The present disclosure relates generally to a manufacturing system and, more particularly, to a system for continuously manufacturing composite structures.
Continuous fiber 3D printing (a.k.a., CF3D™) involves the use of continuous fibers embedded within a matrix discharging from a moveable print head. The matrix can be a traditional thermoplastic, a powdered metal, a liquid resin (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes. Upon exiting the print head, a head-mounted cure enhancer (e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.) is activated to initiate and/or complete curing of the matrix. This curing occurs almost immediately, allowing for unsupported structures to be fabricated in free space. When fibers, particularly continuous fibers, are embedded within the structure, a strength of the structure may be multiplied beyond the matrix-dependent strength. An example of this technology is disclosed in U.S. Pat. No. 9,511,543 that issued to Tyler on Dec. 6, 2016 (“the '543 patent”).
Although CF3D™ provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, improvements can be made to the structure and/or operation of existing systems. The disclosed additive manufacturing system is uniquely configured to provide these improvements and/or to address other issues of the prior art.
In one aspect, the present disclosure is directed to a system for additively manufacturing a composite structure. The system may include at least one support, and a print head operatively connected to the at least one support and configured to discharge composite material. The system may further include an auxiliary tool operatively connected to the at least one support and configured to receive the composite material discharged by the print head.
In another aspect, the present disclosure is directed to another system for additively manufacturing a composite structure. This system may include a support, and a print head operatively connected to the support and configured to discharge composite material. The system may also include at least one of a conveyor belt and a roller operatively connected to the support and configured to receive the composite material discharged by the print head. The at least one of the conveyor belt and roller is configured to selectively move from a stowed position to an engaged position at a discharge location of the print head.
A first end-effector 18 may be operatively connected to support 14; and a second end-effector 20 may be operatively connected to support 16. In the example of
Head 18 may be configured to receive or otherwise contain a matrix material. The matrix material may include any type of matrix material (e.g., a liquid resin, such as a zero-volatile organic compound resin, a powdered metal, etc.) that is curable. Exemplary resins include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, and more. In one embodiment, the matrix material inside head 18 may be pressurized or depressurized, for example by an external device (e.g., by an extruder or another type of pump—not shown) that is fluidly connected to head 18 via a corresponding conduit (not shown). In another embodiment, however, the pressure may be generated completely inside of head 18 by a similar type of device. In yet other embodiments, the matrix material may be gravity-fed into and/or through head 18. For example, the matrix material may be fed into head 18, and pushed or pulled out of head 18 along with one or more continuous reinforcements. In some instances, the matrix material inside head 18 may need to be kept cool and/or dark in order to inhibit premature curing or otherwise obtain a desired rate of curing after discharge. In other instances, the matrix material may need to be kept warm for similar reasons. In either situation, head 18 may be specially configured (e.g., insulated, temperature-controlled, shielded, etc.) to provide for these needs.
The matrix material may be used to coat any number of continuous reinforcements (e.g., separate fibers, tows, rovings, socks, and/or sheets of continuous material) and, together with the reinforcements, make up a portion (e.g., a wall) of composite structure 12. The reinforcements may be stored within or otherwise passed through head 18. When multiple reinforcements are simultaneously used, the reinforcements may be of the same material composition and have the same sizing and cross-sectional shape (e.g., circular, square, rectangular, etc.), or a different material composition with different sizing and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that are at least partially encased in the matrix material discharging from head 18.
The reinforcements may be exposed to (e.g., at least partially coated with) the matrix material while the reinforcements are inside head 18, while the reinforcements are being passed to head 18, and/or while the reinforcements are discharging from head 18. The matrix material, dry reinforcements, and/or reinforcements that are already exposed to the matrix material may be transported into head 18 in any manner apparent to one skilled in the art. In some embodiments, a filler material (e.g., chopped fibers) may be mixed with the matrix material before and/or after the matrix material coats the continuous reinforcements.
