The present disclosure relates to marine vessel propulsion and control systems. More particularly, aspects of the disclosure relate to methods and devices for controlling and allowing marine vessel steering drives to move freely with respect to each other but to also prevent such steering drives from colliding.
Various forms of propulsion have been used to propel marine vessels over or through the water. One type of propulsion system comprises a prime mover, such as an engine or a turbine, which converts energy into a rotation that is transferred to one or more propellers having blades in contact with the surrounding water. The rotational energy in a propeller is transferred by contoured surfaces of the propeller blades into a force or “thrust” which propels the marine vessel. As the propeller blades push water in one direction, thrust and vessel motion are generated in the opposite direction. Many shapes and geometries for propeller-type propulsion systems are known.
Other marine vessel propulsion systems utilize waterjet propulsion to achieve similar results. Such devices include a pump, a water inlet or suction port and an exit or discharge port, which generate a waterjet stream that propels the marine vessel. The waterjet stream may be deflected using a “deflector” to provide marine vessel control by redirecting some waterjet stream thrust in a suitable direction and in a suitable amount.
A requirement for safe and useful operation of marine vessels is the ability to steer the vessel from side to side. Some systems, commonly used with propeller-driven vessels, employ “rudders” for this purpose. Other systems for steering marine vessels, commonly used in waterjet-propelled vessels, rotate the exit or discharge nozzle of the waterjet stream from one side to another. Such a nozzle is sometimes referred to as a “steering nozzle.” Hydraulic actuators may be used to rotate an articulated steering nozzle so that the aft end of the marine vessel experiences a sideways thrust in addition to any forward or backing force of the waterjet stream. The reaction of the marine vessel to the side-to-side movement of the steering nozzle will be in accordance with the laws of motion and conservation of momentum principles, and will depend on the dynamics of the marine vessel design.
It is understood that while particular control surfaces are primarily designed to provide force or motion in a particular direction, these surfaces often also provide forces in other to directions as well. Nonetheless, those skilled in the art appreciate that certain control surfaces and control and steering devices have a primary purpose to develop force or thrust along a particular axis. For example, in the case of a reversing deflector, it is the backing direction in which thrust is provided. Similarly, a rudder is intended to develop force at the stern portion of the vessel primarily in a side-to-side or athwart ships direction, even if collateral forces are developed in other directions. Thus, net force imparted to a marine vessel should be viewed as a vector sum process, where net or resultant force is generally the goal, and other smaller components thereof may be generated in other directions at the same time.
As noted above, a class of marine craft is propelled by multiple steerable propeller drives.
A notional single-drive system is depicted in
Referring to
In view of the above discussion, and in view of other considerations relating to design and operation of marine vessels, it is desirable to have a marine vessel control system which can provide thrust forces in a plurality of directions, and which can control thrust forces in a safe and efficient manner.
One embodiment of the disclosure comprises an apparatus to be used with a marine vessel comprising a first steerable drive and a second steerable drive, the apparatus comprising a device, to be connected to the first steerable drive and to the second steerable drive, that provides for movement of the first and second steerable drives relative to each other and that also maintains a minimum distance between the first and second steerable drives so as to prevent the first and second steerable from contacting each other.
One embodiment of the apparatus comprises a telescoping concentric tube assembly having a mechanical stop. Another embodiment comprises a sliding bar arrangement having a mechanical stop. Another embodiment comprises a first guard to be connected to the first steerable drive and a second guard to be coupled to the second steerable drive. Still another embodiment comprises an adaptive tie bar arrangement having a configurable length that can be controlled to allow movement of the first steerable drive and the second steerable drive with respect to each other and that also can be controlled to provide a fixed distance between the first and second steerable drives. It is to be appreciated that any of the embodiments can be used either alone or in combination.
According to aspects of the disclosure, the adaptive tie bar arrangement can be any of a controllable mechanical locking device, a hydraulic locking device, and an electromechanical locking device. It is to be appreciated that any of these aspects can be used either alone or in combination with any of the embodiments disclosed herein.
