System for damping engine speed oscillations

Information

  • Patent Grant
  • 6286473
  • Patent Number
    6,286,473
  • Date Filed
    Friday, March 31, 2000
    24 years ago
  • Date Issued
    Tuesday, September 11, 2001
    23 years ago
Abstract
A control strategy for use in combination with a hybrid electric vehicle 10 including a propulsion system 12 having an engine 14 and a starter/alternator 16 which is operatively coupled to crankshaft 18 of engine 14. The control strategy utilizes the starter/alternator 16 as an “active” flywheel and implements a variable parameter notch filter and a lead compensator to attenuate crankshaft speed oscillations.
Description




FIELD OF THE INVENTION




This invention relates to a system for damping engine speed oscillations and more particularly, to a system which utilizes a starter/alternator to damp crankshaft speed oscillations within a hybrid electric vehicle, thereby providing improved idle quality and fuel economy.




BACKGROUND OF THE INTENTION




The periodic fuel combustion processes within an internal combustion engine and the generally nonlinear engine geometry result in torque disturbances and crankshaft speed oscillations. These crankshaft speed oscillations adversely effect the smoothness and quality of the vehicle's ride, cause increased noise, vibration and harshness (“NVH”), and undesirably reduce fuel economy. Typically, a conventional “passive” flywheel is coupled to the end of the crankshaft to reduce the pulsation of the crankshaft speed.




Conventional flywheels are relatively massive and undesirably increase the overall weight and packing space of the vehicle's engine, and undesirably reduce fuel economy. Additionally, the effectiveness of flywheels in damping crankshaft speed oscillations is severely limited since conventional flywheels are “passive”, devices and are incapable of adjusting to changing operating conditions and circumstances.




There is therefore a need for a system for damping crankshaft speed oscillations which overcomes the drawbacks of prior systems and methods and which utilizes an active supplemental torque source such as a starter-alternator to attenuate crankshaft speed oscillations.




SUMMARY OF THE INVENTION




It is a first object of the invention to provide a system for damping engine crankshaft speed oscillations which overcomes the previously delineated drawbacks of prior methods, apparatuses, and devices.




It is a second object of the invention to provide a system which utilizes a supplemental torque source to damp engine crankshaft speed oscillations.




It is a third object of the invention to provide a system which is adapted for use within a hybrid electric vehicle and which utilizes a starter/alternator to actively damp engine crankshaft speed oscillations.




It is a fourth object of the invention to provide a system for damping engine crankshaft oscillations which includes a variable inverse notch filter and a variable lead compensator to attenuate crankshaft speed oscillations at a desired disturbance frequency.




According to a first aspect of the present invention, a system is provided for use in combination with a vehicle including an engine which drives a crankshaft at a first speed. The system is effective to damp oscillations in the first speed and includes an electric machine which is operatively coupled to the crankshaft and which is effective to selectively provide torque to the crankshaft, effective to alter the first speed; a sensor which measures the first speed and which generates a first signal based upon the measured first speed; and a controller which is communicatively coupled to the electric machine and to the sensor. The controller is effective to receive the first signal and, based upon the first signal, to communicate a second signal to the electric machine, the second signal being effective to cause the electric machine to selectively provide torque to the crankshaft, effective to alter the first speed in a manner which substantially attenuates the oscillations.




According to a second aspect of the present invention, a method is provided for damping speed oscillations in an engine having a crankshaft which rotates at a first speed, said method comprising the steps of providing a supplemental torque source; mounting said supplemental torque source on said crankshaft; measuring said first speed; generating a first signal corresponding to said measured first speed; processing said first signal by use of a variable parameter notch filter, effective to generate a second signal; utilizing said second signal to generate an output signal; and communicating said output signal to said supplemental torque source effective to cause said supplemental torque source to selectively provide torque to said crankshaft, said torque being effective to alter said first speed, thereby substantially attenuating said speed oscillations.




Further objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred embodiment of the invention and by reference to the following drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic diagram of a vehicle drive system having a control system for damping crankshaft oscillations which is made in accordance with the teachings of a preferred embodiment of the present invention.





