System for cooling an electronic image assembly with circulating gas and ambient gas

Information

  • Patent Grant
  • 10314212
  • Patent Number
    10,314,212
  • Date Filed
    Monday, January 16, 2017
    8 years ago
  • Date Issued
    Tuesday, June 4, 2019
    5 years ago
Abstract
An apparatus for cooling an electronic image assembly with ambient gas and circulating gas is disclosed. A first fan may be positioned to force the circulating gas around the electronic image assembly in a closed loop while a second fan may be positioned to cause a flow of ambient gas. A structure is preferably positioned to allow the circulating gas to cross the flow of the ambient gas while substantially prohibiting the circulating gas from mixing with the ambient gas. A pair of manifolds may be placed along the sides of the electronic image assembly and may be in gaseous communication with a plurality of channels placed behind the electronic image assembly. A heat exchanger may be used in some exemplary embodiments.
Description
TECHNICAL FIELD

Exemplary embodiments generally relate to cooling systems and in particular to cooling systems for electronic displays.


BACKGROUND OF THE ART

Improvements to electronic displays now allow them to be used in outdoor environments for informational, advertising, or entertainment purposes. While displays of the past were primarily designed for operation near room temperature, it is now desirable to have displays which are capable of withstanding large surrounding environmental temperature variations. For example, some displays are capable of operating at temperatures as low as −22 F and as high as 113 F or higher. When surrounding temperatures rise, the cooling of the internal display components can become even more difficult.


Additionally, modern displays have become extremely bright, with some backlights producing 1,000-2,000 nits or more. Sometimes, these illumination levels are necessary because the display is being used outdoors, or in other relatively bright areas where the display illumination must compete with other ambient light. In order to produce this level of brightness, illumination devices and electronic displays may produce a relatively large amount of heat.


Still further, in some situations radiative heat transfer from the sun through a front display surface can also become a source of heat. In some locations 800-1400 Watts/m2 or more through such a front display surface is common. Furthermore, the market is demanding larger screen sizes for displays. With increased electronic display screen size and corresponding front display surfaces, more heat will be generated and more heat will be transmitted into the displays.


Exemplary modern displays have found some effective means for cooling the displays including circulating a closed loop of gas around the display and drawing ambient gas through the display so that the closed loop of gas may be cooled (as well as portions of the electronic display). Various thermal communications have been discovered which can transfer heat away from the sensitive electronic components and out of the display. Heat exchangers were found to produce an excellent means for transferring heat between the closed loop of gas and the ambient gas. However, previous designs for moving the gas through the display have been found to generate an undesirable amount of noise emission from the display as well as thermal gradients where portions of the display were cooled but others remained warm.


When using LCD displays, it was found that backlights were often a source of heat and it was desirable to move gas across the rear surface of the backlight in order to cool it. While desirable, it was thought that the front surface of the backlight could not be cooled for fear that the backlight cavity would become contaminated with dust, dirt, or other particulate.


SUMMARY OF THE EXEMPLARY EMBODIMENTS

Exemplary embodiments use a combination of circulating gas and ambient gas in order to adequately cool an electronic display. Circulating gas may be used to remove heat from the front of the image assembly. When using a LCD as the electronic image assembly, circulating gas may also be used to remove heat from the backlight cavity of the LCD. Because the gas is only circulating within the display, it can remain free of particulate and contaminates and will not harm the display.


Ambient gas may be ingested into the display in order to cool the circulating gas. The ambient gas and the circulating gas may be drawn through a heat exchanger which will allow the heat to transfer from the circulating gas to the ambient gas, preferably without letting the ambient and circulating gases mix with one another. An exemplary embodiment would use a cross-flow heat exchanger. An additional flow of ambient gas can be drawn across the rear surface of the image assembly to remove heat from the rear portion of the image assembly. When using a LCD as the electronic image assembly, this additional flow of ambient gas can be used to remove heat from the rear portion of the backlight for the LCD.


In order to reduce noise emissions, the fans which drive the ambient and/or circulating gas through the heat exchanger may be placed within the heat exchanger, which can then act as a muffler and reduce the noise emitted by the fans. Further, if using the additional ambient gas pathway behind the image assembly, a manifold may be used to collect the ambient gas along an edge of the display and distribute this into a number of smaller flows. The fans for driving this additional ambient gas pathway can be placed within the manifold in order to reduce the noise emitted by the fans and provide an even distribution of ambient gas across the display.


It has been found that ingesting ambient gas from the top or bottom edge of the display is preferable as these edges are not typically observable to the viewer. However, when ingesting ambient gas from the top or bottom of a portrait-oriented display, it has been found that as the cool ambient gas travels across the rear portion of the electronic image assembly and accepts heat it increases in temperature. Once the cooling air reaches the opposite edge (either top or bottom), it may have increased in temperature substantially and may no longer provide adequate cooling to the opposing portion of the display. Thus, the manifolds herein allow for cool ambient air to adequately cool the entire electronic image assembly in an even manner and reduce any ‘hot spots’ within the electronic image assembly.


The foregoing and other features and advantages will be apparent from the following more detailed description of the particular embodiments of the invention, as illustrated in the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of an exemplary embodiment will be obtained from a reading of the following detailed description and the accompanying drawings wherein identical reference characters refer to identical parts and in which:



FIG. 1A provides a front perspective view of an exemplary embodiment of the electronic display.



FIG. 1B provides a rear perspective view of an exemplary embodiment of the electronic display.



FIG. 2 provides a rear perspective view similar to that shown in FIG. 1B where the rear cover has been removed.



FIG. 3 provides a perspective sectional view along the A-A section line shown in FIG. B.



FIG. 4 provides a perspective sectional view along the B-B section line shown in FIG. 1B.



FIG. 5 provides a perspective sectional view of insert C shown in FIG. 4.



FIG. 6 provides a perspective sectional view of one embodiment of the cross through plate.



FIG. 7 provides an exploded perspective view of one exemplary embodiment of the heat exchanger and fan assembly.



FIG. 8 provides a perspective sectional view of another embodiment which uses a flow of circulating gas through the backlight cavity of a liquid crystal display (LCD).



FIG. 9 provides a perspective sectional view of an exemplary embodiment which uses a flow of circulating gas through the backlight cavity in addition to the flow of circulating gas between the LCD and front plate.





DETAILED DESCRIPTION

The invention is described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the size and relative sizes of layers and regions may be exaggerated for clarity.


It will be understood that when an element or layer is referred to as being “on” another element or layer, the element or layer can be directly on another element or layer or intervening elements or layers. In contrast, when an element is referred to as being “directly on” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.


It will be understood that, although the terms first, second, third, etc., may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present invention.


Spatially relative terms, such as “lower”, “upper” and the like, may be used herein for ease of description to describe the relationship of one element or feature to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “lower” relative to other elements or features would then be oriented “upper” relative the other elements or features. Thus, the exemplary term “lower” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.


The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.


Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing.


For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a binary change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.


Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.



FIG. 1A provides a front perspective view of an exemplary embodiment of the electronic display 100. A transparent front plate 10 is placed on the front portion of the display to protect the internal components and allow the images produced by the display 100 to be seen. Some embodiments may use glass as the transparent front plate 10. Exemplary embodiments may use two pieces of glass laminated with index-matching optical adhesive. Some front plates 10 may provide other utility such as anti-reflection or polarizing functions. An inlet aperture 24 and exit aperture 25 may be provided in the housing so that the display 100 can accept ambient gas for cooling the display 100.



FIG. 1B provides a rear perspective view of an exemplary embodiment of the electronic display 100. A rear cover 15 may be used to provide access to the internal components of the display 100.



