magnetic Instruments Inc. Product specification, May 4, 2009, http://web.archive.org/web/20090504064511/http://www.maginst.com/specifications/580—magnetreater.htm, 2 pages.
Neugart PLE-160, One-Stage Planetary Gearbox, http://www.neugartusa.com/ple—160—gb.pdf, referenced Jun. 2010.
Series BNS, Compatible Series AES Safety Controllers, http://www.schmersalusa.com/safety—controllers/drawings/aes.pdf, pp. 159-175, date unknown.
Series BNS-B20, Coded-Magnet Sensorr Safety Door Handle, http://www.schmersalusa.com/catalog—pdfs/BNS—B20.pdf, 2pages, date unknown.
Series BNS333, Coded-Magnet Sensors with Integral Safety Control Module, http://www.schmersalusa.com/machine—guarding/coded—magnet/drawings/bns333.pdf, 2 pages, date unknown.
Tsurumoto 1992, “Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet”, IEEE Translation Journal on Magnetics in Japan, Vo 7, No. 6, Jun. 1992, p. 447-52.
United States Office Action issued in U.S. Appl. No. 13/104,393 dated Apr. 4, 2013.
United States Office Action issued in U.S. Appl. No. 13/236,413 dated Jun. 6, 2013.
United States Office Action issued in U.S. Appl. No. 13/246,584 dated May 16, 2013.
United States Office Action issued in U.S. Appl. No. 13/246,584 dated Oct. 15, 2013.
United States Office Action issued in U.S. Appl. No. 13/374,074 dated Feb. 21, 2013.
United States Office Action issued in U.S. Appl. No. 13/430,219 dated Aug. 13, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Aug. 8, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Jan. 7, 2013.
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Nov. 8, 2013.
United States Office Action issued in U.S. Appl. No. 13/529,520 dated Sep. 28, 2012.
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Mar. 22, 2013.
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Oct. 29, 2013.
United States Office Action issued in U.S. Appl. No. 13/718,839 dated Dec. 16, 2013.
United States Office Action issued in U.S. Appl. No. 13/855,519 dated Jul. 17, 2013.
United States Office Action issued in U.S. Appl. No. 13/928,126 dated Oct. 11, 2013.
United States Office Action, dated Aug. 26, 2011, issued in counterpart U.S. Appl. No. 12/206,270.
United States Office Action, dated Feb. 2, 2011, issued in counterpart U.S. Appl. No. 12/476,952.
United States Office Action, dated Mar. 12, 2012, issued in counterpart U.S. Appl. No. 12/206,270.
United States Office Action, dated Mar. 9, 2012, issued in counterpart U.S. Appl. No. 13/371,280.
United States Office Action, dated Oct. 12, 2011, issued in counterpart U.S. Appl. No. 12/476,952.
Wikipedia, “Barker Code”, Web article, last modified Aug. 2, 2008, 2 pages.
Wikipedia, “Bitter Electromagnet”, Web article, last modified Aug. 2011, 1 page.
Wikipedia, “Costas Array”, Web article, last modified Oct. 7, 2008, 4 pages.
Wikipedia, “Gold Code”, Web article, last modified Jul. 27, 2008, 1 page.
Wikipedia, “Golomb Ruler”, Web article, last modified Nov. 4, 2008, 3 pages.
Wikipedia, “Kasami Code”, Web article, last modified Jun. 11, 2008, 1 page.
Wikipedia, “Linear feedback shift register”, Web article, last modified Nov. 11, 2008, 6 pages.
Wikipedia, “Walsh Code”, Web article, last modified Sep. 17, 2008, 2 pages.
C. Pompermaier, L. Sjoberg, and G. Nord, Design and Optimization of a Permanent Magnet Transverse Flux Machine, XXth International Conference on Electrical Machines, Sep. 2012, p. 606, IEEE Catalog No. CFP1290B-PRT, ISBN: 978-1-4673-0143-5.
V. Rudnev, An Objective Assessment of Magnetic Flux Concentrators, HET Trating Progress, Nov./Dec. 2004, p. 19-23.
Related Publications (1)
Number Date Country
20140320247 A1 Oct 2014 US
Provisional Applications (2)
Number Date Country
61735403 Dec 2012 US
61852431 Mar 2013 US