The disclosed technique relates to power line communication, in general, and to methods and systems for inductively coupling a power line communication modem to a power line network so that the phase-neutral interface as well as the neutral ground interface of the power line network are balanced, in particular.
Power line communication (herein abbreviated PLC) refers to systems for enabling data to be transferred over electrical cables. PLC is also referred to in the art as a power line digital subscriber line, a power line carrier, mains communication, power line telecom and power line networking. Electrical cables can also be referred to as power cables, power lines, electrical power lines, electrical wiring, electrical cabling and the like. These terms are used interchangeably herein and represent the cabling used to transfer electricity from an electricity provider, such as an electric company (e.g. Pacific Gas & Electric, Florida Power & Light, etc. . . . ) or an electricity generator (e.g., a wind energy converter), to a residence, as well as the wires used in a residence to transfer electricity to various wall sockets, electrical outlets, wall plugs and power points in the residence.
PLC enables various electrical devices, such as computers, printers, televisions and other electrical devices in a residence, to be coupled with one another as a network without the need for new wires to be added to the residence. A residence can refer to a private home, an apartment building, an office building or other structures where people live that receive electricity. In effect, the electric cabling forms the backbone of a power line network or a PLC network. Each electrical device to be coupled in the network requires a separate communication device for enabling it to transfer data over the electrical wiring. Such a communication device is usually referred to as a modem, and commonly referred to in the art as a power line modem. Such modems usually transfer data in a high frequency range, such as on the order of megahertz or higher. PLC systems and methods are known in the art.
Traditionally, power lines and their associated networks were designed for providing electricity and not for the purposes of communication and were thus not designed to provide an optimal medium for transferring data. Power line networks suffer from high levels of noise, which distorts and interferes with communication signals. Noise in PLC networks can be defined as any undesirable voltage signal which travels along the power line network and which might be received as a communication signal in one of the power line modems coupled with the network. Common sources of noise are various household devices coupled to the power line network.
Reference is now made to
The noise in PLC networks can be classified into two main categories, common mode (herein abbreviated CM) noise and differential mode (herein abbreviated DM) noise. CM noise is a signal which is referenced to the ground wire in a PLC network and which is injected simultaneously with the same polarity to two different lines in a PLC network. Hence, CM noise can affect two or more elements of a PLC network in a similar manner. DM noise is a signal which is injected simultaneously with opposing polarities to two different lines in a PLC network. Models are known in the art for modeling CM noise and DM noise in PLC networks, as shown in
Reference is now made to
A balanced interface is an interface consisting of two similar ports (or lines), each having substantially similar impedance relative to ground (i.e., ground impedance). For example, in
With reference to
Reference is now made to
A phase line 64 and a neutral line 66 of the PLC network (not referenced) are coupled with a second winding 74 of first transformer 60 (i.e., a network side winding). Each of phase line 64 and neutral line 66 includes a respective capacitor 65A and 65B for safety purposes. Neutral line 66 and a ground line 68 of the PLC network are coupled with a second winding 76 of second transformer 62. Phase line 64 and neutral line 66 define a network PN interface (not referenced). Neutral line 66 and ground line 68 define a network ground neutral (herein abbreviated NG) interface (not referenced). First modem line 54 and second modem line 56 together define a modem PN interface, which is inductively coupled with the network PN interface through first transformer 60. Third modem line 57 and fourth modem line 58 define a modem NG interface, which is inductively coupled with the network NG interface through second transformer 62.
Phase line 64 and neutral line 66 are employed for delivering power through the power line network. Phase line 64 is also referred to as an active line or a live line. Ground line 68 is employed for safety purposes. Coupling system 50 inductively couples modem 52 to the power line network through first and second transformers 60 and 62 respectively. Modem 52 is a communication device for transmitting and receiving communication signals to and from other communication devices in the PLC network, such as other PLC modems (not shown) coupled with other electrical devices (not shown) in the residence. For example, a remote PLC modem (not shown) transmits a modulated signal through the PLC network and specifically through coupling system 50 to modem 52. In a similar manner, modem 52 can transmit a modulated signal to the remote PLC modem through coupling system 50 and through the PLC network.