One or more cure enhancers (e.g., a UV light, an ultrasonic emitter, a laser, a heater, a catalyst dispenser, a chiller, etc.) 19 may be mounted proximate (e.g., within, on, or adjacent) head 18 and configured to enhance a cure rate and/or quality of the matrix material as it is discharged from head 18. Cure enhancer 19 may be controlled to selectively expose portions of structure 12 to energy (e.g., UV light, electromagnetic radiation, vibrations, heat, a chemical catalyst, a chilled medium, etc.) during the formation of structure 12. The energy may increase a rate of chemical reaction occurring within the matrix material, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from head 18. The amount of energy produced by cure enhancer 19 may be sufficient to cure the matrix material before structure 12 axially grows more than a predetermined length away from head 18. In one embodiment, structure 12 is completely cured before the axial growth length becomes equal to an external diameter of the matrix coated reinforcement.
The matrix material and/or reinforcement may be discharged from head 18 via at least two different modes of operation. In a first mode of operation, the matrix material and/or reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from head 18 as head 18 is moved by support 14 to create the 3-dimensional trajectory within a longitudinal axis of structure 12. In a second mode of operation, at least the reinforcement is pulled from head 18, such that a tensile stress is created in the reinforcement during discharge. In this mode of operation, the matrix material may cling to the reinforcement and thereby also be pulled from head 18 along with the reinforcement, and/or the matrix material may be discharged from head 18 under pressure along with the pulled reinforcement. In the second mode of operation, where the matrix material is being pulled from head 18 with the reinforcement, the resulting tension in the reinforcement may increase a strength of structure 12 (e.g., by aligning the reinforcements, inhibiting buckling, equally distributing loads, etc.), while also allowing for a greater length of unsupported structure 12 to have a straighter trajectory. That is, the tension in the reinforcement remaining after curing of the matrix material may act against the force of gravity (e.g., directly and/or indirectly by creating moments that oppose gravity) to provide support for structure 12.
The reinforcement may be pulled from head 18 as a result of head 18 moving away from an anchor point 22. In particular, at the start of structure formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed from head 18, deposited onto anchor point 22, and cured such that the discharged material adheres (or is otherwise coupled) to anchor point 22. Thereafter, head 18 may be moved away from anchor point 22, and the relative movement may cause the reinforcement to be pulled from head 18. It should be noted that the movement of reinforcement through head 18 could be assisted (e.g., via internal head mechanisms), if desired. However, the discharge rate of reinforcement from head 18 may primarily be the result of relative movement between head 18 and anchor point 22, such that tension is created within the reinforcement. It is contemplated that anchor point 22 could be moved away from head 18 instead of or in addition to head 18 being moved away from anchor point 22.
It is also contemplated that, in some applications, the material discharging from head 18 may cure too slowly and/or be too weak for unsupported free-space printing. In these applications, it may be possible to use tool 20 as a temporary mold for the material until adequate curing has been achieved and/or until a sufficient number of material layers have been built up. That is, tool 20 may be moved and oriented by support 16 to a location below an intended free-space trajectory of the discharging material (e.g., in general axial alignment with head 18), such that the material can temporarily rest on tool 20. In some embodiments, tool 20 transfers heat and/or pressure to or away from the material to allow the material to cure faster or to a greater depth while situated thereon. After the material cures to a sufficient degree and/or after enough layers of material have been deposited, tool 20 may be moved to another location and/or used in a different manner. This may allow for free-space printing without the need of permanent or customized molds.
Tool 20 may take any desired form that allows for temporary mold-like support of the material discharging from head 18. For example, tool 20 may include a conveyor belt 24 (see
In some embodiments, conveyor belt 24 may be configured to flex or curl and thereby impart a corresponding shape into the curing material discharged thereon. For example, conveyor belt 24 may have end-located rollers 30 around which a belt 32 passes, and any number of intermediate rollers 34 positioned between rollers 30. Rollers 30 and/or 34 may be selectively position-adjusted relative to each other to create either a flat surface onto which the material is discharged (see
It is contemplated that, in some embodiments, head 18 may be selectively held stationary (or moved less than tool 20), while tool 20 is moved, oriented, shaped, and/or rotated to continuously receive and place (e.g., pull and/or deposit) material discharged by head 18 in a desired manner. For example, head 18 may move at a first speed relative to anchor point 22 to cause material to be discharged (e.g., pulled) from head 18 at a first rate, while tool 20 moves at a second speed relative to head 18 to affect (e.g., to increase) the rate at which the material is discharged from head 18. In addition, a simple trajectory of head 18 may combine with a simple trajectory of tool 20 to create a more complex discharge trajectory of the composite material.
