A valve positioner is a device that interfaces with a valve actuator to control a position of a corresponding valve between open and closed positions. Valve positioners are often used to control quarter turn valves in the process industry. For example, valve positioners may be used in chemical processing, oil refineries, or other process industries that include the control of fluid flow. In pneumatic systems, the valve positioner increases or decreases air pressure provided to the valve actuator based on an electronic control signal. The valve positioner is typically coupled to a moving portion of the valve (e.g., a valve stem on a rotating-type valve) so that the valve positioner receives mechanical feedback indicating the valve's position. Conventional systems include manifolds which require tubing and fittings to connect the manifold to the valve positioner or valve controller. Conventional systems also require an external power supply and external electronics to drive the manifold and other components in the system. Valve positioners are often used in systems that must be placed in remote or dangerous areas.
It is desirable to provide an improved valve positioner system that provides simpler installation, more flexibility in installation configurations, and improved communication with peripheral systems. In particular, a manifold that allows for wireless transmission of position feedback from a manifold to a valve actuator is desirable. It is also desirable to provide an internal power source that can supplement external power provided to the system.
In some embodiments, the invention provides a system for controlling an analog valve positioner. The system includes a manifold having a manifold body and a cavity, a spool valve disposed within the cavity, a powered control valve disposed within the manifold body and configured to change the position of the spool valve, and a microturbine generator disposed within the manifold body and providing power to the powered control valve. The system also includes an analog valve positioner in communication with the manifold and a valve actuator in communication with the analog valve positioner.
In another embodiment, the invention provides a manifold for a valve actuator. The manifold includes a manifold body, a spool valve disposed within the manifold body and configured to change a state of the valve actuator, a controller disposed within the manifold body and sensing the state of the valve actuator and broadcasting position feedback, and a microturbine generator disposed within the manifold body and providing power to the controller.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The following discussion is presented to enable a person skilled in the art to make and use embodiments of the invention. Various modifications to the illustrated embodiments will be readily apparent to those skilled in the art, and the generic principles herein can be applied to other embodiments and applications without departing from embodiments of the invention. Thus, embodiments of the invention are not intended to be limited to embodiments shown, but are to be accorded the widest scope consistent with the principles and features disclosed herein. The following detailed description is to be read with reference to the figures, in which like elements in different figures have like reference numerals. The figures, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of embodiments of the invention. Skilled artisans will recognize the examples provided herein have many useful alternatives and fall within the scope of embodiments of the invention.
The manifold 18 includes at least one pneumatic connection 30 to the valve actuator 26, a microturbine generator 34, a wireless transmitter 35, and a wireless receiver 36. The pneumatic connections 30 can be connected to the valve actuator 26 with tubing to provide position feedback and/or pneumatic actuation pressure such that the state of the valve actuator 26 is controlled.
The microturbine generator 34 includes an air inlet 38 that receives a flow of air from an air supply 42. The microturbine generator 34 converts the flow of air through the air supply 42 into electronic power and provides that power to the manifold 18. The wireless transmitter 35 and wireless receiver 36 are arranged to wirelessly communicate position data and other information with the analog valve positioner 14.
An external power supply 46 can also be provided to power the analog valve positioner 14, the manifold 18, or the valve actuator 26. The external power supply can be a mains power line, such as a 120 VAC connection or a 240 VAC connection. In the embodiment shown in
In the embodiment shown in
The system 10 of
Individual features of the systems 10, 50, 54 described above can be combined to form other desirable configurations. For example, the system 10 illustrated in
The powered control valve 70 shown in
The microturbine generator 34 includes a DC generator 80 that provides power to the powered control valve 70, the electronic control unit 74, and the controller 78. The microturbine generator 34 can be disposed within the cavity 62 holding the spool valve 66, an additional or separate cavity, or housed together with the powered control valve 70 apart from the other manifold components.
As shown in
In some embodiments, the electronic control unit 74 is integral with the manifold 18. It is possible for the electronic control unit 74 to be disposed within the manifold body 22 or joined to an outer wall of the manifold body 22. In other embodiments, the electronic control unit 74 is isolated from the manifold body 22.
The controller 78 disposed within the manifold body 22 receives position information from the analog valve positioner 14 and broadcasts position feedback to the valve actuator 26. In other words, the controller 78 is responsible for the coordination between the analog valve positioner 14 and the valve actuator 26. The inclusion of the controller 78 onboard the manifold 18 allows the manifold to be coupled to an existing analog valve positioner 14 and valve actuator 26 systems, providing upgraded communication and functionality without the need to replace the analog valve positioner 14 or the valve actuator 26.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein.
Various features and advantages of the invention are set forth in the following claims.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Patent Application No. 62/142,279 filed on Apr. 2, 2015, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62142279 | Apr 2015 | US |