FIG. 2 provides a rear perspective view similar to that shown in FIG. 1B where the rear cover 15 has been removed. Ambient gas 200 may be ingested into the display through the inlet aperture 24 and pass through a heat exchanger 45 and exit the display through the exit aperture 25. The ambient gas 200 may be drawn into the display and forced through the heat exchanger 45 using heat exchanger fan assembly 46. An exemplary placement for the heat exchanger fan assembly 46 is discussed further below, but in many embodiments the fan assembly 46 can be placed near the inlet aperture 24 and/or exit aperture 25 and may or may not be placed within the heat exchanger 45 (as shown in FIG. 2).


Optionally, ambient gas 210 may also be ingested into the display through inlet aperture 24 (or a separate inlet aperture). Ambient gas 210 may then be directed through a first manifold 30 which travels along the edge of the display. The first manifold 30 accepts the single larger inlet flow of ambient gas 210 and distributes it into a plurality of smaller flows (channels 60) across the display. A second manifold 35 may be placed along the opposite edge of the display as the first manifold 30. The second manifold 35 accepts the plurality of smaller flows (channels 60) and combines them into a single flow and exhausts it out of the exit aperture 25 (or a separate exit aperture). In this embodiment, a manifold fan assembly 211 is used to draw the ambient gas 210 into the inlet aperture 24 and force the ambient gas 210 across the display. For this particular embodiment, the manifold fan assembly 211 is placed within the first manifold 30 and is used to draw the ambient gas 210 into the display as well as distribute the single flow into a plurality of smaller flows (channels 60). This is not required however, as some embodiments may place the manifold fan assembly 211 in the second manifold 35, or within both the first and second manifolds 30 and 35.


The first and second manifolds 30 and 35 may be placed along any opposing edges of the display. However, it is preferable that the first and second manifolds 30 and 35 are placed along the vertical edges of the display with the channels 60 travelling horizontally. Other embodiments may place the first and second manifolds 30 and 35 along the horizontal edges of the display with the channels 60 travelling vertically.


While both flows of ambient gas may be used in an exemplary embodiment, there is no requirement that they are both used. Some embodiments may use only ambient gas 200 or ambient gas 210. Also, if using both flows of ambient gas 200 and ambient gas 210 there is no requirement that they share the same inlet and exit apertures. Thus, there may be separate inlet and exit apertures for the two flows of ambient gas.



FIG. 3 provides a perspective sectional view along the A-A section line shown in FIG. 1B. Again, ambient gas 200 may be ingested into the display through the inlet aperture 24 and pass through a heat exchanger 45 and exit the display through the exit aperture 25. The ambient gas 200 may be drawn into the display and forced through the heat exchanger 45 using heat exchanger fan assembly 46. Obviously, the inlet aperture 24 may contain a filter or other coverings so that contaminates, insects, garbage, and/or water/fluids cannot easily be ingested into the display. However, an exemplary embodiment would not be damaged if the ambient gas 200 contained contaminates as they would only pass through the heat exchanger 45 which may not be susceptible to damage from particulate or contaminates. Exit aperture 25 may also contain some type of covering to ensure that contaminates and/or insects could not enter the display.


An electronic image assembly 50 may be placed behind the front plate 10. A plurality of channels 60 may be placed behind the electronic image assembly 50. Ambient gas 210 may be forced through the channels 60 after travelling through the first manifold 30 (not shown here). The flow of ambient gas 210 behind the electronic image assembly 50 may be used to remove any buildup of heat from the rear portion of the electronic image assembly 50. It may be preferable to have a thermally conductive surface/plate on the rear portion of the electronic image assembly 50 so that heat can easily transfer to this surface/plate and be removed by the ambient gas 210.


The channels 60 can take on any number of forms. Although shown in this embodiment with a square cross-section this is not required. Other embodiments may contain channels 60 with I-beam cross-sections, hollow square cross-sections, hollow rectangular cross-section, solid rectangular or solid square cross-sections, ‘T’ cross-sections, ‘Z’ cross-sections, a honeycomb cross-section, or any combination or mixture of these. The channels 60 are preferably thermally conductive and also preferably in thermal communication with the electronic image assembly 50. Thus, in a preferred embodiment, heat which accumulates on the rear portion of the electronic image assembly 50 may be transferred throughout the channels 60 and removed by ambient gas 210. Preferably, the channels 60 are metallic and even more preferably aluminum. Further, in an exemplary embodiment the channels 60 are in conductive thermal communication with the electronic image assembly 50.



FIG. 4 provides a perspective sectional view along the B-B section line shown in FIG. 1B. In this view, the path of the circulating gas 250 can also be observed. The space between the front plate 10 and the electronic image assembly 50 may define a front channel 251, through which the circulating gas 250 may travel in order to remove any accumulation of heat on the front surface of the electronic image assembly 50. The circulating gas 250 is preferably then directed into the heat exchanger 45 where heat may be transferred from the circulating gas 250 to the ambient gas 200. Upon exiting the heat exchanger 45, the circulating gas 250 may be re-directed into the front channel 251. In this way, the heat exchanger 45 and the front channel 251 are placed in gaseous communication with each other.


The circulating gas 250 may also be directed over various electronic components 7 so that heat may be transferred from the electronic components 7 to the circulating gas 250. The electronic components 7 could be any one of the following but not limited to: power modules, heat sinks, capacitors, motors, microprocessors, hard drives, AC/DC converters, transformers, or printed circuit boards.


Also shown in this sectional view is the path of the ambient gas 210 travelling down one of the channels 60 behind the electronic image assembly 50. In this embodiment, the ambient gas 210 is forced out of the first manifold 30, across the channels 60, and into the second manifold 35 by manifold fan assembly 211. In other words, each channel 60 preferably has an inlet which is in gaseous communication with the first manifold 30 as well as an exit which is in gaseous communication with the second manifold 35. As shown in this Figure, the paths of the ambient gas 210 and the circulating gas 250 may cross, but it is preferable to keep the two gases from mixing (as the ambient gas 210 may contain particulate or contaminates while the circulating gas 250 can remain substantially free of particulate and contaminates). It may be preferable to keep the circulating gas 250 from having particulate or contaminates because it travels in front of the electronic image assembly 50. Thus, to keep the image quality from being impaired, it may be desirable to keep the circulating gas 250 clean and prevent it from mixing with the ambient gas 210.



FIG. 5 provides a perspective sectional view of insert C shown in FIG. 4. As noted above, if practicing an embodiment which uses ambient gas 210 as well as the circulating gas 250, the pathways of the two gases may need to cross over one another and it may be desirable to prohibit them from mixing to prevent contamination of sensitive portions of the display. Here, cross through plate 500 allows the pathways of the two gases to cross over one another without letting them mix together. The cross through plate 500 in this embodiment contains a series of voids which pass through the plate. A first series of voids 550 passes through the cross through plate 500 and allows ambient gas 210 to travel from the first manifold 30 into the channels 60 which run behind the electronic image assembly 50. A second series of voids 525 pass through the cross through plate 500 in a direction substantially perpendicular to that of the first series of voids 550. The second series of voids 525 allows the circulating gas to exit the front channel 251, cross over the ambient gas 210, and continue towards the heat exchanger 45. In this embodiment, a circulating gas fan assembly 255 is used to draw the circulating gas 250 through the front channel 251 and through the heat exchanger 45. Much like the other fan assemblies shown and described here, the circulating gas fan assembly 255 could be placed anywhere within the display, including but not limited to the entrance/exit of the heat exchanger 45 or the entrance/exit of the front channel 251.



