This application claims priority of Japanese Patent Application No. 2004-269416, filed on Sep. 16, 2004, and entitled, “Electronic Apparatus Comprising a Cooling Apparatus for Cooling Interior and External Housing Surfaces.”
1. Technical Field
The present invention relates in general to the field of electronic apparatuses. More particularly, the present invention relates to the field of cooling electronic apparatuses. Still more particularly, the present invention relates to a system of cooling interior and external housing surfaces in electronic apparatuses.
2. Description of Related Art
Recently, for compact electronic apparatuses such as portable personal computers (PCs), the performance of internally provided electronic components has been improved and their installation density has been increased. As a result, during the operation of the compact electronic apparatuses, heat generated by the internally mounted electronic components has become a serious problem. Since there is a tendency that the thickness, weight, and size of the housings are reduced, the heat generated by the electronic components tends to be retained internally. Therefore, to ensure the performance and the reliability of electronic components, there is a need for a system of removing generated heat quickly to cool the housings of a data processing system such as a PC.
Since housings provided for compact electronic apparatuses have gotten smaller as the demand for more compact data processing systems increase, the installation of cooling apparatuses in the housings, such as fans, is difficult. Therefore, parts such as copper plates, aluminum plates, or heat pipes have been employed to move heat from heat generating sources to locations where the heat can be discharged. If the generated heat is not removed, the performance of the electronic components within the data processing system will degrade.
According to another method for transferring head generated by an electronic component, heat is conveyed to the inner surface of a housing and is externally removed at its outer surface. Since the removal of heat from the outer surface of the housing depends on the natural transfer of heat based on the difference between atmospheric temperature and the surface temperature of the housing, the heat discharge effect is not satisfactory. Furthermore, since during operation, the temperature at the surface of the housing is high, a person who comes in contact with the surface will experience an uncomfortably hot sensation which may result in a burn if the contact with the housing surface continues for an extended period of time. Thus, since people tend to carry personal computers, such as mobile PCs, in their hands or use them in their laps, heat at the surfaces of the housings has also become a problem. From the viewpoint of the users, measures are required (e.g., temperature reductions and surface cooling) that will reduce the heat of housing surfaces that regularly come in contact with the user. As a conventional countermeasure, the surfaces of housings are covered with materials with low thermal conductivity, such as resin. According to this method, only a small amount of heat is removed from the housing surfaces, and only reduced cooling effects are provided for internal electronic components.
Conventional techniques for the provision of cooling apparatuses in portable PCs are also disclosed in Japanese Utility Models No. 3064584 and No. 3043379, for example. However, these techniques are provided merely for the cooling PC housing interiors, not for reducing the temperatures of housing surfaces.
A system for cooling interior and external housing surfaces of an electronic apparatus is disclosed. The apparatus includes at least one electronic component, a heat transfer mechanism for transferring to an external surface of the apparatus heat generated by the electronic component, and a cooling mechanism for cooling the external surface of the apparatus. The cooling mechanism also includes an airflow generation device and an opening that enables airflow to simultaneously flow over at least one electronic component within the apparatus and over the external surface to dissipate the heat generated by the at least one electronic component.
The above-mentioned features, as well as additional objectives, features, and advantages of the present invention will become apparent in the following detailed written description.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objects and advantages thereof, will be best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
The present invention provides the cooling of the external surface of a housing for an electronic apparatus and of the electronic components (that generate heat during operation) that are disposed within the housing.
The present invention will now be described by employing a portable PC as an example. However, those with skill in this art will appreciate that the present invention is not limited to a PC and can be applied for other types of electronic apparatus.
A housing is formed of a core housing 12 and a cradle housing 14. A CPU 18 mounted on a printed circuit board 16, a heat sink 20 connected to the CPU 18 via a thermal conductive flexible member 19, ribs 22 that secure the heat sink 20 to the core housing 12, and electronic components 24 (not shown in details), such as a memory, various control ICs and an HDD, are arranged in the core housing 12.