FIG. 2

is a block diagram illustrating a control system model of the vehicle drive system shown in FIG.


1


.





FIG. 3

is a block diagram illustrating the control strategy for damping crankshaft oscillations which is performed by the control system used within the vehicle drive system of FIG.


1


.





FIG. 4

is a block diagram illustrating a portion of the control strategy for damping crankshaft oscillations which is shown in FIG.


3


.





FIG. 5

is two graphs which illustrate the frequency response characteristics of the inverse notch filter used within the strategy shown in FIG.


3


.





FIG. 6

is a graph which illustrates the reduction in the value of the crankshaft speed pulsation provided by one non-limiting embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION




Referring now to

FIG. 1

, there is shown a vehicle having a propulsion or drive system


12


which utilizes a control strategy or system for damping crankshaft oscillations in accordance with the teachings of the preferred embodiment of the present invention. Drive system


12


includes an internal combustion engine


14


, an electric machine, motor/generator or starter/alternator


16


which is operatively coupled to a conventional charge storage device


34


(e.g., a battery), and a controller or control unit


30


, which is communicatively coupled to starter/alternator


16


and to conventional vehicle operating sensors


32


. As should be appreciated by one of ordinary skill in the art, drive system


12


is a serial type propulsion system for use in a hybrid electric vehicle. It should further be appreciated that in alternate embodiments, propulsion system


12


may be arranged in other configurations such as a conventional parallel type hybrid configuration.




Drive system


12


further includes a conventional transmission assembly


22


which is selectively coupled to crankshaft


18


by use of a conventional clutch assembly


20


. Transmission assembly


22


is operatively coupled to and provides torque and power to a front differential assembly


24


by use of output shaft


25


. Transmission assembly


22


transfers torque and power through the differential assembly


24


to the front axle


26


, thereby drivably turning the front wheels


28


of vehicle


10


.




As described more fully and completely below, controller


30


receives signals from sensors


32


, and based upon the received signals, controller


30


utilizes starter/alternator


16


as a supplemental torque source to act as an active “flywheel”, thereby damping crankshaft speed oscillations. By utilizing starter/alternator


16


as an “active” flywheel, drive system


12


reduces the overall weight of vehicle


10


(e.g., by eliminating a conventional flywheel), improves drive line NVH, idle quality and fuel economy.




In the preferred embodiment of the invention, engine


14


is a conventional internal combustion engine which drivably rotates and delivers torque through crankshaft


18


. Electric machine


16


is a conventional motor/generator or starter/alternator unit of the type which is adapted for use in a hybrid electric vehicle. Starter/alternator


16


includes a stator assembly


15


and a rotor assembly


17


which is operatively coupled or mounted to crankshaft


18


in a known and conventional manner. By use of the control strategy of the preferred embodiment, starter/alternator


16


selectively provides torque to the crankshaft


18


, effective to remove or damp crankshaft oscillations. It should be appreciated that starter/alternator


16


may also function as a generator to convert drive train energy into electrical energy which is used to charge battery


34


and to electrically power various electrical components of vehicle


10


, and as a motor to supplement the torque provided by engine


14


. Electrical charge storage device


34


supplies power to motor-generator


16


and can further be used to recover and store energy during vehicle braking.




Controller


30


includes one or more microprocessors and/or integrated circuits which cooperatively perform the below-described calculations, algorithms, and/or control strategies. In the preferred embodiment of the invention, controller


30


includes a conventional memory unit


31


having both permanent and temporary memory. Memory


31


is adapted to and does store at least a portion of the operating software which directs the operation of controller


30


. As should also be apparent to those of ordinary skill in the art, controller


30


and memory


31


may actually comprise a plurality of commercially available, conventional, and disparate chips or devices, which are operatively and communicatively linked in a cooperative manner.




Sensors


32


comprise one or more conventional and commercially available sensors which measure information pertaining to the engine. In the preferred embodiment of the invention, sensors


32


include one or more conventional engine or crankshaft speed sensors and one or more crankshaft position sensors. Sensors


32


provide data, such as engine speed and position values to controller


30


, which utilizes these values, as discussed more fully and completely below, to generate torque commands to starter/alternator


16


which substantially reduce or eliminate the undesirable speed oscillations of crankshaft


18


. It should be appreciated that sensors


32


may include conventional filtering and/or processing devices or circuits (e.g., low pass, high pass, and/or band pass filters) which filter and/or process the measured or sensed data prior to sending the data to controller


30


.