As can be seen in
It is an object of the disclosed technique to provide a novel system for inductively coupling a PLC modem to a power line network so that a first receive and transmit interface as well as a second receive and transmit interface of the PLC network is balanced. In accordance with the disclosed technique, there is thus provided a coupling circuit for coupling a power line communication device to a power line network, including a first network port, a second network port, a third network port, a first differential modem port, a second differential modem port, a third differential modem port, a fourth differential modem port, a first transformer, a second transformer, a third transformer and at least two capacitors. The first network port is coupled with a first network line, the second network port is coupled with a second network line and the third network port is coupled with a third network line. The first transformer including a first network side winding including two terminals, a first modem side transmitter (TX) winding including two terminals, a first modem side receiver (RX) winding including two terminals and a center tap, extending from a midpoint between the two terminals of the first network side winding. The first modem side TX winding being coupled with the first differential modem port, the first modem side RX winding being coupled with the second differential modem port, a first one of the two terminals of the first network side winding being coupled with the first network line and a second one of the two terminals of the first network side winding being coupled with the second network line. The second transformer includes a second network side winding including two terminals, and a second modem side RX winding including two terminals. The second modem side RX winding is coupled with the fourth differential modem port, a first one of the two terminals of the second network side winding is coupled with the center tap and a second one of the two terminals of the second network side winding is coupled with the third network line. The third transformer includes a third network side winding including two terminals and a second modem side TX winding including two terminals. The second modem side TX winding is coupled with the third differential modem port, a first one of the two terminals of the third network side winding is coupled with the second network line and a second one of the two terminals of the third network side winding is coupled with the third network line. In accordance with another embodiment of the disclosed technique, there is thus provided a power line communication device including a coupling circuit as described above.
In accordance with a further embodiment of the disclosed technique, there is thus provided a coupling circuit for coupling a power line communication device to a power line network, including a first network port, a second network port, a third network port, a first differential modem port, a second differential modem port, a third differential modem port, a fourth differential modem port, a first transformer, a second transformer, a third transformer and at least two capacitors. The first network port is coupled with a first network line, the second network port is coupled with a second network line and the third network port is coupled with a third network line. The first transformer includes a first network side winding including two terminals, a first modem side winding including two terminals and a center tap, extending from a midpoint between the two terminals of the first network side winding. The first modem side winding is coupled with the first differential modem port and with the second differential modem port, a first one of the two terminals of the first network side winding is coupled with the first network line and a second one of the two terminals of the first network side winding is coupled with the second network line, wherein one of the first and second differential modem ports is for transmitting at least one signal over the power line network and wherein the other one of the first and second differential modem ports is for receiving the signal over the power line network. The second transformer includes a second network side winding including two terminals and a second modem side receiver (RX) winding including two terminals. The second modem side RX winding is coupled with the fourth differential modem port, a first one of the two terminals of the second network side winding is coupled with the center tap and a second one of the two terminals of the second network side winding is coupled with the third network line. The third transformer includes a third network side winding including two terminals and a second modem side transmitter (TX) winding including two terminals. The second modem side TX winding is coupled with the third differential modem port, a first one of the two terminals of the third network side winding is coupled with the second network line and a second one of the two terminals of the third network side winding is coupled with the third network line.
In accordance with another embodiment of the disclosed technique, there is thus provided a coupling circuit for coupling a power line communication device to a power line network including a first network port, a second network port, a third network port, a first differential modem port, a second differential modem port, a third differential modem port, a fourth differential modem port, a first transformer, a second transformer and at least two capacitors. The first network port is coupled with a first network line, the second network port is coupled with a second network line and the third network port is coupled with a third network line. The first transformer includes a first network side winding including two terminals, a first modem side transmitter (TX) winding including two terminals, a first modem side receiver (RX) winding including two terminals and a center tap, extending from a midpoint of the first network side winding. The first modem side TX winding is coupled with the first differential modem port, the first modem side RX winding is coupled with the second differential modem port, a first one of the two terminals of the first network side winding is coupled with the first network line and a second one of the two terminals of the first network side winding is coupled with the second network line. The second transformer includes a second network side winding including two terminals, a second modem side TX winding including two terminals and a second modem side RX winding including two terminals. The second modem side TX winding is coupled with the third differential modem port, the second modem side RX winding is coupled with the fourth differential modem port, a first one of the two terminals of the second network side winding is coupled with the center tap and a second one of the two terminals of the second network side winding is coupled with the third network line. The capacitors are coupled between at least any two of the midpoint of the first network side winding and the first one of the two terminals of the second network side winding, a first one of the two terminals of the first network side winding and the first network port, and a second one of the two terminals of the first network side winding and the second network port. In accordance with a further embodiment of the disclosed technique, there is thus provided a power line communication device including a coupling circuit as described above.