FIG. 6 provides a perspective sectional view of one embodiment of the cross through plate 500. In this embodiment, the cross through plate 500 is comprised of a plurality of hollow blocks 503 sandwiched between a top plate 501 and bottom plate 502 with sections of the plates 501 and 502 removed to correspond with the hollow sections of the blocks 503. A portion of the top plate 501 has been removed to show the detail of the hollow blocks 503, first series of voids 550, and second series of voids 525. The cross through plate 500 could take on any number of forms and could be constructed in a number of ways. Some other embodiments may use a solid plate where the first and second series of voids 550 and 525 are cut out of the solid plate. Other embodiments could use two sets of hollow blocks where the hollow sections are perpendicular to each other and the blocks are fastened together. Still other embodiments could use a design similar to those that are taught below for the heat exchanger 45, for example any type of cross-flow heat exchanger design could be used. Thus, an exemplary cross through plate 500 contains two gaseous pathways where the two pathways do not allow the gaseous matter to mix. Here, the first gas pathway would be 525 while the second gas pathway would be 550.



FIG. 7 provides an exploded perspective view of one exemplary embodiment of the heat exchanger 45 and fan assembly 46. In this view, the fan assembly 46 is shown removed from its mounted position within the fan housing 51. In this embodiment, the heat exchanger 45 is divided into two portions 47 and 48 where the fan housing 51 is used to provide a gaseous communication between the two portions 47 and 48. Here, the fan assembly 46 is placed between the two portions 47 and 48. While the fan assembly 46 can be placed anywhere so that it draws ambient gas 200 through the heat exchanger 45, it has been found that placing the fan assembly 46 between the two portions of the heat exchanger can provide a number of benefits. First, the volumetric flow rate of the ambient gas 200 through the heat exchanger is high, which results in better cooling capabilities for the heat exchanger 45. Second, the noise produced by the fan assembly 46 can be reduced because the surrounding portions 47 and 48 of the heat exchanger 45 essentially act as a muffler for the fan assembly 46.


In this embodiment, portion 48 is thinner and longer than portion 47. This was done in order to free up more space within the housing so that additional electronic components could fit within the housing (adjacent to portion 48). As shown, the fan housing 51 may be used to connect two portions of a heat exchanger which may be of different lengths. As shown, portion 48 of the heat exchanger is thinner than the fan housing 51. In an alternative embodiment, both portions 48 and 47 may be thinner than the fan assembly 46 such that a fan housing 51 may be used to provide a sealed gaseous communication between the two portions, even though they are both thinner than the fan assembly 51. This design may be preferable when it is desirable to create the largest possible heat exchanger 45 (for maximum cooling abilities) even though space is limited. This is of course not required, and other embodiments may have portions which are of equal width and length. Also, although this embodiment uses the fan assembly 46 to drive the ambient gas 200, other embodiments could use a fan assembly placed within the heat exchanger to drive the circulating gas 250 instead and drive the ambient gas 200 with another fan assembly (possibly placed within the heat exchanger or located at the entrance/exit of the heat exchanger). Some exemplary embodiments may place fans within the heat exchanger 45 to drive both the ambient gas 200 and circulating gas 250.


The ambient gas 200 travels through a first pathway (or plurality of pathways) of the heat exchanger 45 while the circulating gas 250 travels through a second pathway (or plurality of pathways) of the heat exchanger 45. Although not required, it is preferable that the circulating gas 250 and ambient gas 200 do not mix. This may prevent any contaminates and/or particulate that is present within the ambient gas 200 from harming the interior of the display. In a preferred embodiment, the heat exchanger 45 would be a cross-flow heat exchanger. However, many types of heat exchangers are known and can be used with any of the embodiments herein. The heat exchanger 45 may be a cross-flow, parallel flow, or counter-flow heat exchanger. In an exemplary embodiment, the heat exchanger 45 would be comprised of a plurality of stacked layers of thin plates. The plates may have a corrugated, honeycomb, or tubular design, where a plurality of channels/pathways/tubes travel down the plate length-wise. The plates may be stacked such that the directions of the pathways are alternated with each adjacent plate, so that each plate's pathways are substantially perpendicular to the pathways of the adjacent plates. Thus, ambient gas or circulating gas may enter an exemplary heat exchanger only through plates whose channels or pathways travel parallel to the path of the gas. Because the plates are alternated, the circulating gas and ambient gas may travel in plates which are adjacent to one another and heat may be transferred between the two gases without mixing the gases themselves (if the heat exchanger is adequately sealed, which is preferable but not required).


In an alternative design for a heat exchanger, an open channel may be placed in between a pair of corrugated, honeycomb, or tubular plates. The open channel may travel in a direction which is perpendicular to the pathways of the adjacent plates. This open channel may be created by running two strips of material or tape (esp. very high bond (VHB) tape) between two opposite edges of the plates in a direction that is perpendicular to the direction of the pathways in the adjacent plates. Thus, gas entering the heat exchanger in a first direction may travel through the open channel (parallel to the strips or tape). Gas which is entering in a second direction (substantially perpendicular to the first direction) would travel through the pathways of the adjacent plates).


Other types of cross-flow heat exchangers could include a plurality of tubes which contain the first gas and travel perpendicular to the path of the second gas. As the second gas flows over the tubes containing the first gas, heat is exchanged between the two gases. Obviously, there are many types of cross-flow heat exchangers and any type would work with the embodiments herein.


An exemplary heat exchanger may have plates where the sidewalls have a relatively low thermal resistance so that heat can easily be exchanged between the two gases. A number of materials can be used to create the heat exchanger. Preferably, the material used should be corrosion resistant, rot resistant, light weight, and inexpensive. Metals are typically used for heat exchangers because of their high thermal conductivity and would work with these embodiments. However, it has been discovered that plastics and composites can also satisfy the thermal conditions for electronic displays. An exemplary embodiment would utilize polypropylene as the material for constructing the plates for the heat exchanger. It has been found that although polypropylene may seem like a poor thermal conductor, the large amount of surface area relative to a small sidewall thickness, results in an overall thermal resistance that is low. Thus, an exemplary heat exchanger would be made of plastic and would thus produce a display assembly that is thin and lightweight. Specifically, corrugated plastic may be used for each plate layer where they are stacked together in alternating fashion (i.e. each adjacent plate has channels which travel in a direction perpendicular to the surrounding plates).



FIG. 8 provides a perspective sectional view of another embodiment which uses a flow of circulating gas 350 through the backlight cavity of a liquid crystal display (LCD) 300. In this embodiment, a LCD 300 and an associated backlight 320 are used as the electronic image assembly. A backlight wall 330 may enclose the area between the LCD 300 and the backlight 320 in order to create a backlight cavity. Typically, the backlight cavity is closed to prevent contaminates/particulate from entering the backlight cavity and disrupting the optical/electrical functions of the backlight 320. However, as discussed above the exemplary embodiments may use a clean gaseous matter for the circulating gases which could now be used to ventilate the backlight cavity in order to cool the backlight 320 and even the rear portion of the LCD 300. An opening 340 can be placed in the backlight wall 330 to allow circulating gas 350 to flow through the backlight cavity. A fan assembly 360 may be used to draw the circulating gas 350 through the backlight cavity. In an exemplary embodiment there would be an opening on the opposing backlight wall (on the opposite side of the display as shown in this figure) so that circulating gas 350 could easily flow through the backlight cavity. In this way, the backlight cavity is placed in gaseous communication with the heat exchanger 45.



FIG. 9 provides a perspective sectional view of an exemplary embodiment which uses a flow of circulating gas 350 through the backlight cavity in addition to the flow of circulating gas 250 through the front channel 251 (the area defined between the LCD 300 and front plate 10). Circulating fan assembly 255 may be placed so that it can draw circulating gas 350 through the backlight cavity as well as circulating gas 250 through the front channel 251. As discussed above, the circulating gases 250 and 350 are preferably forced through the heat exchanger 45 (not shown in this figure) so that they may be cooled by the ambient gas 200 (also not shown in this figure). In this way, both the front channel 251 and the backlight cavity are placed in gaseous communication with the heat exchanger 45.