Referring now to

FIG. 2

, there is shown a block diagram


40


which models or represents the present control system or “active” flywheel function of the present invention. Particularly, in diagram


40


, “D(s)” represents the dynamics of controller


30


, “P(s)” represents the dynamics of the electric component of starter/alternator


16


, “G(s)” represents the mechanical component of starter/alternator


16


, and “S(s)” represents the engine speed sensor or sensor


32


. Furthermore, in diagram


40


, “ω


r


” represents the reference crankshaft speed, “n” represents sensor “noise”, and “φ” represents the crank angle (e.g., the angular position of crankshaft


18


). The torque provided by engine


14


“T


e


” is considered an external disturbance, and controller


30


utilizes the starter/alternator


16


as an “active flywheel” to attenuate “ac” components (e.g., disturbances) of the engine torque, thereby substantially eliminating crankshaft speed oscillations. In one non-limiting embodiment, the electric component P(s) is modeled by the system function or equation







P


(
s
)


=

1



T
a


s

+
1












where T


a


is an electrical time constant; the mechanical component G(s) is modeled by the system function or equation







G


(
s
)


=

1

Js
+
b












where J is the moment of inertia of drive system


12


and b is a damping coefficient greater than zero; and the engine speed sensor is modeled as a first order low pass filter by the system function or equation







S


(
s
)


=


2

π






p
s



s
+

2

π






p
s














where p


s


is the bandwidth of the speed sensor. The dynamics of controller


30


(i.e., D(s)) are discussed more fully and completely below.




In the preferred embodiment, controller


30


is partitioned into an “inner” loop or portion and “outer” loop or portion. The inner loop is run or operated at a relatively high frequency (e.g., 10 kHz), and includes the field oriented control of starter/alternator


14


. The outer loop is run or operated at a slower frequency (e.g., 1 kHz), and provides torque commands for the inner loop to attenuate “ac” components of the engine torque.




Referring now to

FIG. 3

, there is shown one non-limiting embodiment of the control strategy or system


50


(e.g., an outer loop control strategy) which is utilized or executed by controller


30


to damp crankshaft speed oscillations. Control strategy


50


begins at functional block or step


52


, where the engine or crankshaft speed in revolutions per minute (“RPM”) is measured by use of sensors


32


. The measured engine speed is entered or inputted into signal conditioning functional block or step


54


, which partitions the signal into a dc component (e.g., average speed) and an ac component (e.g., speed ripple). The signal conditioning process or operation performed within step


54


is illustrated by flow diagram


70


of FIG.


4


.




Referring now to

FIG. 4

, the measured engine speed in RPM, illustrated by block


72


, is communicated to functional block or step


74


, which represents a conventional scaling circuit or process and is effective to convert the measured engine speed in RPM into radians per second (“rad/sec”). The scaled engine speed is communicated to functional blocks


76


and


78


. In functional block or step


76


, the scaled engine speed is exposed to a conventional high pass filtering process or circuit, effective to remove the “dc” component of the engine speed, thereby extracting the “ac” component or the “speed ripple” (e.g., crankshaft speed oscillations) present within the engine speed.




The extracted speed ripple is communicated to functional blocks or steps


78


and


84


. In functional block or step


84


, the extracted speed ripple signal is exposed to a low pass filter to remove noise. The filtered signal is outputted from block


84


as a speed ripple output signal (“speed ripple”). In functional block or step


78


, the extracted speed ripple is subtracted from the scaled engine speed to yield an average engine speed value. In functional block or step


80


, the average speed is scaled by a factor of two, thereby adjusting the speed to compensate for two firing events per crankshaft revolution which occur within engine


14


. In functional block or step


82


, the scaled average speed is limited by use of a conventional limiting circuit or process, thereby eliminating transients and providing a limited average speed output signal (“speed_ave_lim”).