It is also contemplated that one or more cure enhancers 19 could be associated with tool 20 instead of or in addition to cure enhancer(s) 19 being associated with head 18. For example, the cure enhancer(s) 19 associated with head 18 may be sufficient to only partially cure and stiffen the discharging material, yet still allow some manipulation of the material. In addition, any cure enhancer(s) 19 associated with tool 20 may further cure and stiffen the discharging material, such that the material remains at a location affected by tool 20.
A controller 36 may be provided and communicatively coupled with support 14, support 16, head 18, any number of cure enhancers 19, and tool 20. Each controller 36 may embody a single processor or multiple processors that are configured to control an operation of system 10. Controller 36 may include one or more general or special purpose processors or microprocessors. Controller 36 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, tool paths, and corresponding parameters of each component of system 10. Various other known circuits may be associated with controller 36, including power supply circuitry, signal-conditioning circuitry, solenoid driver circuitry, communication circuitry, and other appropriate circuitry. Moreover, controller 36 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
One or more maps may be stored in the memory of controller 36 and used during fabrication of structure 12. Each of these maps may include a collection of data in the form of lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps may be used by controller 36 to determine the movements of head 18 and/or tool 20 required to produce the desired size, shape, and/or contour of structure 12, and to regulate operation of cure enhancers 19 in coordination with the movements.
As shown in
It is contemplated that head 18 and tool 20 could be mounted to the same support (e.g., 14 or 16), if desired. An example of this arrangement is illustrated in
The disclosed systems may be used to continuously manufacture composite structures having any desired cross-sectional shape and length. The composite structures may include any number of different fibers of the same or different types and of the same or different diameters, and any number of different matrixes of the same or different makeup. Operation of system 10 will now be described in detail.
At a start of a manufacturing event, information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 36 that is responsible for regulating operations of support 14 and/or head 18). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.), connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), desired surface textures, texture locations, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired. Based on the component information, one or more different reinforcements and/or matrix materials may be selectively installed and/or continuously supplied into system 10. In some embodiments, the reinforcements may also need to be connected to a pulling machine (not shown) and/or to a mounting fixture (e.g., to an anchor point). Installation of the matrix material may include filling head 18 and/or coupling of an extruder (not shown) to head 18.
The component information may then be used to control operation of system 10. For example, the reinforcements may be pulled and/or pushed along with the matrix material from head 18. Support 14 may also selectively move head 18 in a desired manner at the same time that support 16 moves tool 20, such that an axis of the resulting structure 12 follows a desired three-dimensional trajectory. Once structure 12 has grown to a desired length, structure 12 may be severed from system 10.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system. For example, it is contemplated that instead of auxiliary tool 20 having a rotating belt or roller, tool 20 may instead having a smooth low-friction non-rotating surface that slides along below the discharging material, if desired. In addition, it is contemplated that tool 20 may be used primarily or only at a time when a trajectory of the discharging material changes significantly (e.g., turns a corner), wherein tool 20 is used as a temporary anchoring point at a corner location (e.g., until enough layers have been built up to resist undesired movement away from the corner location without the temporary support). It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.