According to one embodiment of the disclosure, the apparatus further comprises a processor configured to receive at least a first vessel control signal corresponding to any of a rotational movement command, a translational movement command, and a combination of a rotational movement and a translational movement command, and configured to generate at least a first steerable drive actuator control signal and a second steerable drive actuator control signal, and a first trim actuator control signal and a second trim actuator control signal. The processor is also configured to control the first steerable drive and the second steerable drive to provide a fixed distance between the first and second steerable drives when the first and second steerable drives are partially submerged, and so as to individually control the first steerable drive and the second steerable drives and allow the first steerable drive and the second steerable drive to move relative to each other when the first and second steerable drives are substantially submerged. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to provide opposite forces with the first and second steerable drives by providing a forward thrust with the first steerable drive and a reverse thrust with the second steerable drive so as to create rotational forces on the marine vessel with substantially no translational forces on the marine vessel. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to induce a net translational force to the marine vessel so that substantially no net rotational force is induced to the marine vessel, in response to the first vessel control signal that corresponds to only a translational thrust command and a zero rotational thrust command; and induce a net force to the marine vessel substantially in a direction of the first vessel control signal that corresponds to a combination of a translational thrust command and a rotational thrust command, for all combinations of the rotational and translational thrust commands. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to induce a net translational force to the marine vessel so that substantially no net rotational force is induced to the marine vessel, in response to the first vessel control signal that corresponds to only a translational thrust command and a zero rotational thrust command; induce a net force to the marine vessel substantially in a direction of the first vessel control signal that corresponds to a combination of a translational thrust command and a rotational thrust command, for all combinations of the rotational and translational thrust commands; and further so as to control the first steerable drive and the second steerable drive to create a differential thrust between the first steerable drive and the second steerable drive to induce the net rotational force to the marine vessel. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to induce a net transverse thrust to the marine vessel without substantially inducing any forward-reverse thrust or rotational thrust to the marine vessel in response to the first vessel control signal that corresponds to only a transverse thrust command; induce a net forward-reverse thrust to the marine vessel without substantially inducing any transverse thrust or rotational thrust to the marine vessel in response to the first vessel control signal that corresponds to only a forward-reverse thrust command; and induce a net rotational thrust to the marine vessel without substantially inducing any forward-reverse thrust or transverse thrust to the marine vessel, in response the first vessel control signal that corresponds to only a rotational thrust command. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to induce a net translational force to the marine vessel so that substantially no net rotational force is induced to the marine vessel in response to the first vessel control signal resulting from movement of a first vessel control apparatus along two degrees of freedom and with a second vessel control apparatus in a neutral position; and to induce a net force to the marine vessel, in response to the first vessel control signal, substantially in a same direction as a combination of movement of the first vessel control apparatus and the second vessel control apparatus, for all movements of the first vessel control apparatus along the two degrees of freedom and for all movements of the second vessel control apparatus along the third degree of freedom. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to create a differential thrust between the first steerable drive and the second steerable drive so as to induce the net rotational thrust to the marine vessel, without substantially inducing any forward-reverse thrust or transverse thrust to the marine vessel, in response the first vessel control signal that corresponds to only a rotational thrust command. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to provide the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal so as to provide opposite forces with the first and second steerable drives by providing a forward thrust with the first steerable drive and a reverse thrust with the second steerable drive so as to create rotational forces on the marine vessel with substantially no translational forces on the marine vessel. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to flip the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal in response to the first vessel control signal that corresponds to a full astern control command from the first vessel control signal that corresponds to a full ahead control command. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to another embodiment of the disclosure, the apparatus further comprises a processor configured to induce a net translational force to the marine vessel in response to the first vessel control signal comprising only the translational thrust command and a zero rotational thrust command, so that substantially no net rotational force is induced to the marine vessel; to induce a net force to the marine vessel, in response to the first vessel control signal comprising a combination of the translational thrust command and the rotational thrust command, substantially in a direction of a combination of the translational thrust command and the rotational thrust command for all combinations of the rotational and translational thrust commands; and to flip the first steerable drive actuator control signal, the second steerable drive actuator control signal, the first trim actuator control signal and the second trim actuator control signal in response to the first vessel control signal that corresponds to a full astern control command from the first vessel control signal that corresponds to a full ahead control command. It is to be appreciated the processor can be used with any of the embodiments and aspects disclosed herein.