A connector (not shown) for electric connection is provided at an end 33 of the core housing 12, and is detachable to a connector (not shown) mounted on the printed circuit board that is located at the bottom of an opening 40 formed in the cradle housing 14 and is used for an interface (I/O) 46. The core housing 12 is operated as a PC while being connected to the connector of the cradle housing 14. During the operation, the temperature on the surface of the core housing 12 is increased very much. Since the core housing 12 can be removed from the cradle housing 14 and carried, the core housing 12 can be used as a PC by being attached to another cradle housing in a different place.
The cradle housing 14 incorporates interfaces (I/Os) for a power source and external devices, such as a display device, a keyboard and a mouse), and have connectors 46 for these interfaces. A fan 30 is provided inside the cradle housing 14, and by the fan 30, air is taken through an opening 36 inside the cradle housing 14, and is impelled from the fan 30 to the surface of the core housing 12. An opening 42 is formed in the upper portion of the cradle housing 14, so that the part of the air from the fan 30 is output through the opening 42 and drifted along a surface 29 of the core housing 12, as indicated by arrows 44 (hereinafter referred to as an airflow 44).
The amount of the airflow 44 depends on the capacity of the fan 30 and the sizes of the openings 36, 26, 28 and 42. The airflow 44 does not necessarily reach the upper end of the core housing 12, i.e., the vicinity of the opening 28, but at least accelerate the discharge of heat transferred from the ribs 22. The amount of the airflow 44 is determined to satisfy the need. The fan 30 and the cradle housing 14 are tightly sealed except for the openings 36 and 42 to prevent the flow of air (air leaking) except for the airfiows 44 and 32 (will be described later in detail). With this arrangement, the pressure inside the cradle housing 14 is higher than the surroundings, and air is easily moved to the core housing 12 where pressure is lower and the upper end 28. By the airflow 44, a surface 29 of the core housing 12 is cooled during the operation of the PC, and as a result, the temperature on the surface 29 is reduced. At the same time, the effects (cooling effects) for removing heat that is transferred from the CPU 18 to the heat sink 20 and the ribs 22 to the core housing 12 are accelerated.
The part of the air impelled by the fan 30 flows from the opening 26 of the core housing 12 to the core housing 12, and is drifted along the core housing 12 as the airflow 32 that is to be externally discharged from the opening 28. By this airflow 32, the electronic components, such as the CPU 18, that generate heat during the operation, the heat sink 20 and the reverse surface of the core housing 12 are cooled. As is described above, in the PC shown in
The ribs 22 in
In the example in
A thermal conductive material, such as an aluminum alloy, copper, stainless steel or a magnesium alloy, can be employed for the heat sink 20 and the ribs 22. When a heat sink and a heat pipe are employed together as a heat transfer mechanism, the cooling effects are more increased.
The following experiment was conducted to examine the cooling effects provided by the airflow 44 that flows along the surface of the housing.
For the PC 10 in
CPU clock: 1 Ghz
fan: 4200 rpm
housing surface temperature:
CPU temperature:
The present invention has been explained by using the PCs in
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that the various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2004-269416 | Sep 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4682268 | Okano et al. | Jul 1987 | A |
5063476 | Hamadah et al. | Nov 1991 | A |
5475563 | Donahoe et al. | Dec 1995 | A |
5953211 | Donahoe et al. | Sep 1999 | A |
6084769 | Moore et al. | Jul 2000 | A |
6094347 | Bhatia | Jul 2000 | A |
6104607 | Behl | Aug 2000 | A |
6172871 | Holung et al. | Jan 2001 | B1 |
6266243 | Tomioka | Jul 2001 | B1 |
6459577 | Holmes et al. | Oct 2002 | B1 |
6522535 | Helot et al. | Feb 2003 | B1 |
6542360 | Koizumi | Apr 2003 | B2 |
6618248 | Dalheimer | Sep 2003 | B1 |
20010033475 | Lillios et al. | Oct 2001 | A1 |
20040027798 | Fujiwara | Feb 2004 | A1 |
20040156180 | Westerinen et al. | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060056151 A1 | Mar 2006 | US |