In accordance with another embodiment of the disclosed technique, there is thus provided a coupling circuit for coupling a power line communication device to a power line network including a first network port, a second network port, a third network port, a first differential modem port, a second differential modem port, a third differential modem port, a fourth differential modem port, a first transformer, a second transformer and at least two capacitors. The first network port is coupled with a first network line, the second network port is coupled with a second network line and the third network port is coupled with a third network line. The first transformer includes a first network side winding including two terminals, a first modem side winding including two terminals and a center tap, extending from a midpoint of the first network side winding. The first modem side winding is coupled with the first differential modem port and with the second differential modem port, a first one of the two terminals of the first network side winding is coupled with the first network line and a second one of the two terminals of the first network side winding is coupled with the second network line, wherein one of the first and second differential modem ports is for transmitting at least one signal over the power line network and wherein the other one of the first and second differential modem ports is for receiving the signal over the power line network. The second transformer includes a second network side winding including two terminals and a second modem side winding including two terminals. The second modem side winding is coupled with the third differential modem port and with the fourth differential modem port, a first one of the two terminals of the second network side winding is coupled with the center tap and a second one of the two terminals of the second network side winding is coupled with the third network line, wherein one of the third and fourth differential modem ports is for transmitting at least one signal over the power line network and wherein the other one of the third and fourth differential modem ports is for receiving the signal over the power line network. The capacitors are coupled between at least any two of the midpoint of the first network side winding and the first one of the two terminals of the second network side winding, a first one of the two terminals of the first network side winding and the first network port, and a second one of the two terminals of the first network side winding and the second network port.
In accordance with a further embodiment of the disclosed technique, there is thus provided a coupling circuit for coupling a power line communication device to a power line network including a first network port, a second network port, a third network port, a first differential modem port, a second differential modem port, a third differential modem port, a fourth differential modem port, a first transformer, a second transformer and at least two capacitors. The first network port is coupled with a first network line, the second network port is coupled with a second network line and the third network port is coupled with a third network line. The first transformer includes a first network side winding including two terminals, a first modem side winding including two terminals and a center tap, extending from a midpoint of the first network side winding. The first modem side winding is coupled with the first differential modem port and with the second differential modem port, a first one of the two terminals of the first network side winding is coupled with the first network line and a second one of the two terminals of the first network side winding is coupled with the second network line, wherein one of the first and second differential modem ports is for transmitting at least one signal over the power line network and wherein the other one of the first and second differential modem ports is for receiving the signal over the power line network. The second transformer includes a second network side winding including two terminals, a second modem side transmitter (TX) winding including two terminals and a second modem side receiver (RX) winding including two terminals. The second modem side TX winding is coupled with the third differential modem port, the second modem side RX winding is coupled with the fourth differential modem port, a first one of the two terminals of the second network side winding is coupled with the center tap and a second one of the two terminals of the second network side winding is coupled with the third network line. The capacitors are coupled between at least any two of the midpoint of the first network side winding and the first one of the two terminals of the second network side winding, a first one of the two terminals of the first network side winding and the first network port and a second one of the two terminals of the first network side winding and the second network port.
In accordance with another embodiment of the disclosed technique, there is thus provided a coupling circuit for coupling a power line communication device to a power line network including a first network port, a second network port, a third network port, a first differential modem port, a second differential modem port, a third differential modem port, a fourth differential modem port, a first transformer, a second transformer and at least two capacitors. The first network port is coupled with a first network line, the second network port is coupled with a second network line and the third network port is coupled with a third network line. The first transformer includes a first network side winding including two terminals, a first modem side transmitter (TX) winding including two terminals, a first modem side receiver (RX) winding including two terminals and a center tap, extending from a midpoint of the first network side winding. The first modem side TX winding is coupled with the first differential modem port, the first modem side RX winding is coupled with the second differential modem port, a first one of the two terminals of the first network side winding is coupled with the first network line and a second one of the two terminals of the first network side winding is coupled with the second network line. The second transformer includes a second network side winding including two terminals and a second modem side winding including two terminals. The second modem side winding is coupled with the third differential modem port and with the fourth differential modem port, a first one of the two terminals of the second network side winding is coupled with the center tap and a second one of the two terminals of the second network side winding is coupled with the third network line, wherein one of the third and fourth differential modem ports is for transmitting at least one signal over the power line network and wherein the other one of the third and fourth differential modem ports is for receiving the signal over the power line network. The capacitors are coupled between at least any two of the midpoint of the first network side winding and the first one of the two terminals of the second network side winding, a first one of the two terminals of the first network side winding and the first network port, and a second one of the two terminals of the first network side winding and the second network port.