According to one embodiment, a method for controlling a marine vessel having a first steerable drive and a second steerable comprises providing a device to be connected the first steerable drive and to the second steerable drive that provides for movement of the first and second steerable drives relative to each other and that also maintains a minimum distance between the first and second steerable drives so as to prevent the first and second steerable from contacting each other.
One embodiment of the method comprises providing a telescoping concentric tube assembly having a mechanical stop. Another embodiment comprises providing a sliding bar arrangement having a mechanical stop. Another embodiment comprises providing a first guard to be connected to the first steerable drive and a second guard to be connected to the second steerable drive. Still another embodiment comprises providing an adaptive tie bar arrangement having a configurable length that can be controlled to allow movement of the first steerable drive and the second steerable drive with respect to each other and that also can be controlled to provide a fixed distance between the first and second steerable drives. It is to be appreciated that any of the embodiments can be used either alone or in combination.
Aspects of the disclosure include providing the adaptive tie bar arrangement as any of a controllable mechanical locking device, a hydraulic locking device, and an electromechanical locking device. It is to be appreciated that any of these aspects can be used either alone or in combination with any of the embodiments disclosed herein.
One embodiment of the disclosure further comprises controlling the first steerable drive and the second steerable drive to provide a fixed distance between the first and second steerable drives when the first and second steerable drives are partially submerged, and so as to individually control the first steerable drive and the second steerable drives and allow the first steerable drive and the second steerable drive to move relative to each other when the first and second steerable drives are substantially submerged. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises providing opposite forces with the first and second steerable drives by providing a forward thrust with the first steerable drive and a reverse thrust with the second steerable drive so as to create rotational forces on the marine vessel with substantially no translational forces on the marine vessel. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises inducing a net translational force to the marine vessel so that substantially no net rotational force is induced to the marine vessel, in response to the first vessel control signal that corresponds to only a translational thrust command and a zero rotational thrust command; and inducing a net force to the marine vessel substantially in a direction of the first vessel control signal that corresponds to a combination of a translational thrust command and a rotational thrust command, for all combinations of the rotational and translational thrust commands. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises inducing a net translational force to the marine vessel so that substantially no net rotational force is induced to the marine vessel, in response to the first vessel control signal that corresponds to only a translational thrust command and a zero rotational thrust command; inducing a net force to the marine vessel substantially in a direction of the first vessel control signal that corresponds to a combination of a translational thrust command and a rotational thrust command, for all combinations of the rotational and translational thrust commands; and controlling the first steerable drive and the second steerable drive to create a differential thrust between the first steerable drive and the second steerable drive to induce the net rotational force to the marine vessel. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises inducing a net transverse thrust to the marine vessel without substantially inducing any forward-reverse thrust or to rotational thrust to the marine vessel in response to the first vessel control signal that corresponds to only a transverse thrust command; inducing a net forward-reverse thrust to the marine vessel without substantially inducing any transverse thrust or rotational thrust to the marine vessel in response to the first vessel control signal that corresponds to only a forward-reverse thrust command; and inducing a net rotational thrust to the marine vessel without substantially inducing any forward-reverse thrust or transverse thrust to the marine vessel, in response the first vessel control signal that corresponds to only a rotational thrust command. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises inducing a net translational force to the marine vessel so that substantially no net rotational force is induced to the marine vessel in response to the first vessel control signal resulting from movement of a first vessel control apparatus along two degrees of freedom and with a second vessel control apparatus in a neutral position; and inducing a net force to the marine vessel, in response to the first vessel control signal, substantially in a same direction as a combination of movement of the first vessel control apparatus and the second vessel control apparatus, for all movements of the first vessel control apparatus along the two degrees of freedom and for all movements of the second vessel control apparatus along the third degree of freedom. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises creating a differential thrust between the first steerable drive and the second steerable drive so as to induce the net rotational thrust to the marine vessel, without substantially inducing any forward-reverse thrust or transverse thrust to the marine vessel, in response the first vessel control signal that corresponds to only a rotational thrust command. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Another embodiment of the disclosure further comprises providing opposite forces with the first and second steerable drives by providing a forward thrust with the first steerable drive and a reverse thrust with the second steerable drive so as to create rotational forces on the marine vessel with substantially no translational forces on the marine vessel. It is to be appreciated that this can be done with any of the embodiments and aspects disclosed herein.