This application is a continuation of U.S. Non-Provisional application Ser. No. 16/279,955 that was filed on Feb. 19, 2019, which is based on and claims the benefit of priority from United States Provisional Application Nos. 62/656,866 that was filed on Apr. 12, 2018 and 62/730,541 that was filed on Sep. 13, 2018, the contents of all of which are expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3286305 | Seckel | Nov 1966 | A |
3809514 | Nunez | May 1974 | A |
3984271 | Gilbu | Oct 1976 | A |
3993726 | Moyer | Nov 1976 | A |
4643940 | Shaw et al. | Feb 1987 | A |
4671761 | Adrian et al. | Jun 1987 | A |
4822548 | Hempel | Apr 1989 | A |
4851065 | Curtz | Jul 1989 | A |
5002712 | Goldmann et al. | Mar 1991 | A |
5037691 | Medney et al. | Aug 1991 | A |
5296335 | Thomas et al. | Mar 1994 | A |
5340433 | Crump | Aug 1994 | A |
5746967 | Hoy et al. | May 1998 | A |
5866058 | Batchelder et al. | Feb 1999 | A |
5936861 | Jang et al. | Aug 1999 | A |
6153034 | Lipsker | Nov 2000 | A |
6459069 | Rabinovich | Oct 2002 | B1 |
6501554 | Hackney et al. | Dec 2002 | B1 |
6799081 | Hale et al. | Sep 2004 | B1 |
6803003 | Rigali et al. | Oct 2004 | B2 |
6934600 | Jang et al. | Aug 2005 | B2 |
7039485 | Engelbart et al. | May 2006 | B2 |
7555404 | Brennan et al. | Jun 2009 | B2 |
7795349 | Bredt et al. | Sep 2010 | B2 |
8221669 | Batchelder et al. | Jul 2012 | B2 |
8962717 | Roth et al. | Feb 2015 | B2 |
9126365 | Mark et al. | Sep 2015 | B1 |
9126367 | Mark et al. | Sep 2015 | B1 |
9149988 | Mark et al. | Oct 2015 | B2 |
9156205 | Mark et al. | Oct 2015 | B2 |
9186846 | Mark et al. | Nov 2015 | B1 |
9186848 | Mark et al. | Nov 2015 | B2 |
9327452 | Mark et al. | May 2016 | B2 |
9327453 | Mark et al. | May 2016 | B2 |
9370896 | Mark | Jun 2016 | B2 |
9381702 | Hollander | Jul 2016 | B2 |
9457521 | Johnston et al. | Oct 2016 | B2 |
9458955 | Hammer et al. | Oct 2016 | B2 |
9527248 | Hollander | Dec 2016 | B2 |
9539762 | Durand et al. | Jan 2017 | B2 |
9579851 | Mark et al. | Feb 2017 | B2 |
9688028 | Mark et al. | Jun 2017 | B2 |
9694544 | Mark et al. | Jul 2017 | B2 |
9764378 | Peters et al. | Sep 2017 | B2 |
9770876 | Farmer et al. | Sep 2017 | B2 |
9782926 | Witzel et al. | Oct 2017 | B2 |
20020009935 | Hsiao et al. | Jan 2002 | A1 |
20020062909 | Jang et al. | May 2002 | A1 |
20020113331 | Zhang et al. | Aug 2002 | A1 |
20020165304 | Mulligan et al. | Nov 2002 | A1 |
20030044539 | Oswald | Mar 2003 | A1 |
20030056870 | Comb et al. | Mar 2003 | A1 |
20030160970 | Basu et al. | Aug 2003 | A1 |
20030186042 | Dunlap et al. | Oct 2003 | A1 |
20030236588 | Jang et al. | Dec 2003 | A1 |
20050006803 | Owens | Jan 2005 | A1 |
20050061422 | Martin | Mar 2005 | A1 |
20050104257 | Gu et al. | May 2005 | A1 |
20050109451 | Hauber et al. | May 2005 | A1 |
20050230029 | Vaidyanathan et al. | Oct 2005 | A1 |
20070003650 | Schroeder | Jan 2007 | A1 |
20070029030 | McCowin | Feb 2007 | A1 |