Also shown in FIG. 9 is the optional additional flow of ambient gas 210 which may travel immediately behind the electronic image assembly (in this embodiment backlight 320). Once travelling through the first manifold 30, the ambient gas 210 may pass through the channels 60 in order to remove heat from the backlight 320 and even the channels 60 themselves (if they are thermally conductive). The manifold fan assembly 211 may be used to draw the ambient gas 210 into the first manifold 30 and through the channels 60. Again, the cross though plate 500 may be used to allow the circulating gases 350 and 250 to cross paths with the ambient gas 210 without letting the two gases mix.


In an exemplary embodiment, the backlight 320 would contain a plurality of LEDs mounted on a thermally conductive substrate (preferably a metal core PCB). On the surface of the thermally conductive substrate which faces the channels 60 there may be a thermally conductive plate which may be in thermal communication with the channels 60. In an exemplary embodiment, the thermally conductive plate would be metallic and more preferably aluminum and the thermal communication between the channels 60 and the backlight 320 would be conductive thermal communication.


As noted above, many electronic image assemblies (especially LEDs, LCDs, and OLEDs) may have performance properties which vary depending on temperature.


When ‘hot spots’ are present within an image assembly, these hot spots can result in irregularities in the resulting image which might be visible to the end user. Thus, with the embodiments described herein, the heat which may be generated by the image assembly (sometimes containing a backlight assembly) can be distributed (somewhat evenly) throughout the channels 60 and thermally-conductive surfaces to remove hot spots and cool the backlight and/or electronic image assembly.


The circulating gases 250 and 350, ambient gas 200, and optional ambient gas 210 can be any number of gaseous matters. In some embodiments, air may be used as the gas for all. As well known by those of ordinary skill in the art, air typically contains some amount of water vapor. It should be noted that the use of the term ‘gas’ herein does not designate pure gas and that it is specifically contemplated that any of the gaseous matters described herein may contain some amount of impurities including but not limited to water vapor. Preferably, because the circulating gases 250 and 350 may travel in front of the image assembly and backlight respectively, they should be substantially clear, so that they will not affect the appearance of the image to a viewer. The circulating gases 250 and 350 should also preferably be substantially free of contaminates and/or particulate in order to prevent an adverse effect on the image quality and/or damage to the internal electronic components. It may sometimes be preferable to keep ambient gases 200 and 210 from having contaminates as well. Filters may be used to help reduce the particulate within ambient gases 200 and 210. Filters could be placed near the inlet aperture 24 so that ambient gases 200 and/or 210 could be drawn through the filter. However, in an exemplary embodiment the display may be designed so that contaminates could be present within the ambient gases 200 and 210 but this will not harm the display. In these embodiments, the heat exchanger 45, manifolds 30 and 35, channels 60, and any other pathway for ambient or circulating gas should be properly sealed so that any contaminates in the ambient gas would not enter sensitive portions of the display. Thus, in these exemplary embodiments, ambient air may be ingested for the ambient gases 200 and 210, even if the ambient air contains contaminates or particulate. This can be particularly beneficial when the display is used in outdoor environments or indoor environments where contaminates are present in the ambient air.


The cooling system may run continuously. However, if desired, temperature sensing devices (not shown) may be incorporated within the electronic display to detect when temperatures have reached a predetermined threshold value. In such a case, the various cooling fans may be selectively engaged when the temperature in the display reaches a predetermined value. Predetermined thresholds may be selected and the system may be configured to advantageously keep the display within an acceptable temperature range. Typical thermostat assemblies can be used to accomplish this task. Thermocouples may be used as the temperature sensing devices.


It is to be understood that the spirit and scope of the disclosed embodiments provides for the cooling of many types of electronic image assemblies. As used herein, the term ‘electronic image assembly’ is any electronic assembly for creating an image. At this time this, these are LCD (all types), light emitting diode (LED), organic light emitting diode (OLED), field emitting display (FED), light emitting polymer (LEP), organic electro luminescence (OEL), plasma displays, and any thin/flat panel electronic image assembly. Furthermore, embodiments may be used with displays of other types including those not yet discovered. In particular, it is contemplated that the system may be well suited for use with full color, flat panel OLED displays. Exemplary embodiments may also utilize large (55 inches or more) LED backlit, high definition liquid crystal displays (LCD). While the embodiments described herein are well suited for outdoor environments, they may also be appropriate for indoor applications (e.g., factory/industrial environments, spas, locker rooms) where thermal stability of the display may be a concern.


As is well known in the art, electronic displays can be oriented in a portrait manner or landscape manner and either can be used with the embodiments herein.


Having shown and described preferred embodiments, those skilled in the art will realize that many variations and modifications may be made to affect the described embodiments and still be within the scope of the claimed invention. Additionally, many of the elements indicated above may be altered or replaced by different elements which will provide the same result and fall within the spirit of the claimed invention. It is the intention, therefore, to limit the invention only as indicated by the scope of the claims.

Claims
  • 1. An apparatus comprising: an electronic image assembly;a housing assembly containing said electronic image assembly;a first fan connected to said housing assembly and adapted to circulate gas in a first path through an interior of said housing assembly;a second fan connected to said housing assembly and adapted to cause ambient gas from outside said housing assembly to circulate in a second path through said interior of said housing assembly; anda structure positioned within said housing assembly and configured to allow the gas in said first path to cross over the ambient gas in said second path.
  • 2. The apparatus of claim 1 wherein said second fan is adapted to circulate the ambient gas in said second path, which goes behind the electronic image assembly.
  • 3. The apparatus of claim 1 further comprising a plurality of channels behind said electronic image assembly, each said channel having an inlet and an exit configured to accept ambient gas.
  • 4. The apparatus of claim 3 further comprising: a first manifold in gaseous communication with said inlet of each said channel; anda second manifold in gaseous communication with said exit of each said channel.
  • 5. The apparatus of claim 4 wherein said first manifold and said second manifold are respectively placed along a pair of vertical edges of said electronic image assembly.
  • 6. The apparatus of claim 3 wherein said channels are in thermal communication with said electronic image assembly.
  • 7. The apparatus of claim 1 wherein said structure comprises a first series of voids configured to accept the gas in said first path and a second series of voids configured to accept the ambient gas in said second path.
  • 8. The apparatus of claim 1 wherein said structure comprises a first and a second series of voids wherein said first series of voids are oriented substantially perpendicular to said second series of voids.
  • 9. The apparatus of claim 1 wherein said first path crosses over said second path at a right angle.
  • 10. An apparatus comprising: an electronic image assembly;a housing assembly containing said electronic image assembly;a first fan connected to said housing assembly and adapted to circulate gas in a first path through said housing assembly;a second fan connected to said housing assembly and adapted to cause ambient gas to circulate in a second path through said housing assembly; anda structure comprising a first series of voids configured to accept the gas in said first path and a second series of voids configured to accept the ambient gas in said second path;wherein said first series of voids is oriented substantially perpendicular to said second series of voids.
  • 11. The apparatus of claim 10 further comprising a channel in front of said electronic image assembly such that said first fan is adapted to circulate the gas in said first path through said front channel.
  • 12. The apparatus of claim 10 further comprising a plurality of channels behind said electronic image assembly, each said channel having an inlet and an exit configured to accept ambient gas.
  • 13. The apparatus of claim 12 further comprising: a first manifold in gaseous communication with said inlet of each said channel; anda second manifold in gaseous communication with said exit of each said channel.
  • 14. The apparatus of claim 10 wherein said structure is configured to substantially separate the gas in said first path from the ambient gas in said second path.
  • 15. The apparatus of claim 10 further comprising a heat exchanger configured to accept the gas in said first path in addition to a second flow of ambient gas.
  • 16. An apparatus comprising: an electronic image assembly;a first fan adapted to circulate gas around said electronic image assembly in a first path;a second fan adapted to circulate a first flow of ambient gas;a first structure on a first side of said electronic image assembly configured to allow the gas in said first path to cross over the first flow of ambient gas;a second structure on a second side of said electronic image assembly configured to allow the gas in said first path to cross over the first flow of ambient gas; anda heat exchanger configured to accept the gas in said first path and a second flow of ambient gas.
  • 17. The apparatus of claim 16 further comprising: a first manifold adjacent to said first structure; anda second manifold adjacent to said second structure.
  • 18. The apparatus of claim 16 wherein said first structure and said second structure each comprise a first series of voids configured to accept the gas in said first path and a second series of voids configured to accept the first flow of ambient gas.
  • 19. The apparatus of claim 16 wherein said first structure and said second structure each comprise a first series of voids and a second series of voids such that said first series of voids is oriented substantially perpendicular to said second series of voids.
  • 20. The apparatus of claim 16 wherein said first structure and said second structure are each configured to substantially separate the gas in said first path from the first flow of ambient gas.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/664,213, filed on Mar. 20, 2015, now U.S. Pat. No. 9,549,490, issued Jan. 17, 2017, which is a continuation of U.S. application Ser. No. 14/300,869, filed on Jun. 10, 2014, now U.S. Pat. No. 8,988,647, issued Mar. 24, 2015, which is a continuation of U.S. application Ser. No. 13/100,556, filed on May 4, 2011, now U.S. Pat. No. 8,749,749, issued Jun. 10, 2014. U.S. application Ser. No. 13/100,556 is a non-provisional of U.S. Application No. 61/331,340, filed May 4, 2010. U.S. application Ser. No. 13/100,556 is also a continuation-in-part of U.S. application Ser. No. 12/905,704, filed Oct. 15, 2010, which is a non-provisional of U.S. Application No. 61/252,295, filed Oct. 16, 2009. U.S. application Ser. No. 13/100,556 is also a continuation-in-part of U.S. application Ser. No. 12/641,468, filed Dec. 18, 2009, now U.S. Pat. No. 8,654,302, issued Feb. 18, 2014, which is a non-provisional of U.S. Application No. 61/138,736, filed Dec. 18, 2008. U.S. application Ser. No. 13/100,556 is also a continuation-in-part of U.S. application Ser. No. 12/706,652, filed Feb. 16, 2010, now U.S. Pat. No. 8,358,397, issued Jan. 22, 2013, which is a non-provisional application of U.S. Application No. 61/152,879, filed Feb. 16, 2009. U.S. application Ser. No. 13/100,556 is also a continuation-in-part of U.S. application Ser. No. 12/952,745, filed Nov. 23, 2010, now U.S. Pat. No. 8,693,185, issued Apr. 8, 2014, which is a non-provisional of U.S. Application No. 61/321,364, filed Apr. 6, 2010. All aforementioned applications are hereby incorporated by reference in their entirety as if fully cited herein.