Referring again to

FIG. 3

, the limited average speed output is communicated directly to functional block or step


60


. The speed ripple signal is communicated to functional block or step


56


, which represents a feedback gain having a predetermined and/or selectable value


57


. The resulting amplified speed ripple signal is communicated to functional block or step


60


.




Functional block or step


60


represents a highly tuned variable parameter or “inverse” notch filter which is utilized by controller


30


to attenuate engine speed pulsation or oscillations at a given frequency. In one non-limiting embodiment, the inverse notch filter is represented by the following system function or equation:










D


(
s
)


=



s
2

+

2


ξ
d



ω
n


+

ω
n
2




s
2

+

2


ξ
n



ω
n


s

+

ω
n
2







Eq.  (1)













where ξ


d


=0.5 ξ


n


is preferably relatively small (e.g., ξ


n


=0.05), and ω


n


is selected close to the disturbance frequency ω


d


(e.g., the oscillation frequency). In one non-limiting embodiment of the invention, the variable parameter notch filter


60


(represented by Eq. (1)) may be implemented by use of a “zero-order hold” (“ZOH”) approximation. Particularly, the ZOH approximation is performed in the following manner by use of the following calculations:




coefficients a


1


and a


2


are calculated as follows:






a


1


=2ξ


n


ω


n


  Eq. (3)








a


2





n


  Eq. (4)






where ω


n


is set equal to the average engine speed and ξ


n


is the selected damping ratio. Coefficients λ


0


and λ


1


are calculated as follows:











λ
0

=

-



a
1


T

2



,




Eq.  (5)







λ
1

=

T




a
2

-


a
1
2

4








Eq.  (6)













where T is the relevant time period. Coefficients λ


0


and λ


1


are then used to calculate α


0


and α


1


as follows:











α
0

=




λ
0




(


cos






λ
1


-

sin






λ
1




λ
0


λ
1




)



,




Eq.  (7)







α
1

=




λ
0






sin






λ
1



λ
1


.






Eq.  (8)













Variables α


0


and α


1


are used to determine matrixes F, G:









F
=

(





α
0

-


α
1



a
1


T






-

α
1




a
2


T







α
1


T




α
0




)





Eq.  (9)






G
=


(





α
1


T








-

1

a
2





(


α
0

-


α
1



a
1


T

-
1

)


-



a
1


a
2




α
1


T





)

.





Eq.  (10)













Finally, the matrixes F and G are used in the following equations as a discrete model for the variable notch filter:






x(k+1)=Fx(k)+Gu(k)  Eq. (11)








y k+1)=Hx(k)+Ju(k)  Eq. (12)






where x(k) represents the state vector, y(k) represents the response or output signal, u(k) represents the input signal, J is equal to one, and H is the vector (b


1


−a


1


, 0) where b


1


=2ξ


d


ω


n


.




Although the foregoing ZOH approximation yields very accurate results, it requires a relatively large amount of computation time and may not be the best approximation in applications where computation time is critical. Thus, in the preferred embodiment of the invention, a different design technique is implemented which utilizes a “Tustin” approximation. Particularly, the “Tustin” approximation is used within functional block or step


60


.




The Tustin method uses approximation






s
=


2
T




1
-

z

-
1




1
+

z

-
1















for space vector derivatives, and after some manipulations the discrete time variable notch filter Tustin approximation is as follows:











x


1

k

+
1


=




1
-


a
1



T
2


-


a
2




T
2

4




1
+


a
1



T
2


+


a
2




T
2

4






x

1

k



-




a
2


T


1
+


a
1



T
2


+


a
2




T
2

4






x

2

k



+


T

2


(

1
+


a
1



T
2


+


a
2




T
2

4



)





(


u
k

+

u

k
+
1



)




;




Eq.  (12)








x


2

k

+
1


=


x

2

k


+


T
2



[



2


x

1

k




1
+


a
1



T
2


+


a
2




T
2

4




-




a
2


T


1
+


a
1



T
2


+


a
2




T
2

4






x

2

k



+


T

2


(

1
+


a
1



T
2


+


a
2




T
2

4



)





(


u
k

+

u

k
+
1



)



]




;




Eq.  (13)













and






y


k+1


=C


1


x


1k+1


+u


k+1


  Eq. (14);






where the coefficients a


1


and a


2


are respectively calculated by use of Eq. (3) and Eq. (4), x


k


represents a state vector (x


1k


, x


2k


), y


k


represents the output or system response, u


k


represents the system input, and C


1


represents the vector (b


1


−a


1


, 0) where b


1


=2ξ


d


ω


n


.