20070228592 | Dunn et al. | Oct 2007 | A1 |
20080176092 | Owens | Jul 2008 | A1 |
20090078361 | Kisch | Mar 2009 | A1 |
20090095410 | Oldani | Apr 2009 | A1 |
20110032301 | Fienup et al. | Feb 2011 | A1 |
20110143108 | Fruth et al. | Jun 2011 | A1 |
20120060468 | Dushku et al. | Mar 2012 | A1 |
20120159785 | Pyles et al. | Jun 2012 | A1 |
20120231225 | Mikulak et al. | Sep 2012 | A1 |
20120247655 | Erb et al. | Oct 2012 | A1 |
20130164498 | Langone et al. | Jun 2013 | A1 |
20130209600 | Tow | Aug 2013 | A1 |
20130233471 | Kappesser et al. | Sep 2013 | A1 |
20130292039 | Peters et al. | Nov 2013 | A1 |
20130337256 | Farmer et al. | Dec 2013 | A1 |
20130337265 | Farmer | Dec 2013 | A1 |
20140034214 | Boyer et al. | Feb 2014 | A1 |
20140061974 | Tyler | Mar 2014 | A1 |
20140159284 | Leavitt | Jun 2014 | A1 |
20140232035 | Bheda | Aug 2014 | A1 |
20140268604 | Wicker et al. | Sep 2014 | A1 |
20140291886 | Mark et al. | Oct 2014 | A1 |
20150136455 | Fleming | May 2015 | A1 |
20150251409 | Ohnishi | Sep 2015 | A1 |
20160012935 | Rothfuss | Jan 2016 | A1 |
20160031155 | Tyler | Feb 2016 | A1 |
20160046082 | Fuerstenberg | Feb 2016 | A1 |
20160052208 | Debora et al. | Feb 2016 | A1 |
20160082641 | Bogucki et al. | Mar 2016 | A1 |
20160082659 | Hickman et al. | Mar 2016 | A1 |
20160107379 | Mark et al. | Apr 2016 | A1 |
20160114532 | Schirtzinger et al. | Apr 2016 | A1 |
20160136885 | Nielsen-Cole et al. | May 2016 | A1 |
20160144565 | Mark et al. | May 2016 | A1 |
20160144566 | Mark et al. | May 2016 | A1 |
20160192741 | Mark | Jul 2016 | A1 |
20160200047 | Mark et al. | Jul 2016 | A1 |
20160243762 | Fleming et al. | Aug 2016 | A1 |
20160263806 | Gardiner | Sep 2016 | A1 |
20160263822 | Boyd | Sep 2016 | A1 |
20160263823 | Espiau et al. | Sep 2016 | A1 |
20160271876 | Lower | Sep 2016 | A1 |
20160297104 | Guillemette et al. | Oct 2016 | A1 |
20160311165 | Mark et al. | Oct 2016 | A1 |
20160325491 | Sweeney et al. | Nov 2016 | A1 |
20160332369 | Shah et al. | Nov 2016 | A1 |
20160339633 | Stolyarov et al. | Nov 2016 | A1 |
20160346998 | Mark et al. | Dec 2016 | A1 |
20160361869 | Mark et al. | Dec 2016 | A1 |
20160368213 | Mark | Dec 2016 | A1 |
20160368255 | Witte et al. | Dec 2016 | A1 |
20170007359 | Kopelman et al. | Jan 2017 | A1 |
20170007360 | Kopelman et al. | Jan 2017 | A1 |
20170007361 | Boronkay et al. | Jan 2017 | A1 |
20170007362 | Chen et al. | Jan 2017 | A1 |
20170007363 | Boronkay | Jan 2017 | A1 |
20170007365 | Kopelman et al. | Jan 2017 | A1 |
20170007366 | Kopelman et al. | Jan 2017 | A1 |
20170007367 | Li et al. | Jan 2017 | A1 |
20170007368 | Boronkay | Jan 2017 | A1 |
20170007386 | Mason et al. | Jan 2017 | A1 |
20170008333 | Mason et al. | Jan 2017 | A1 |
20170015059 | Lewicki | Jan 2017 | A1 |
20170015060 | Lewicki et al. | Jan 2017 | A1 |
20170021565 | Deaville | Jan 2017 | A1 |
20170028434 | Evans et al. | Feb 2017 | A1 |
20170028588 | Evans et al. | Feb 2017 | A1 |