US Referenced Citations (386)
Number Name Date Kind
4093355 Kaplit et al. Jun 1978 A
4593978 Mourey et al. Jun 1986 A
4634225 Haim et al. Jan 1987 A
4748765 Martin Jun 1988 A
4763993 Vogeley et al. Aug 1988 A
4921041 Akachi May 1990 A
4952783 Aufderheide et al. Aug 1990 A
4952925 Haastert Aug 1990 A
5029982 Nash Jul 1991 A
5088806 McCartney et al. Feb 1992 A
5132666 Fahs Jul 1992 A
5247374 Terada Sep 1993 A
5282114 Stone Jan 1994 A
5293930 Pitasi Mar 1994 A
5351176 Smith et al. Sep 1994 A
5432526 Hyatt Jul 1995 A
5535816 Ishida Jul 1996 A
5559614 Urbish et al. Sep 1996 A
5621614 O'Neill Apr 1997 A
5657641 Cunningham et al. Aug 1997 A
5748269 Harris et al. May 1998 A
5765743 Sakiura et al. Jun 1998 A
5767489 Ferrier Jun 1998 A
5808418 Pitman et al. Sep 1998 A
5818010 McCann Oct 1998 A
5818694 Daikoku et al. Oct 1998 A
5835179 Yamanaka Nov 1998 A
5864465 Liu Jan 1999 A
5869818 Kim Feb 1999 A
5869919 Sato et al. Feb 1999 A
5903433 Gudmundsson May 1999 A
5991153 Heady et al. Nov 1999 A
6003015 Kang et al. Dec 1999 A
6007205 Fujimori Dec 1999 A
6043979 Shim Mar 2000 A
6089751 Conover et al. Jul 2000 A
6104451 Matsuoka et al. Aug 2000 A
6125565 Hillstrom Oct 2000 A
6157432 Helbing Dec 2000 A
6181070 Dunn et al. Jan 2001 B1
6191839 Briley et al. Feb 2001 B1
6198222 Chang Mar 2001 B1
6211934 Habing et al. Apr 2001 B1
6215655 Heady et al. Apr 2001 B1
6351381 Bilski et al. Feb 2002 B1
6392727 Larson et al. May 2002 B1
6417900 Shin et al. Jul 2002 B1
6473150 Takushima et al. Oct 2002 B1
6476883 Salimes et al. Nov 2002 B1
6493440 Gromatsky et al. Dec 2002 B2
6504713 Pandolfi et al. Jan 2003 B1
6535266 Nemeth et al. Mar 2003 B1
6628355 Takahara Sep 2003 B1
6701143 Dukach et al. Mar 2004 B1
6714410 Wellhofer Mar 2004 B2
6727468 Nemeth Apr 2004 B1
6742583 Tikka Jun 2004 B2
6812851 Dukach et al. Nov 2004 B1
6825828 Burke et al. Nov 2004 B2
6839104 Taniguchi et al. Jan 2005 B2
6850209 Mankins et al. Feb 2005 B2
6885412 Ohnishi et al. Apr 2005 B2
6886942 Okada et al. May 2005 B2
6891135 Pala et al. May 2005 B2
6909486 Wang et al. Jun 2005 B2
6943768 Cavanaugh et al. Sep 2005 B2
6961108 Wang et al. Nov 2005 B2
7015470 Faytlin et al. Mar 2006 B2
7059757 Shimizu Jun 2006 B2
7083285 Hsu et al. Aug 2006 B2
7157838 Thielemans et al. Jan 2007 B2
7161803 Heady Jan 2007 B1
7190416 Paukshto et al. Mar 2007 B2
7190587 Kim et al. Mar 2007 B2
7209349 Chien et al. Apr 2007 B2
7212403 Rockenfeller May 2007 B2
7259964 Yamamura et al. Aug 2007 B2
7269023 Nagano Sep 2007 B2
7284874 Jeong et al. Oct 2007 B2
7396145 Wang et al. Jul 2008 B2
7452121 Cho et al. Nov 2008 B2
7457113 Kumhyr et al. Nov 2008 B2
7480140 Hara et al. Jan 2009 B2
7535543 Dewa et al. May 2009 B2
7591508 Chang Sep 2009 B2
7602469 Shin Oct 2009 B2
D608775 Leung Jan 2010 S
7667964 Kang et al. Feb 2010 B2
7682047 Hsu et al. Mar 2010 B2
7752858 Johnson et al. Jul 2010 B2
7753567 Kang et al. Jul 2010 B2
7762707 Kim et al. Jul 2010 B2
7800706 Kim et al. Sep 2010 B2
7813124 Karppanen Oct 2010 B2
7903416 Chou Mar 2011 B2
7995342 Nakamichi et al. Aug 2011 B2
8004648 Dunn Aug 2011 B2
8035968 Kwon et al. Oct 2011 B2
8081465 Nishiura Dec 2011 B2
8102173 Merrow Jan 2012 B2
8142027 Sakai Mar 2012 B2
8208115 Dunn Jun 2012 B2
8223311 Kim et al. Jul 2012 B2
8241573 Banerjee et al. Aug 2012 B2
8248784 Nakamichi et al. Aug 2012 B2
8254121 Lee et al. Aug 2012 B2
8269916 Ohkawa Sep 2012 B2
8270163 Nakamichi et al. Sep 2012 B2
8274622 Dunn Sep 2012 B2
8274789 Nakamichi et al. Sep 2012 B2
8300203 Nakamichi et al. Oct 2012 B2
8320119 Isoshima et al. Nov 2012 B2
8351014 Dunn Jan 2013 B2
8358397 Dunn Jan 2013 B2
8369083 Dunn et al. Feb 2013 B2
8373841 Dunn Feb 2013 B2
8379182 Dunn Feb 2013 B2
8400608 Takahashi et al. Mar 2013 B2
8472174 Idems et al. Jun 2013 B2
8472191 Yamamoto et al. Jun 2013 B2
8482695 Dunn Jul 2013 B2
8497972 Dunn et al. Jul 2013 B2
8590602 Fernandez Nov 2013 B2
8649170 Dunn et al. Feb 2014 B2
8649176 Okada et al. Feb 2014 B2
8654302 Dunn et al. Feb 2014 B2
8678603 Zhang Mar 2014 B2
8693185 Dunn et al. Apr 2014 B2
8700226 Schuch et al. Apr 2014 B2
8711321 Dunn et al. Apr 2014 B2
8749749 Hubbard Jun 2014 B2
8755021 Hubbard Jun 2014 B2
8758144 Williams et al. Jun 2014 B2
8760613 Dunn Jun 2014 B2
8767165 Dunn Jul 2014 B2
8773633 Dunn et al. Jul 2014 B2
8804091 Dunn et al. Aug 2014 B2
8823916 Hubbard et al. Sep 2014 B2
8827472 Takada Sep 2014 B2
8854572 Dunn Oct 2014 B2
8854595 Dunn Oct 2014 B2
8879042 Dunn Nov 2014 B2
8976313 Kim et al. Mar 2015 B2
8988647 Hubbard Mar 2015 B2
9030641 Dunn May 2015 B2
9089079 Dunn Jul 2015 B2
9119325 Dunn et al. Aug 2015 B2
9119330 Hubbard et al. Aug 2015 B2
9173322 Dunn Oct 2015 B2
9173325 Dunn Oct 2015 B2
9282676 Diaz Mar 2016 B1
9285108 Dunn et al. Mar 2016 B2
9313917 Dunn et al. Apr 2016 B2
9370127 Dunn Jun 2016 B2