Prior to a detailed discussion of various embodiments of the present disclosure, it is useful to define certain terms that describe the geometry of a marine vessel and associated propulsion and control systems. A marine vessel has a forward end called a bow and an aft end called a stem. A line connecting the bow and the stern defines an axis hereinafter referred to the marine vessel's major axis. A vector along the major axis pointing along a direction from stem to bow is said to be pointing in the ahead or forward direction. A vector along the major axis pointing in the opposite direction (180° away) from the ahead direction is said to be pointing in the astern or reverse or backing direction.
Any axis perpendicular to the major axis is referred to herein as a “minor axis.” A vessel has a plurality of minor axes, lying in a plane perpendicular to the major axis. Some marine vessels have propulsion systems which primarily provide thrust only along the vessel's major axis, in the forward or backward directions. Other thrust directions, along the minor axes, are generated with awkward or inefficient auxiliary control surfaces, rudders, planes, deflectors, etc.
The axis perpendicular to the marine vessel's major axis and nominally perpendicular to the surface of the water on which the marine vessel rests, is referred to herein as the vertical axis. The vector along the vertical axis pointing away from the water and towards the sky defines an up direction, while the oppositely-directed vector along the vertical axis pointing from the sky towards the water defines the down direction. It is to be appreciated that the axes and directions, e.g. the vertical axis and the up and down directions, described herein are referenced to the marine vessel. In operation, the vessel experiences motion relative to the water in which it travels. However, the present axes and directions are not intended to be referenced to Earth or the water surface.
The axis perpendicular to both the marine vessel's major axis and a vertical axis is referred to as an athwartships axis. The direction pointing to the left of the marine vessel with respect to the ahead direction is referred to as the port direction, while the opposite direction, pointing to the right of the vessel with respect to the forward direction is referred to as the starboard direction. The athwartships axis is also sometimes referred to as defining a transverse or “side-to-side” force, motion, or displacement. Note that the athwartships axis and the vertical axis are not unique, and that many axes parallel to said athwartships axis and vertical axis can be defined.
The marine vessel may be moved forward or backwards along the major axes. This motion is usually a primary translational motion achieved by use of the vessels propulsion systems when traversing the water as described earlier. Other motions are possible, either by use of vessel control systems or due to external forces such as wind and water currents. Rotational motion of the marine vessel about the athwartships axis which alternately raises and lowers the bow and stern is referred to as pitch of the vessel. Rotation of the marine vessel about its major axis, alternately raising and lowering the port and starboard sides of the vessel is referred to as roll. Finally, rotation of the marine vessel about the vertical axis is referred to as yaw. An overall vertical displacement of the entire vessel 10 that moves the vessel up and down (e.g. due to waves) is called heave.