20170028617 | Evans et al. | Feb 2017 | A1 |
20170028619 | Evans et al. | Feb 2017 | A1 |
20170028620 | Evans et al. | Feb 2017 | A1 |
20170028621 | Evans et al. | Feb 2017 | A1 |
20170028623 | Evans et al. | Feb 2017 | A1 |
20170028624 | Evans et al. | Feb 2017 | A1 |
20170028625 | Evans et al. | Feb 2017 | A1 |
20170028627 | Evans et al. | Feb 2017 | A1 |
20170028628 | Evans et al. | Feb 2017 | A1 |
20170028633 | Evans et al. | Feb 2017 | A1 |
20170028634 | Evans et al. | Feb 2017 | A1 |
20170028635 | Evans et al. | Feb 2017 | A1 |
20170028636 | Evans et al. | Feb 2017 | A1 |
20170028637 | Evans et al. | Feb 2017 | A1 |
20170028638 | Evans et al. | Feb 2017 | A1 |
20170028639 | Evans et al. | Feb 2017 | A1 |
20170028644 | Evans et al. | Feb 2017 | A1 |
20170030207 | Kittleson | Feb 2017 | A1 |
20170036403 | Ruff et al. | Feb 2017 | A1 |
20170050340 | Hollander | Feb 2017 | A1 |
20170057164 | Hemphill et al. | Mar 2017 | A1 |
20170057165 | Waldrop et al. | Mar 2017 | A1 |
20170057167 | Tooren et al. | Mar 2017 | A1 |
20170057181 | Waldrop et al. | Mar 2017 | A1 |
20170064840 | Espalin et al. | Mar 2017 | A1 |
20170066187 | Mark et al. | Mar 2017 | A1 |
20170087768 | Bheda | Mar 2017 | A1 |
20170106565 | Braley et al. | Apr 2017 | A1 |
20170120519 | Mark | May 2017 | A1 |
20170129170 | Kim et al. | May 2017 | A1 |
20170129171 | Gardner et al. | May 2017 | A1 |
20170129176 | Waatti et al. | May 2017 | A1 |
20170129182 | Sauti et al. | May 2017 | A1 |
20170129186 | Sauti et al. | May 2017 | A1 |
20170144375 | Waldrop et al. | May 2017 | A1 |
20170151728 | Kunc et al. | Jun 2017 | A1 |
20170157828 | Mandel et al. | Jun 2017 | A1 |
20170157831 | Mandel et al. | Jun 2017 | A1 |
20170157844 | Mandel et al. | Jun 2017 | A1 |
20170157851 | Nardiello et al. | Jun 2017 | A1 |
20170165908 | Pattinson et al. | Jun 2017 | A1 |
20170173868 | Mark | Jun 2017 | A1 |
20170182712 | Scribner et al. | Jun 2017 | A1 |
20170210074 | Ueda et al. | Jul 2017 | A1 |
20170217088 | Boyd et al. | Aug 2017 | A1 |
20170232674 | Mark | Aug 2017 | A1 |
20170259502 | Chapiro et al. | Sep 2017 | A1 |
20170259507 | Hocker | Sep 2017 | A1 |
20170266876 | Sabic | Sep 2017 | A1 |
20170274585 | Armijo et al. | Sep 2017 | A1 |
20170284876 | Moorlag et al. | Oct 2017 | A1 |
20180257305 | Jones et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
4102257 | Jul 1992 | DE |
2589481 | Jan 2016 | EP |
3219474 | Sep 2017 | EP |
100995983 | Nov 2010 | KR |
101172859 | Aug 2012 | KR |
2012160269 | Nov 2012 | WO |
2013017284 | Feb 2013 | WO |
2016044837 | Mar 2016 | WO |
2016088042 | Jun 2016 | WO |
2016088048 | Jun 2016 | WO |
2016110444 | Jul 2016 | WO |
2016159259 | Oct 2016 | WO |
2016196382 | Dec 2016 | WO |
2017006178 | Jan 2017 | WO |
2017006324 | Jan 2017 | WO |
2017051202 | Mar 2017 | WO |
2017081253 | May 2017 | WO |
2017085649 | May 2017 | WO |
2017087663 | May 2017 | WO |
2017108758 | Jun 2017 | WO |
2017122941 | Jul 2017 | WO |