The output of notch filter


60


is communicated to functional block or step


62


which represents a high frequency variable parameter lead compensator. In the preferred embodiment of the invention, variable lead compensator


62


may be modeled by use of the following equation:













D


(
s
)


=


b
a




s
+
a


s
+
b




,


b
a

=
α





1




Eq.  (15)













where α>1 is a lead ratio. The high frequency lead compensator


62


improves the phase margin response of the system, thereby improving system stability.




The resulting output signal is highly tuned to the given disturbance frequency. One example of the frequency response characteristics of the inverse notch filter


60


and lead compensator


62


utilized within the present system is illustrated in graphs


100


and


200


of FIG.


5


. Particularly, in graph


100


, response curve


102


represents the characteristic of an inverse notch filter in which ξ


d


=0.5, ξ


n


is set to a relatively small value (e.g., ξ


n


=0.05), and ω


n


=180 rad/sec, compared to the response curve


104


of a conventional proportional controller or control system utilizing a proportional gain Kp of 30. As shown in graph


100


, the response


102


of the inverse notch filter has a sharp gain increase of approximately 28 dB at a frequency ω of 180 rad/sec, thereby allowing controller


30


to attenuate the disturbance around frequency ω


n


. As shown in graph


100


, the added gain at the desired frequency ω


n


provides significant improvement over the proportional control response


104


. Furthermore, as illustrated in graph


200


of

FIG. 5

, the phase margin of PM=60 degrees is achieved by compensator


62


at a lower frequency (e.g., 761 rad/sec) than in the case of a pure lead compensator.




The resulting output signal from block


62


comprises a torque control or command signal or value which is communicated to functional block or step


64


. Functional block or step


64


is a conventional limiter or limiting circuit, process or function, which limits the possible torque control signal to a certain predetermined range, thereby substantially eliminating any undesirably high or low torque command values which could damage the system or cause instability. The limited torque control signal is communicated to functional block or step


66


which utilizes a high pass filter to remove the dc component of the torque control signal. The torque control signal which is output from block


66


is communicated by controller


30


to starter/alternator


16


and is effective to cause starter alternator to compensate for to attenuate the undesirable crankshaft oscillations.




The “active” flywheel strategy of the present system provides superior damping of crankshaft oscillations over prior systems, devices and methods. For example and without limitation, the present system significantly reduces crankshaft speed oscillations by increasing the gain at the disturbance frequency by use of variable parameter notch filter, and further improves the overall system phase margin with the use of lead compensator


62


.




Experimental data of the notch filter of the present invention implemented upon a drive system such as system


12


has shown drastic improvement of engine pulsation attenuation even when using conventional drive system hardware which is not optimized specifically for active flywheel function. For example and without limitation, graph


300


of

FIG. 6

represents experimental data of the afore-described control system implemented on a conventional serial hybrid vehicle and illustrates that the root-mean-square (“r.m.s.”) value of the speed pulsation is reduced essentially.




It is understood that the invention is not limited by the exact construction or method illustrated and described above, but that various changes and/or modifications may be made without departing from the spirit and/or the scope of the inventions.



