The present application relates generally to a device for converting voice frequency wirelessly, and particularly to a system for converting vibration to voice frequency wirelessly.
Sound collecting devices have become one of the daily articles used by people most frequently. Devices such as mobile communication equipment, recording pens, and music players with recording function require high-quality sound collecting devices to receive external sound, particularly for the voices by people. In addition, various anti-noise methods are proposed for avoiding unclarity due to transmission over the air. In particular, when a user is moving, such as exercising, driving, violent activities, or in a noisy environment, sound collection will not be affected. Normal sound collecting devices include capacitive and piezoelectric sound collecting devices. For piezoelectric sound collecting devices, a piezoelectric device that can generate piezoelectric signals according to vibrations is attached to the human body for sensing the vibrations produced when the human body makes sound. The pressure produced by the vibrations is transmitted to the piezoelectric material, which generates voltage differences according to external pressure and becomes voltage signals for subsequent processing.
The sound collecting device according to the prior art is held manually or hanged around the neck to be close to the user's mouth for facilitating receiving the user's voice using an air-conductive microphone. Unfortunately, since the user needs to hold an air-conductive sound collecting device close to the user's mouth, it is difficult for the user to spare his hands. Although hang-type or desktop sound collecting devices allow a user to spare his hands, he still needs to adjust the location and angle of the sound collecting device. Besides, the air-conductive microphone hanging on a user's chest tends to swing according to the user's movement, influencing the user's activities and inducing inconvenience.
To overcome the problem of the air-conductive sound collecting devices as described above, a throat-vibrating sound collecting device is developed. The sound collecting device is disposed at the user's throat. The sound collecting device can receive the voice generated by the vibrations when the user speaks and uses the voice as the voice input of the computing device. Nonetheless, unclarity still occurs in vibration sound collecting devices. Accordingly, throat sound collecting devices are developed. Unfortunately, the small throat sound volume, which is conducted to the mouth part before emitting, leads the unclarity in throat sound collecting devices. Moreover, the throat sound signal and the vibration signal are different signal types, making their compensation difficult.
Accordingly, the present application provides a system for converting vibration to voice frequency wirelessly. The computing device generates voice-frequency reference data using a first vibration variation data and a voice frequency variation data in a first sensing period. According to the voice-frequency reference data, a second vibration variation data in the second sensing period is converted to a voice-frequency output signal. Thereby, a voice-frequency output signal close to the human voice can be provided.
An objective of the present application is to provide a system for converting vibration to voice frequency wirelessly. By executing the application program in the computing device, a first vibration variation data and a voice frequency variation data are input to the computing device for generating voice-frequency reference data. Furthermore, a second vibration variation data is further converted to a voice-frequency output signal by the generated voice-frequency reference data. Thereby, a voice-frequency output signal close to the human voice can be provided.
The present application discloses a system for converting vibration to voice frequency wirelessly with intelligence learning capability, which comprises a sound collecting device and an computing device. The sound collecting device includes a vibration sensor, a voice frequency sensor, and a first wireless transmission unit. The computing device includes a processing unit, a storage unit, and a second wireless transmission unit. The vibration sensor senses a first vibration variation data of a throat part in a first sensing period and a second vibration variation data of the throat part in a second sensing period. The voice frequency sensor senses a voice frequency variation data of the throat part in the first sensing period. The first wireless transmission unit is unit connected to the computing device, the vibration sensor, and the voice frequency sensor. The storage unit stores an application program. The second wireless transmission unit is connected to the first wireless transmission unit. The processing unit executes the application program and receives the first vibration variation data and the voice frequency variation data via the first and second wireless transmission units for producing voice-frequency reference data according to the first vibration variation data and the voice frequency variation data. According to the above description, it is known that the computing device according to the present application can produce the corresponding voice-frequency reference data according to the first vibration variation data and the voice frequency variation data. Thereby, the artificial-intelligence application program can learn voice frequency and vibration conversion.
According to one embodiment of the present application, the application program includes an artificial intelligence algorithm and a voice frequency and vibration conversion program. The artificial intelligence algorithm is a deep neural network (DNN).
According to one embodiment of the present application, wherein the computing device converts the voice frequency variation data to a voice-frequency corresponding feature and the vibration variation data to a vibration corresponding feature. The voice-frequency corresponding feature and the vibration corresponding feature are the signal processing results for the log power spectrum, the Mel-frequency cepstrum (MFC), or the linear predictive coding (LPC) spectrum.