The disclosed technique will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
The disclosed technique overcomes the disadvantages of the prior art by providing a circuit for inductively coupling a PLC modem to a power line network such that the network PN interface of the PLC network is balanced. The balanced coupling circuit includes two differential modem ports, three network ports, two transformers and a center tap. Each of the differential modem ports is coupled with a respective transformer. Each of the network ports is coupled with a selected network line (i.e., a network phase line, a network neutral line and a network ground line). A first line of a first differential modem port and a second line of the first differential modem port are coupled with the terminals of the modem side winding of the first transformer. A first line of a second differential modem port and a second line of the second differential modem port are coupled with the terminals of the modem side winding of the second transformer. The first network port and the second network port are coupled with the terminals of the network side winding of the first transformer. The third network port is coupled with a first terminal of the network side winding of the second transformer. The center tap extends from the midpoint of the network side winding of the first transformer to a second terminal of the network side winding of the second transformer. Thus, the ground impedances of the first network port and the second network port are substantially similar. In this manner, an interface defined by the first network port and the second network port is balanced.
The disclosed technique also overcomes the disadvantages of the prior art by providing a circuit for inductively coupling a PLC modem to a power line network such that the network PN interface as well as the network NG interface of the PLC network are balanced. The balanced coupling circuit includes four differential modem ports, three network ports, three transformers, at least two capacitors and a center tap. Two of the differential modem ports are coupled with the first transformer, with one differential modem port acting as a transmitter over the PN interface and the other differential modem port acting as a receiver over the PN interface. The third differential modem port is coupled with the second transformer and acts as a receiver over the NG interface. The fourth differential modem port is coupled with the third transformer and acts as a transmitter over the NG interface. The first transformer includes a network side winding for receiving and transmitting signals. A first terminal of the network side winding is coupled with the first network port, while a second terminal of the network side winding is coupled with the second network port. The second transformer also includes a network side winding for receiving signals. A first terminal of the network side winding is coupled with the third network port, while a second terminal of the network side winding is coupled with a center tap of the first transformer. The center tap is located at a midpoint between the network side winding of the first transformer. The third transformer includes a network side winding for transmitting signals. A first terminal of the network side winding is coupled with the second network port, while a second terminal of the network side winding is coupled with the third network port.
Reference is now made to
First terminal 102 and second terminal 104 form a pair of terminals in first differential modem port 101A. First transformer line 114 and first terminal 102 can represent, for example, a modem side phase line, if first network line 120 is a phase line. Second transformer line 116 and second terminal 104 can represent, for example, a modem side neutral line, if second network line 122 is a neutral line. Third terminal 105 and fourth terminal 106 form a pair of terminals in second differential modem port 101B. Fourth transformer line 118 and fourth terminal 106 can represent, for example, a modem side ground line, if third network line 124 is a ground line. Third transformer line 117 and third terminal 105 can represent, for example, a modem side phase-neutral line, if first network line 120 and second network line 122 are respectively a phase line and a neutral line. First network port 108 is coupled with a PLC network line, such as a PLC network phase line (not shown). Second network port 110 is coupled with a PLC network line, such as a PLC network neutral line (not shown). Third network port 112 is coupled with a PLC network line, such as a PLC network ground line (not shown). First terminal 102 and second terminal 104 together define a first modem communication interface (not referenced), such as a modem PN interface. Third terminal 105 and fourth terminal 106 together define a second modem communication interface (not referenced), such as a modem PNG interface. First network port 108 and second network port 110 together define a first network communication interface (not referenced), such as a network PN interface. Second network port 110 and third network port 112 together define a second network communication interface (not referenced), such as a network NG interface.
According to the disclosed technique, the first network communication interface is balanced as it consists of similar conducting lines, i.e. first network line 120 and second network line 122, having similar impedances along their length and having similar ground impedances. Thus any CM noise signals traveling through first network line 120 and second network line 122, i.e. CM noise signals traveling through the network PN interface, substantially cancel each other on network side winding 132 of first transformer 126. Network side winding 132 of first transformer 126 defines a first phase-neutral-ground (herein abbreviated PNG) communication channel. In particular, network side winding 132 is coupled with, either directly or indirectly, each of first network line 120 (e.g. a phase line), third network line 124 (e.g. a ground line) and second network line 122 (e.g. a neutral line). Network side winding 136 of second transformer 128 defines a second PNG communication channel. In particular, network side winding 136 is coupled with, either directly or indirectly, each of first network line 120, third network line 124 and second network line 122.