9448569 Schuch et al. Sep 2016 B2
9451060 Bowers et al. Sep 2016 B1
9451733 Dunn et al. Sep 2016 B2
9456525 Yoon et al. Sep 2016 B2
9470924 Dunn et al. Oct 2016 B2
9500896 Dunn et al. Nov 2016 B2
9516485 Bowers et al. Dec 2016 B1
9549490 Hubbard Jan 2017 B2
9594271 Dunn et al. Mar 2017 B2
9613548 DeMars Apr 2017 B2
9622392 Bowers et al. Apr 2017 B1
9629287 Dunn Apr 2017 B2
9648790 Dunn et al. May 2017 B2
9655289 Dunn et al. May 2017 B2
9703320 Bowers et al. Jul 2017 B2
9723765 DeMars Aug 2017 B2
9823690 Bowers et al. Nov 2017 B2
9835893 Dunn Dec 2017 B2
9894800 Dunn Feb 2018 B2
10080316 Dunn et al. Sep 2018 B2
10088702 Dunn et al. Oct 2018 B2
10194564 Dunn et al. Jan 2019 B2
20010001459 Savant et al. May 2001 A1
20010019454 Tadic-Galeb et al. Sep 2001 A1
20020009978 Dukach et al. Jan 2002 A1
20020033919 Sanelle et al. Mar 2002 A1
20020050793 Cull et al. May 2002 A1
20020065046 Mankins et al. May 2002 A1
20020084891 Mankins et al. Jul 2002 A1
20020101553 Enomoto et al. Aug 2002 A1
20020112026 Fridman et al. Aug 2002 A1
20020126248 Yoshia Sep 2002 A1
20020148600 Bosch et al. Oct 2002 A1
20020149714 Anderson et al. Oct 2002 A1
20020154255 Gromatzky et al. Oct 2002 A1
20020164944 Haglid Nov 2002 A1
20020164962 Mankins et al. Nov 2002 A1
20020167637 Burke et al. Nov 2002 A1
20030007109 Park Jan 2003 A1
20030020884 Okada et al. Jan 2003 A1
20030043091 Takeuchi et al. Mar 2003 A1
20030104210 Azumi et al. Jun 2003 A1
20030128511 Nagashima et al. Jul 2003 A1
20030214785 Perazzo Nov 2003 A1
20040012722 Alvarez Jan 2004 A1
20040035032 Milliken Feb 2004 A1
20040035558 Todd et al. Feb 2004 A1
20040036622 Dukach et al. Feb 2004 A1
20040036834 Ohnishi et al. Feb 2004 A1
20040042174 Tomioka et al. Mar 2004 A1
20040103570 Ruttenberg Jun 2004 A1
20040105159 Saccomanno et al. Jun 2004 A1
20040135482 Thielemans et al. Jul 2004 A1
20040165139 Anderson et al. Aug 2004 A1
20040223299 Ghosh Nov 2004 A1
20050012039 Faytlin et al. Jan 2005 A1
20050012722 Chon Jan 2005 A1
20050062373 Kim et al. Mar 2005 A1
20050073632 Dunn et al. Apr 2005 A1
20050073639 Pan Apr 2005 A1
20050127796 Olesen et al. Jun 2005 A1
20050134525 Tanghe et al. Jun 2005 A1
20050134526 Willem et al. Jun 2005 A1
20050213950 Yoshimura Sep 2005 A1
20050229630 Richter et al. Oct 2005 A1
20050237714 Ebermann Oct 2005 A1
20050253699 Madonia Nov 2005 A1
20050276053 Nortrup et al. Dec 2005 A1
20050286131 Saxena et al. Dec 2005 A1
20060012958 Tomioka et al. Jan 2006 A1
20060018093 Lai et al. Jan 2006 A1
20060034051 Wang et al. Feb 2006 A1
20060056994 Van Lear et al. Mar 2006 A1
20060082271 Lee et al. Apr 2006 A1
20060092348 Park May 2006 A1
20060125998 Dewa et al. Jun 2006 A1
20060132699 Cho et al. Jun 2006 A1
20060177587 Ishizuka et al. Aug 2006 A1
20060199514 Kimura Sep 2006 A1
20060209266 Utsunomiya Sep 2006 A1
20060260790 Theno et al. Nov 2006 A1
20060262079 Seong et al. Nov 2006 A1
20060266499 Choi et al. Nov 2006 A1
20060269216 Wiemeyer et al. Nov 2006 A1
20060283579 Ghosh et al. Dec 2006 A1
20070013647 Lee et al. Jan 2007 A1
20070019419 Hafuka et al. Jan 2007 A1
20070030879 Hatta Feb 2007 A1
20070047239 Kang et al. Mar 2007 A1
20070065091 Hinata et al. Mar 2007 A1
20070076431 Atarashi et al. Apr 2007 A1
20070081344 Cappaert et al. Apr 2007 A1
20070103863 Kim May 2007 A1
20070103866 Park May 2007 A1
20070115686 Tyberghien May 2007 A1
20070139929 Yoo et al. Jun 2007 A1
20070140671 Yoshimura Jun 2007 A1
20070151274 Roche et al. Jul 2007 A1
20070151664 Shin Jul 2007 A1
20070171353 Hong Jul 2007 A1
20070206158 Kinoshita et al. Sep 2007 A1
20070211205 Shibata Sep 2007 A1
20070212211 Chiyoda et al. Sep 2007 A1
20070217221 Lee et al. Sep 2007 A1
20070237636 Hsu Oct 2007 A1
20070267174 Kim Nov 2007 A1
20080035315 Han Feb 2008 A1
20080055534 Kawano Mar 2008 A1
20080076342 Bryant et al. Mar 2008 A1
20080099193 Aksamit et al. May 2008 A1
20080148609 Ogoreve Jun 2008 A1
20080209934 Richards Sep 2008 A1
20080218446 Yamanaka Sep 2008 A1
20080236005 Isayev et al. Oct 2008 A1
20080267790 Gaudet et al. Oct 2008 A1
20080283234 Sagi et al. Nov 2008 A1
20080285290 Ohashi et al. Nov 2008 A1
20080310116 O'Connor Dec 2008 A1
20090009047 Yanagawa et al. Jan 2009 A1
20090009729 Sakai Jan 2009 A1
20090059518 Kakikawa et al. Mar 2009 A1
20090065007 Wilkinson et al. Mar 2009 A1
20090086430 Kang et al. Apr 2009 A1
20090120629 Ashe May 2009 A1
20090122218 Oh et al. May 2009 A1
20090126906 Dunn May 2009 A1
20090126907 Dunn May 2009 A1
20090126914 Dunn May 2009 A1
20090135365 Dunn May 2009 A1
20090147170 Oh et al. Jun 2009 A1
20090154096 Iyengar et al. Jun 2009 A1
20090174626 Isoshima et al. Jul 2009 A1
20090231807 Bouissiere Sep 2009 A1
20090244472 Dunn Oct 2009 A1
20090279240 Karppanen Nov 2009 A1
20090302727 Vincent et al. Dec 2009 A1
20090306820 Simmons et al. Dec 2009 A1