Claims
  • 1. A system for use in combination with a vehicle including an engine which drives a crankshaft at a first speed, said system being effective to damp oscillations of said first speed and comprising:an electric machine which is operatively mounted to said crankshaft and which is effective to selectively provide torque to said crankshaft, thereby altering said first speed; a sensor which measures said first speed and which generates a first signal based upon said measured first speed; and a controller which is communicatively coupled to said electric machine and to said sensor, said controller being effective to receive said first signal, to partition this signal into an ac component and a dc component, to process this partitioned signal by use of an inverse notch filter and, based upon said processed signal, to communicate a second signal to said electric machine, said second signal being effective to cause said electric machine to selectively provide torque to said crankshaft, effective to alter said first speed in a manner which substantially attenuates said oscillations.
  • 2. The system of claim 1 wherein said electric machine is a starter/alternator.
  • 3. The system of claim 1 wherein said controller is further effective to process said first signal by use of an inverse notch filter, and is effective to attenuate said crankshaft oscillations at a certain frequency value determined by said inverse notch filter.
  • 4. The system of claim 1 wherein said controller is further effective to implement said inverse notch filter by use of a zero-order hold approximation.
  • 5. The system of claim 1 wherein said controller is further effective to implement said inverse notch filter by use of a Tustin approximation.
  • 6. The system of claim 1 wherein said system has a phase margin and wherein said controller is further effective to process said first signal by use of a lead compensator, effective to improve said phase margin.
  • 7. The system of claim 3 wherein said controller is further effective to partition said first signal into a dc component and an ac component prior to using said inverse notch filter.
  • 8. The system of claim 1 wherein said controller is further effective to limit said second signal to a predetermined range of values.
  • 9. The system of claim 1 wherein said vehicle is a hybrid electric vehicle.
  • 10. A hybrid electric vehicle having improved damping of engine crankshaft speed oscillations and comprising:an engine which drivably rotates a crankshaft at a first speed which includes certain oscillations; a starter/alternator which is operatively coupled to said crankshaft, and which is effective to selectively provide torque to said crankshaft; a sensor which measures said first speed and which generates a first signal based upon said measured first speed; and a controller which is communicatively coupled to said sensor and to said starter/alternator, said controller being effective to receive said first signal, to partition said first signal into a second signal and a third signal, to filter said second signal and said third signal by use of an inverse notch filter, and to communicate a torque command signal to said starter/alternator based upon said filtered second and third signals, said torque command signal being effective to cause said starter/alternator to selectively provide torque to said crankshaft, thereby substantially damping said certain oscillations in said first speed.
  • 11. The hybrid electric vehicle of claim 10 wherein said controller has a certain phase margin and wherein said controller is further effective to process said torque command signal by use of a lead compensator, thereby improving said phase margin.
  • 12. The hybrid electric vehicle of claim 10 wherein said controller is further effective to process said torque command signal by use of a limiting function.
  • 13. The hybrid electric vehicle of claim 10 wherein said torque command signal includes an ac component and a dc component, and wherein said controller is further effective to process said torque command signal by use of a high pass filter, thereby removing said dc component prior to communicating said torque command signal to said starter/alternator.
  • 14. A method for damping speed oscillations in an engine having a crankshaft which rotates at a certain speed, said method comprising the steps of:providing a supplemental torque source; mounting said supplemental torque source on said crankshaft; measuring said first speed; generating a first signal corresponding to said measured first speed; processing said first signal by use of inverse notch filter, effective to generate a second signal; utilizing said second signal to generate an output signal; and communicating said output signal to said supplemental torque source effective to cause said supplemental torque source to selectively provide torque to said crankshaft, said torque being effective to alter said first speed, thereby substantially attenuating said speed oscillations.
  • 15. The method of claim 14 wherein said supplemental torque source comprises a starter/alternator.
  • 16. The method or claim 14 further comprising the steps of:processing said second signal by use of a variable lead compensator, effective to generate a third signal; and utilizing said third signal to generate said output signal.
  • 17. The method of claim 16 further comprising the steps of:processing said third signal by use of a limiting circuit, effective to generate a fourth signal; and utilizing said fourth signal to generate said output signal.
  • 18. The method of claim 17 wherein said fourth signal includes a dc component and an ac component, said method further comprising the steps of:processing said fourth signal by use of a high pass filter effective to remove said dc component and to generate said output signal.
US Referenced Citations (5)
Number Name Date Kind
4699097 Tanaka et al. Oct 1987
4862009 King Aug 1989
4922869 Kadomukai et al. May 1990
5033425 Kadomukai et al. Jul 1991
6085723 Pels et al. Jul 2000
Foreign Referenced Citations (1)
Number Date Country
11-325 168 Nov 1999 JP