In view of the above discussion, and in view of other considerations relating to design and operation of marine vessels, it is desirable to have a marine vessel control system which can provide forces in a plurality of directions, and which can control thrust forces in a safe and efficient manner. The present disclosure relates to marine vessel propulsion and control systems and more particularly to methods and devices for controlling and allowing marine vessel steering drives to move freely with respect to each other but to also prevent such steering drives from contacting each other. The disclosure also relates to a control system and method configured to receive at least a first vessel control signal corresponding to any of a rotational movement command, a translational movement command, and a combination of a rotational movement and a translational movement commands, and configured to generate at least a first steerable drive actuator control signal and a second steerable drive actuator control signal to control the first steerable drive and the second steerable drive to provide the fixed distance between the first and second steerable drives and so as to individually control the first steerable drive and the second steerable drives and allow the so the first steerable drive and the second steerable drive to move relative to each other. The disclosure also relates to the control system and method also configured to induce a net force to the marine vessel substantially in a direction of the first vessel control signal that corresponds to a combination of a translational thrust command and a rotational thrust command, for all combinations of the rotational and translational thrust commands.
The disclosure is illustrated in connection with propulsion systems comprising first and second steerable drives, particularly first and second outboard drives. However it is to be understood that some or all aspects of the present disclosure apply to systems using equivalent or similar components and arrangements, such as waterjet propulsion systems and systems using various prime movers not specifically disclosed herein.
Referring to
Thus, there is a need for a system to enhance the performance of marine craft fitted with multiple steerable propellers to eliminate the risk of contact of the propellers and that also provides for individual control of the steerable drives. It is appreciated that the high-speed and low-speed performance of a marine craft (planing type or otherwise) fitted with multiple steerable drives can be improved by decoupling the steering control of each drive such that the steering function of each drive is independently controlled with a separate actuator. The various embodiments of the system(s) disclosed herein facilitate individual control of each steerable drive, thereby rendering a propulsion system with greater degrees of freedom and which can take full advantage of a joystick maneuvering system or other means of control, whereby variable force vectors can be developed. Such individual control and force vectoring capability, not otherwise achievable when steerable drives are mechanically linked such that the drives remain substantially parallel to each other irrespective of the steering angle, enhances maneuvering performance. The various embodiments of a system disclosed herein allow the drives to move freely while preventing the drives from contacting each other.
If the two or more drives are decoupled such that the steering angle of each drive can be controlled independently, many of the control algorithms and resulting features and advantages of the systems and methods disclosed in U.S. Pat. Nos. 7,052,338; 7,037,150; 7,216,599; 7,222,577; 7,500,890′; 7,641,525; 7,601,040; 7,972,187; and published U.S. patent application Ser. Nos. 11/960,676; 12/753,089, which are herein incorporated by reference in their entirety, can be achieved. In particular, FIGS. 42 and 43 of U.S. Pat. No. 7,601,040 B2 shows a series of maneuvers that can be achieved by individually controlling integral nozzle/reversing bucket devices. As described in column 42 and shown in FIGS. 44-48 (example steerable propeller control algorithm) of the same application, similar thrust vectoring results can be achieved by using steerable propellers instead of waterjets.
As an example, replacing the conventional tie bar with one of the embodiments disclosed herein enables a joystick system or other electronic control system to maneuver a dual steerable propeller driven craft in accordance with the maneuvering diagram depicted in
One problem with decoupling the steering control of drives located in close proximity to each other is the potential for the drives to collide and interfere with one another. While the electronic control system can, in principle, be configured to prevent a collision under normal operating conditions, the risk that the drives will collide becomes unacceptable in the event that the control system malfunctions or one or both of the drives is manually overridden. For this reason, a tie-bar is typically installed.