20090323275 Rehmann et al. Dec 2009 A1
20100060861 Medin Mar 2010 A1
20100079949 Nakamichi et al. Apr 2010 A1
20100162747 Hamel et al. Jul 2010 A1
20100171889 Pantel et al. Jul 2010 A1
20100182562 Yoshida et al. Jul 2010 A1
20100220249 Nakamichi et al. Sep 2010 A1
20100226091 Dunn Sep 2010 A1
20100232107 Dunn Sep 2010 A1
20100238394 Dunn Sep 2010 A1
20100321887 Kwon et al. Dec 2010 A1
20110001898 Mikubo et al. Jan 2011 A1
20110013114 Dunn et al. Jan 2011 A1
20110019363 Vahlsing et al. Jan 2011 A1
20110051071 Nakamichi et al. Mar 2011 A1
20110058326 Idems et al. Mar 2011 A1
20110072697 Miller Mar 2011 A1
20110075361 Nakamichi et al. Mar 2011 A1
20110083460 Thomas et al. Apr 2011 A1
20110083824 Rogers Apr 2011 A1
20110085301 Dunn Apr 2011 A1
20110085302 Nakamichi et al. Apr 2011 A1
20110114384 Sakamoto et al. May 2011 A1
20110116000 Dunn et al. May 2011 A1
20110116231 Dunn et al. May 2011 A1
20110122162 Sato et al. May 2011 A1
20110141724 Erion Jun 2011 A1
20110261523 Dunn et al. Oct 2011 A1
20120006523 Masahiro et al. Jan 2012 A1
20120012295 Kakiuchi et al. Jan 2012 A1
20120012300 Dunn et al. Jan 2012 A1
20120014063 Weiss Jan 2012 A1
20120020114 Miyamoto et al. Jan 2012 A1
20120038849 Dunn et al. Feb 2012 A1
20120044217 Okada et al. Feb 2012 A1
20120106081 Hubbard et al. May 2012 A1
20120188481 Kang et al. Jul 2012 A1
20120206687 Dunn et al. Aug 2012 A1
20120249402 Kang Oct 2012 A1
20120255704 Nakamichi Oct 2012 A1
20120274876 Cappaert et al. Nov 2012 A1
20120284547 Culbert et al. Nov 2012 A1
20130170140 Dunn Jul 2013 A1
20130173358 Pinkus Jul 2013 A1
20130176517 Kim et al. Jul 2013 A1
20130201685 Messmore et al. Aug 2013 A1
20130258659 Erion Oct 2013 A1
20130279154 Dunn Oct 2013 A1
20130294039 Chao Nov 2013 A1
20140044147 Wyatt et al. Feb 2014 A1
20140085564 Hendren et al. Mar 2014 A1
20140111758 Dunn et al. Apr 2014 A1
20140113540 Dunn et al. Apr 2014 A1
20140134767 Ishida et al. May 2014 A1
20140313698 Dunn et al. Oct 2014 A1
20140314395 Dunn et al. Oct 2014 A1
20150009627 Dunn et al. Jan 2015 A1
20150253611 Yang et al. Sep 2015 A1
20150264826 Dunn et al. Sep 2015 A1
20150319882 Dunn et al. Nov 2015 A1
20150366101 Dunn et al. Dec 2015 A1
20160041423 Dunn Feb 2016 A1
20160044829 Dunn Feb 2016 A1
20160192536 Diaz Jun 2016 A1
20160195254 Dunn et al. Jul 2016 A1
20160198588 DeMars Jul 2016 A1
20160238876 Dunn et al. Aug 2016 A1
20160242329 DeMars Aug 2016 A1
20160242330 Dunn Aug 2016 A1
20160249493 Dunn et al. Aug 2016 A1
20160302331 Dunn Oct 2016 A1
20170023823 Dunn et al. Jan 2017 A1
20170068042 Dunn et al. Mar 2017 A1
20170074453 Bowers et al. Mar 2017 A1
20170083043 Bowers et al. Mar 2017 A1
20170083062 Bowers et al. Mar 2017 A1
20170111486 Bowers et al. Apr 2017 A1
20170111520 Bowers et al. Apr 2017 A1
20170111521 Bowers et al. Apr 2017 A1
20170127579 Hubbard May 2017 A1
20170140344 Bowers et al. May 2017 A1
20170147992 Bowers et al. May 2017 A1
20170163519 Bowers et al. Jun 2017 A1
20170175411 Bowers et al. Jun 2017 A1
20170188490 Dunn et al. Jun 2017 A1
20170245400 Dunn et al. Aug 2017 A1
20170332523 DeMars Nov 2017 A1
20180042134 Dunn et al. Feb 2018 A1
20180116073 Dunn Apr 2018 A1
20180314103 Dunn et al. Nov 2018 A1
20180315356 Dunn et al. Nov 2018 A1
20180317330 Dunn et al. Nov 2018 A1
20180317350 Dunn et al. Nov 2018 A1
20180364519 Dunn et al. Dec 2018 A1
20190037738 Dunn et al. Jan 2019 A1
Foreign Referenced Citations (105)
Number Date Country
2011248190 May 2011 AU
2017216500 Aug 2017 AU
2014287438 Jan 2018 AU
2015253128 Mar 2018 AU
2017216500 Jan 2019 AU
2705814 Feb 2018 CA
2947524 Apr 2018 CA
2915261 Aug 2018 CA
2809019 Sep 2018 CA
2702363 May 2005 CN
108700739 Oct 2018 CN
1408476 Apr 2004 EP
1647766 Apr 2006 EP
1762892 Mar 2007 EP
1951020 Jul 2008 EP
2225603 Sep 2010 EP
2370987 Oct 2011 EP
2603831 Jun 2013 EP
2801888 Nov 2014 EP
2909829 Aug 2015 EP
3020260 May 2016 EP
3117693 Jan 2017 EP
3259968 Dec 2017 EP
3423886 Jan 2019 EP
2402205 Dec 2004 GB
402062015 Mar 1990 JP
402307080 Dec 1990 JP
3153212 Jul 1991 JP
H062337 Jan 1994 JP
6082745 Mar 1994 JP
8115788 May 1996 JP
8194437 Jul 1996 JP
H08305301 Nov 1996 JP
8339034 Dec 1996 JP
H09246766 Sep 1997 JP
11160727 Jun 1999 JP
H11296094 Oct 1999 JP
2000010501 Jan 2000 JP
2001209126 Aug 2001 JP
2002158475 May 2002 JP
2004053749 Feb 2004 JP
2004199675 Jul 2004 JP
2004286940 Oct 2004 JP
2005017556 Jan 2005 JP
2000131682 May 2005 JP
2005134849 May 2005 JP
2005265922 Sep 2005 JP
2006513577 Apr 2006 JP
2007322718 May 2006 JP
2006148047 Jun 2006 JP
2006163217 Jun 2006 JP
2007003638 Jan 2007 JP
09307257 Nov 2007 JP
2007293105 Nov 2007 JP
2008010361 Jan 2008 JP
2008292743 Dec 2008 JP
2010024624 Feb 2010 JP
2010102227 May 2010 JP
2010282109 Dec 2010 JP
2011503663 Jan 2011 JP
2011075819 Apr 2011 JP
2012133254 Jul 2012 JP
2013537721 Oct 2013 JP