2017122942 | Jul 2017 | WO |
2017122943 | Jul 2017 | WO |
2017123726 | Jul 2017 | WO |
2017124085 | Jul 2017 | WO |
2017126476 | Jul 2017 | WO |
2017126477 | Jul 2017 | WO |
2017137851 | Aug 2017 | WO |
2017142867 | Aug 2017 | WO |
2017150186 | Sep 2017 | WO |
WO-2018057784 | Mar 2018 | WO |
Entry |
---|
A. Di. Pietro & Paul Compston, Resin Hardness and Interlaminar Shear Strength of a Glass-Fibre/Vinylester Composite Cured with High Intensity Ultraviolet (UV) Light, Journal of Materials Science, vol. 44, pp. 4188-4190 (Apr. 2009). |
A. Endruweit, M. S. Johnson, & A. C. Long, Curing of Composite Components by Ultraviolet Radiation: A Review, Polymer Composites, pp. 119-128 (Apr. 2006). |
C. Fragassa, & G. Minak, Standard Characterization for Mechanical Properties of Photopolymer Resins for Rapid Prototyping, 1st Symposium on Multidisciplinary Studies of Design in Mechanical Engineering, Bertinoro, Italy (Jun. 25-28, 2008). |
Hyouk Ryeol Choi and Se-gon Roh, In-pipe Robot with Active Steering Capability for Moving Inside of Pipelines, Bioinspiration and Robotics: Walking and Climbing Robots, Sep. 2007, p. 544, I-Tech, Vienna, Austria. |
International Search Report dated May 31, 2019 for PCT/US2019/019101 to CC3D LLC Filed Feb. 22, 2019. |
Kenneth C. Kennedy II & Robert P. Kusy, UV-Cured Pultrusion Processing of Glass-Reinforced Polymer Composites, Journal of Vinyl and Additive Technology, vol. 1, Issue 3, pp. 182-186 (Sep. 1995). |
M. Martin-Gallego et al., Epoxy-Graphene UV-Cured Nanocomposites, Polymer, vol. 52, Issue 21, pp. 4664-4669 (Sep. 2011). |
P. Compston, J. Schiemer, & A. Cvetanovska, Mechanical Properties and Styrene Emission Levels of a UV-Cured Glass-Fibre/Vinylester Composite, Composite Structures, vol. 86, pp. 22-26 (Mar. 2008). |
S Kumar & J.-P. Kruth, Composites by Rapid Prototyping Technology, Materials and Design, (Feb. 2009). |
S. L. Fan, F. Y. C. Boey, & M. J. M. Abadie, UV Curing of a Liquid Based Bismaleimide-Containing Polymer System, eXPRESS Polymer Letters, vol. 1, No. 6, pp. 397-405 (2007). |
T. M. Llewelly-Jones, Bruce W. Drinkwater, and Richard S. Trask; 3D Printed Components With Ultrasonically Arranged Microscale Structure, Smart Materials and Structures, 2016, pp. 1-6, vol. 25, IOP Publishing Ltd., UK. |
Vincent J. Lopata et al., Electron-Beam-Curable Epoxy Resins for the Manufacture of High-Performance Composites, Radiation Physics and Chemistry, vol. 56, pp. 405-415 (1999). |
Yugang Duan et al., Effects of Compaction and UV Exposure on Performance of Acrylate/Glass-Fiber Composites Cured Layer by Layer, Journal of Applied Polymer Science, vol. 123, Issue 6, pp. 3799-3805 (May 15, 2012). |
Number | Date | Country | |
---|---|---|---|
20210347119 A1 | Nov 2021 | US |
Number | Date | Country | |
---|---|---|---|
62730541 | Sep 2018 | US | |
62656866 | Apr 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16279955 | Feb 2019 | US |
Child | 17443265 | US |