A solution to the problem of preventing colliding of adjacent drives while providing freedom to independently steer the drives is to install a device that allows the drives to move freely while preventing the clearance between the drives from dropping below a certain minimum value. One embodiment comprises a mechanical guard or bumper installed on one or multiple drives such that the guard(s) make contact when a certain minimum clearance is attained, thereby preventing any sensitive components, such as the propeller, from making contact. The guards would be designed to take the full force of the actuating system without harming any part of the drive. An example of this type of arrangement is illustrated in
Another embodiment comprises a sliding apparatus located in between and attached to adjacent drives and incorporating a mechanical stop to prevent the clearance between the drives from dropping below a certain value. The device may consist of two or more members (which may or may not be connected) that are allowed to move or rotate with respect to each other, and which incorporates one or more mechanical stops to prevent the clearance between propellers and other critical components from dropping below a certain value. One embodiment consists of telescoping concentric tubes installed between adjacent drives, which are attached to each end of the sliding apparatus by means of a connection such as a pin or ball joint. A mechanical stop built into the sliding apparatus prevents the clearance between adjacent drives from dropping below a certain value. Another embodiment comprises a sliding bar arrangement consisting of an assembly of two or more parallel bars that are permitted to slide relative to one another. A schematic example of this type of system can be seen in
In the typical surface-drive or ventilating propeller application, the propellers can be partially submerged for varying amounts of time, during which time the propellers develop substantial lateral (athwartships) and vertical forces. In most of these kinds of multiple-drive installations, the rotation of at least two of the propellers opposes each other. When a tie bar is used in these installations, a substantial net force is exerted on the tie-bar (tension if outboard rotation, compression if inboard rotation) due to the substantially equal and opposite lateral forces generated by the propellers. By virtue of the tie-bar connection, the lateral force transferred to the hull by an individual drive is minimized, and the steering cylinder(s) is not subjected to significant load associated with the lateral force component of the partially submerged propellers.
On account of the lateral forces induced by the surface propeller (discussed above), removing the tie-bar that would otherwise nullify the lateral forces will necessitate the individual steering cylinders to counter the forces of each individual drive. In such an arrangement, the mechanical loading of the steering cylinders will likely be increased substantially, and in many cases, the standard mechanical and hydraulic components that are normally equipped with the drive will be inadequately sized to counter the load in a steady and/or dynamic condition. In these cases it would be useful to have a variable-length or variable-geometry tie-bar that is locked in conditions when the lateral force on an individual propeller is substantial and unlocked (such that the drives could be controlled individually) when it is desirable to move the drives relative to each other. Such an “adaptive” tie-bar could have a locking means that is mechanical (controlled via a linkage), hydraulic (controlled using a mechanical or electric valve), or electric (clutch, motor, etc.), or a combination of these methods. The adaptive (or variable-geometry lockable) tie-bar described above may or may not incorporate a mechanical stop for the purpose of limiting the clearance between adjacent drives.
One example of a locking tie-bar implementation is the system shown in
As discussed above, the forces that may be encountered when the propeller is partially submerged can be quite substantial, potentially causing some difficulty creating the forces to move the drives when the tie-bar is unlocked. In these cases it may be advantageous to deploy a device or some means to create tension and/or compression forces within or in place of the tie-bar apparatus. Such a device could reduce the forces that are imposed on the individual steering cylinders, due to the fact that the applied force vector is substantially orthogonal to the drive axis. Any of the “adaptive” tie-bar designs discussed above (mechanical, hydraulic, electric, etc.) can be combined with a means to develop tension and or compression forces to create an “active” tie-bar device. The active (or actuating) tie-bar described above may or may not incorporate a mechanical stop for the purpose of limiting the clearance between adjacent drives.
One example of an active tie-bar implementation utilizes similar outboard components (i.e., those external to the hull) as used in the example locking tie-bar implementation (shown in
The hydraulic system shown in
By way of example,
One system and method of implementing a joystick control algorithm for a dual-drive system is to separate the control algorithms into five separate control zones as shown in
Referring again to
Another example of control/propulsion device mapping to be considered is the case where there is no net translational thrust (i.e., only rotational thrust, Zone 3). A vessel equipped with dual steerable drives is not able to develop a turning moment by rotating the drives while at neutral thrust. Consequently, a special algorithm or mapping for the individual drives when no translational thrust is commanded such that the drives can operate independently to develop the turning moment.
To operate in Zone 3, a control scheme must be implemented where the drives are operated differentially, where one drive is generating ahead thrust and the other is generating astern thrust in order to impart little or no net translational thrust to the craft.