2014225595 Dec 2014 JP
6305564 Apr 2018 JP
2018511838 Apr 2018 JP
20000000118 Jan 2000 KR
20000047899 Jul 2000 KR
20040067701 Jul 2004 KR
200366674 Nov 2004 KR
20050033986 Apr 2005 KR
200401354 Nov 2005 KR
20060016469 Feb 2006 KR
100666961 Jan 2007 KR
1020070070675 Apr 2007 KR
1020070048294 Aug 2007 KR
101764381 Jul 2017 KR
10-1847151 Apr 2018 KR
10-1853885 Apr 2018 KR
10-1894027 Aug 2018 KR
101904363 Sep 2018 KR
2513043 Apr 2014 RU
WO2005079129 Aug 2005 WO
WO2007116116 Oct 2007 WO
WO2008050660 May 2008 WO
WO2009065125 May 2009 WO
WO2009065125 May 2009 WO
WO2009135308 Nov 2009 WO
WO2010007821 Feb 2010 WO
WO2010080624 Jul 2010 WO
WO2011069084 Jun 2011 WO
WO2011072217 Jun 2011 WO
WO2011140179 Nov 2011 WO
WO2011150078 Dec 2011 WO
WO2012021573 Feb 2012 WO
WO2012024426 Feb 2012 WO
2013182733 Dec 2013 WO
WO2014149773 Sep 2014 WO
WO2014150036 Sep 2014 WO
WO2015168375 Nov 2015 WO
WO2016102982 Jun 2016 WO
2016127613 Aug 2016 WO
WO2016133852 Aug 2016 WO
2018200260 Nov 2018 WO
2018200905 Nov 2018 WO
Non-Patent Literature Citations (33)
Entry
Itsenclosures, Product Catalog, 2009, 48 pages.
Itsenclosures, Standard Product Data Sheet, 2011, 18 pages.
Sunbritetv, All Weather Outdoor LCD Television Model 4610HD, 2008, 1 page.
Sunbritetv, Introduces Two New All-Weather Outdoor Televisions InfoComm 2008, 7 pages.
Itsenclosures, Viewstation, 2017, 16 pages.
Novitsky, Driving LEDs versus CCFLs for LCD backlighting, Nov. 12, 2007, 6 pages.
Federman, Cooling Flat Panel Displays, 2011, 4 pages.
Zeeff, T.M., EMC analysis of an 18″ LCD monitor, 2000, 1 page.
Vertigo Digital Displays, Innovation on Display FlexVu Totem Brochure, 2014, 6 pages.
Vertigo Digital Displays, FlexVu Totem Shelter, 2017, 2 pages.
Vertigo Digital Displays, All Products Catalogue, 2017,14 pages.
Adnation,Turn Key Advertising Technology Solutions, May 23, 2017, 4 pages.
CIVIQ Smartscapes, FlexVue Ferro 55P/55L, Mar. 16, 2017, 4 pages.
Wankhede, Evaluation of Cooling Solutions for Outdoor Electronics, Sep. 17-19, 2007, 6 pages.
Bureau of Ships Navy Department, Guide Manual of Cooling methods for Electronic Equipment, Mar. 31, 1955, 212 pages.
CIVIQ, Invalidity Claim Charts, Appendix A—Appendix D, Jan. 24, 2018, 51 pages.
CIVIQ, Invalidity Contentions, Jan. 24, 2018, 51 pages.
Scott, Cooling of Electronic Equipment, Apr. 4, 1947, 119 pages.
Sergent, Thermal Management Handbook for Electronic Assemblies, Aug. 14, 1998, 190 pages.
Steinberg, Cooling Techniques for Electronic Equipment First Edition, 1980, 255 pages.
Steinberg, Cooling Techniques for Electronic Equipment Second Edition, 1991, 299 pages.
Yeh, Thermal Management of Microelectronic Equipment, Oct. 15, 2002, 148 pages.
CIVIQ Smartscapes LLC. v. Manufacturing Resources International, Inc., Petition for Inter Partes Review of U.S. Pat. No. 8,854,572 including Declaration of Greg Blonder in Support of Petition, Curriculum Vitae of Greg Blonder and Prosecution History of U.S. Pat. No. 8,854,572, Petition filed Mar. 14, 2018, 427 pages.
The American Heritage College Dictionary, Third Edition, 1993, excerpt, 3 pages, Houghton Mifflin Company.
Mentley, David E., State of Flat-Panel Display Technology and Future Trends, Proceedings of the IEEE, Apr. 2002, vol. 90, No. 4, pp. 453-459.
Rohsenow, Warren M., Handbook of Heat Transfer, Third Edition, 1998, select chapters, 112 pages, McGraw-Hill.
CIVIQ, Invalidity Claim Chart, Appendix I, Mar. 22, 2018, 4 pages.
CIVIQ, Invalidity Claim Charts, Appendix F to H, Mar. 22, 2018, 18 pages.
CIVIQ Smartscapes LLC. v. Manufacturing Resources International, Inc., Defendant's Amended Answer and Countercliams to Plaintiff's First Amended Complaint, Filed Apr. 24, 2018, 240 pages.
Yung, Using Metal Core Printed Circuit Board as a Solution for Thermal Management article, 2007, 5 pages.
CIVIQ Smartscapes, LLC v. Manufacturing Resources International, Inc., Memorandum Opinion re claim construction, Sep. 27, 2018, 16 pages.
CIVIQ Smartscapes, LLC v. Manufacturing Resources International, Inc., Claim Construction Order, Oct. 3, 2018, 2 pages.
Anandan, Munismay, Progress of LED backlights for LCDs, Journal of the SID, 2008, pp. 287-310, 16/2.
Related Publications (1)
Number Date Country
20170127579 A1 May 2017 US
Provisional Applications (5)
Number Date Country
61331340 May 2010 US
61252295 Oct 2009 US
61138736 Dec 2008 US
61152879 Feb 2009 US
61321364 Apr 2010 US
Continuations (3)
Number Date Country
Parent 14664213 Mar 2015 US
Child 15407131 US
Parent 14300869 Jun 2014 US
Child 14664213 US
Parent 13100556 May 2011 US
Child 14300869 US
Continuation in Parts (4)
Number Date Country
Parent 12905704 Oct 2010 US
Child 13100556 US
Parent 12641468 Dec 2009 US
Child 13100556 US
Parent 12706652 Feb 2010 US
Child 13100556 US
Parent 12952745 Nov 2010 US
Child 13100556 US