Hence, modem side winding 130 of first transformer 126 couples first differential modem port 101A of a PLC modem (not shown) to the first PN communication channel. Modem side winding 134 of second transformer 128 couples second differential modem port 101 B of the modem to the second PNG communication channel. A signal received on first and second terminals 102 and 104 is a combination of the signals on the first and second network lines, e.g. the PN lines. In addition, a signal received on third and fourth terminals 105 and 106 is a combination of the signals on first, second and third network lines, e.g. the PNG lines. As a consequence, balanced coupling circuit 100 couples two different combinations of the PN and NG signals to the PLC modem instead of independently coupling the PN signal alone to one port on the PLC modem and the NG signal alone to another port of the PLC modem as is done in the prior art.
Reference is now made to
Reference is now made to
Reference is now made to
It is noted that each of the embodiments of the balanced coupling circuit of the disclosed technique, as shown above in
Reference is now made
As shown, first transformer 202 includes a modem side (not labeled) and a network side (not labeled). The modem side includes a first modem side transmitter (herein abbreviated TX) winding 206A and a first modem side receiver (herein abbreviated RX) winding 206B, for coupling first transformer 202 with the PLC device. The network side includes a first network side winding 208, for coupling first transformer 202 with the power line network. First modem side TX winding 206A is coupled with a transmitter analog front end (herein abbreviated TX AFE) 214A for transmitting signals over the power line network. First modem side RX winding 206B is coupled with a receiver analog front end (herein abbreviated RX AFE) 216A for receiving signals over the power line network. TX AFE 214A may also be coupled with a line driver (not shown), an amplifier (not shown) and the like. RX AFE 216A may also be coupled with at least one filter (not shown), such as an analog filter, and the like. TX AFE 214A is coupled with a first differential modem port 2281. RX AFE 216A is coupled with a second differential modem port 2282. Both of first modem side TX winding 206A and first modem side RX winding 206B are symmetrically coupled with first network side winding 208. It is noted that in another embodiment of the disclosed technique, the modem side of first transformer 202 includes only one winding (not shown). In such an embodiment, TX AFE 214A and RX AFE 216A are both coupled with the one winding for both transmitting and receiving signals over a PLC network. First differential modem port 2281 and second differential modem port 2282 are coupled with the PLC device. First differential modem port 2281 enables signals to be transmitted from the PLC device over a PN interface (as explained below) of the power line network. Second differential modem port 2282 enables signals to be received by the PLC device from the power line network over the PN interface of the power line network.
First network side winding 208 includes a first terminal 2201 and a second terminal 2202. First terminal 2201 couples first network side winding 208 with a phase line of the power line network, shown as a phase terminal 2301. Second terminal 2202 couples first network side winding 208 with a neutral line of the power line network, shown as a neutral terminal 2302. In this respect, first network side winding 208 couples first transformer 202 to phase terminal 2301 and neutral terminal 2302 thus forming a phase-neutral (herein abbreviated PN) interface over which signals can be transmitted and received.
Second transformer 204 includes a modem side (not labeled) and a network side (not labeled). The modem side includes a second modem side TX winding 210A and a second modem side RX winding 210B, for coupling second transformer 204 with the PLC device. The network side includes a second network side winding 212, for coupling second transformer 204 with the power line network. Second modem side TX winding 210A is coupled with a TX AFE 214B for transmitting signals over the power line network. Second modem side RX winding 210B is coupled with an RX AFE 216B for receiving signals over the power line network. TX AFE 214B may also be coupled with a line driver (not shown), an amplifier (not shown) and the like. RX AFE 216B may also be coupled with at least one filter (not shown), such as an analog filter, and the like. TX AFE 214B is coupled with a third differential modem port 2283. RX AFE 216B is coupled with a fourth differential modem port 2284. Both of second modem side TX winding 210A and second modem side RX winding 210B are symmetrically coupled with second network side winding 212. It is noted that in another embodiment of the disclosed technique, the modem side of second transformer 204 includes only one winding (not shown). In such an embodiment, TX AFE 214B and RX AFE 216B are both coupled with the one winding for both transmitting and receiving signals over a PLC network. Third differential modem port 2283 and fourth differential modem port 2284 are coupled with the PLC device. Third differential modem port 2283 enables signals to be transmitted from the PLC device over a PNG interface (as explained below) of the power line network. Fourth differential modem port 2284 enables signals to be received by the PLC device from the power line network over the PNG interface of the power line network.