Vessels equipped with steerable propellers are able to induce combinations of transverse and rotational thrusts that will allow the craft to translate sideways while at the same time apply varying amounts of rotational thrust. As another example, referring to Zone 1 (thrusting to port) in
Let us first consider the case of maneuver H where the craft is translating sideways with little or no forward or reverse thrust. In this case, the initial condition is maneuver E (Zone 3), in which the joystick is centered (neutral X and neutral Y) and the steering wheel is centered; in this condition, both transmissions will be set to neutral, in accordance with the signals created by the joystick and transmitted to modules 1300 and 1303. As the X-axis signal is increased beyond the threshold that transitions from Zone 3 to Zone 1, the port drive steering angle is positioned (by module 1302) in a discrete position in the port direction and the starboard steering angle is positioned (by module 1305) in a discrete position in the starboard direction. The respective positions of the port and starboard drives correspond to the equilibrium point where translational thrust can be applied in any direction without inducing a substantial rotational or yawing force. These positions usually correspond to angles where both drives are pointed along respective center lines that intersect at or near the center of rotation of the craft. Drives that are positioned in this manner are sometimes referred to as being in a toe-out configuration. As long as the steering wheel remains in a neutral position that corresponds to no rotational thrust, both drives will remain in these respective discrete positions.
As illustrated by modules 1300 and 1301, progressively moving the joystick to increase the magnitude of net transverse thrust in the port direction will increase the trolling gear setting (increase in friction level) in the astern direction and increase the RPM of the port engine (not necessarily together), thereby increasing the reverse thrust of the port drive. At the same time, moving the joystick to port will increase the trolling gear setting in the ahead direction and increase the RPM of the starboard engine, thereby increasing the ahead thrust of the starboard drive. As long as the joystick is moved along the X-axis only (i.e., neutral Y position), the reversing thrust of the port drive and the ahead thrust of the starboard drive will remain substantially equal in magnitude so as to induce a net transverse thrust without imparting a net forward or reverse thrust.
Adding a rotational thrust in the port or counter-clockwise direction (maneuver G of
It is to be understood that the magnitude of the steering angles of the port and starboard drives in response to steering wheel movements need not be the same, provided there are minimal changes in translational thrust resulting from movements of the steering wheel or tiller. The optimum amounts of steering angle movement for each drive in response to steering commands depends heavily on the hydrodynamics of the craft during side thrusting operations as well as the hull-propeller interactions for each drive. These points can be estimated with application-specific modeling or determined during a sea trial.
It is understood that Zone 2 of
As shown in
In a similar fashion as maneuvers G and I illustrated in
Like the forward diagonal movements of maneuvers Q and R in
It is understood that Zone 2 of
It is to be understood that the summation modules herein described and illustrated can sum the various signals in different ways. For example, different signals may have different weights in the summation or selected signals may be left out of the summation under certain conditions. It is also the function of the summation module to clamp (limit) output signals that would otherwise exceed maximum values.
It is to be understood also that the port trolling gear module illustrated in
Having described various embodiments of a marine vessel control system and method herein, it is to be appreciated that the concepts presented herein may be extended to systems having any number of control surface actuators and propulsors and is not limited to the embodiments presented herein. Modifications and changes will occur to those skilled in the art and are meant to be encompassed by the scope of the present description and accompanying claims. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the range of equivalents and disclosure herein.
This application is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/099,334 filed Apr. 14, 2016, which is a continuation of U.S. patent application Ser. No. 13/241,192 filed Sep. 22, 2011, which claims priority to U.S. Provisional Application Ser. No. 61/453,936 filed Mar. 17, 2011, and also claims priority to U.S. Provisional Application Ser. No. 61/385,526 filed Sep. 22, 2010, each of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61453936 | Mar 2011 | US | |
61385526 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15099334 | Apr 2016 | US |
Child | 15918126 | US | |
Parent | 13241192 | Sep 2011 | US |
Child | 15099334 | US |