According to one embodiment of the present application, the vibration sensor is an accelerometer or a piezoelectric sensor.
The present application further discloses a system for converting vibration to voice frequency wirelessly, which comprises a sound collecting device and an computing device. The sound collecting device includes a vibration sensor, a voice frequency sensor, and a first wireless transmission unit. The computing device includes a processing unit, a storage unit, and a second wireless transmission unit. The vibration sensor senses a first vibration variation data of a throat part in a first sensing period and a second vibration variation data of the throat part in a second sensing period. The voice frequency sensor senses a voice frequency variation data of the throat part in the first sensing period. The first wireless transmission unit is unit connected to the computing device, the vibration sensor, and the voice frequency sensor. The storage unit stores an application program. The second wireless transmission unit is connected to the first wireless transmission unit. The processing unit receives the first vibration variation data and the voice frequency variation data via the first and second wireless transmission units. The computing device executes a voice frequency and vibration conversion program for converting the vibration variation data to a corresponding feature. The processing unit executes an artificial-intelligence application program and converts the vibration variation data of the corresponding feature to a voice-frequency mapping signal with a reference sound-field feature. The processing unit executes the voice frequency and vibration conversion program for converting the voice-frequency mapping signal of the corresponding feature to a voice-frequency output signal in an outputable format. According to the above description, it is known that the computing device according to the present application can produce the corresponding voice-frequency reference data according to the first vibration variation data and the voice frequency variation data. Then after the computing device receives the second vibration variation data, it refers to the voice-frequency reference data to convert the second vibration variation data to the voice-frequency output signal close to human voice.
According to another embodiment of the present application, the system for converting vibration to voice frequency wirelessly further comprises an output device, which is connected to the computing device, receives the voice-frequency output signal in an outputable format and outputs a voice signal according to the voice-frequency output signal.
According to another embodiment of the present application, the application program includes an artificial intelligence algorithm and a voice frequency and vibration conversion program. The artificial intelligence algorithm is a deep neural network (DNN).
According to an embodiment of the present application, the computing device converts the vibration variation data to a vibration corresponding feature, which is the signal processing results for the log power spectrum, the Mel-frequency cepstrum (MFC), or the linear predictive coding (LPC) spectrum.
According to another embodiment of the present application, the vibration sensor is an accelerometer or a piezoelectric sensor.
Since the current vibration sound collecting mechanism is unable to provide output signals with expected quality, the present application provides a system for converting vibration to voice frequency wireless and the method thereof to solve the problem.
First, please refer to
Please refer to
In the step S10, as shown in
In the step S25, as shown in
In the step S30, as shown in
The method for converting vibration to voice frequency wirelessly as described above uses the computing device to execute the artificial-intelligence application program. By using the artificial intelligence algorithm, the corresponding weighting relation between the voice-frequency corresponding feature and the first vibration corresponding feature can be learned. The weighting relation can be used as the reference for the artificial intelligence algorithm to convert the vibration variation data to voice-frequency output data. In the method for converting vibration to voice frequency wirelessly according to the following embodiment, the received vibration variation data is converted to the corresponding voice-frequency output signal by using the artificial intelligence algorithm with reference to the learned voice-frequency reference data. The details will be described as follows.
Please refer to
In the step S40, as shown in
In the step S45, as shown in
Accordingly, the voice-frequency output signal WO according to the present application corresponds to the voice-frequency variation data SW extracted in the step S10. In other words, the computing device 20 according to the present application calculates to give the voice-frequency reference data according to the first vibration variation data SV1 and the voice-frequency variation data SW acquired in the step S10. The voice-frequency reference data is then referred by the computing device 20 for converting the second vibration variation data SV2 acquired subsequently to the voice-frequency output signal WO, which is an output signal OUT close to the human voice. Thereby, for the applications of converting the vibration signals from the throat part to audio signals, the present application can provide less-distorted audio signals.
To sum up, the present application provides a system for converting vibration to voice frequency wirelessly. The computing device according to the present application calculates the first vibration variation data and the voice frequency variation data sensed by the sound collecting device in the first sensing period and produces the corresponding voice-frequency reference data, which is used for training the computing device. Next, the second vibration variation data sensed in the second sensing period can be converted to the voice-frequency output signal corresponding to the voice frequency variation data. Thereby, the output signal close to human voice can be provided.