Second network side winding 212 includes a first terminal 2181 and a second terminal 2182. First terminal 2181 couples second network side winding 212 with a midpoint 222 of first network side winding 208, as explained above in
The coupling circuit of the disclosed technique shown in
The coupling circuit shown in
It is noted that
Reference is now made to
As shown, first transformer 252 includes a modem side (not labeled) and a network side (not labeled). The modem side includes a first modem side TX winding 258A and a first modem side RX winding 258B, for coupling first transformer 252 with the PLC device. The network side includes a first network side winding 260, for coupling first transformer 252 with the power line network. First modem side TX winding 258A is coupled with a TX AFE 265A for transmitting signals over the power line network. First modem side RX winding 258B is coupled with an RX AFE 267A for receiving signals over the power line network. TX AFE 265A may also be coupled with a line driver (not shown), an amplifier (not shown) and the like. RX AFE 267A may also be coupled with at least one filter (not shown), such as an analog filter, and the like. TX AFE 265A is coupled with a first differential modem port 2781. RX AFE 267A is coupled with a second differential modem port 2782. Both of first modem side TX winding 258A and first modem side RX winding 258B are symmetrically coupled with first network side winding 260. It is noted that in another embodiment of the disclosed technique, the modem side of first transformer 252 includes only one winding (not shown). In such an embodiment, TX AFE 265A and RX AFE 267A are both coupled with the one winding for both transmitting and receiving signals over a PLC network. First differential modem port 2781 and second differential modem port 2782 are coupled with the PLC device. First differential modem port 2781 enables signals to be transmitted from the PLC device over a PN interface of the power line network, i.e. over a wire pair channel including a phase wire and a neutral wire. Second differential modem port 2782 enables signals to be received by the PLC device from the power line network over the PN interface of the power line network.
First network side winding 260 includes a first terminal 2721 and a second terminal 2722. First terminal 2721 couples first network side winding 260 with a phase line of the power line network, shown as a phase terminal 2801. Second terminal 2722 couples first network side winding 260 with a neutral line of the power line network, shown as a neutral terminal 2802. In this respect, first network side winding 260 couples first transformer 252 to phase terminal 2801 and neutral terminal 2802 thus forming a PN interface over which signals can be transmitted and received.
Second transformer 254 includes a modem side (not labeled) and a network side (not labeled). The modem side includes a second modem side RX winding 262, for coupling second transformer 254 with the PLC device. Unlike second transformer 204 (
Second network side winding 264 includes a first terminal 2821 and a second terminal 2822. First terminal 2821 couples second network side winding 264 with a midpoint 270 of first network side winding 260, as explained above in
Third transformer 256 includes a modem side (not labeled) and a network side (not labeled). The modem side includes a second modem side TX winding 266, for coupling third transformer 256 with the PLC device. The network side includes a third network side winding 268, for coupling third transformer 256 with the power line network. Second modem side TX winding 266 is coupled with TX AFE 265B. Third network side winding 268 includes a first terminal 2841 and a second terminal 2842. First terminal 2841 couples third network side winding 268 with the neutral wire at a point 286. Second terminal 2842 couples third network side winding 268 with a ground wire at a point 288. Third transformer 256 thus couples TX AFE 265B with neutral terminal 2802 and ground terminal 2803 thus forming an NG interface for transmitting signals over the power line network.
As shown, when signals are transmitted over the PN interface by TX AFE 265A, current is induced over phase terminal 2801 in the direction of an arrow 274A and over network terminal 2802 in the direction of an arrow 274B. Substantially no current is induced over ground terminal 2803. Thus the PN interface of coupling circuit 250 is balanced. When signals are transmitted over the NG interface by TX AFE 265B, current is induced over network terminal 2802 in the direction of arrows 274C and 274E and over ground terminal 2803 in the direction of an arrow 274D. No current is induced over phase terminal 2801. Thus the NG interface of coupling circuit 250 is also balanced with regards to transmitting signals over the PLC network. As shown, the coupling of the network sides of first transformer 252 and second transformer 254 are equivalent to the coupling of the network sides in coupling circuit 200 (
It is noted that coupling circuit 250 includes at least two capacitors, similar to the capacitors mentioned above in
It is noted that
It will be appreciated by persons skilled in the art that the disclosed technique is not limited to what has been particularly shown and described hereinabove. Rather the scope of the disclosed technique is defined only by the claims, which follow.
Number | Date | Country | |
---|---|---|---|
61443078 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IL2012/000078 | Feb 2012 | US |
Child | 13571032 | US |