System for delivering sequential components

Information

  • Patent Application
  • 20070235369
  • Publication Number
    20070235369
  • Date Filed
    March 16, 2007
    18 years ago
  • Date Published
    October 11, 2007
    18 years ago
Abstract
System 10 delivers specified medication(s) 10M of a specified dosage in a specified sequence (see FIG. 1A). Flexible cover lamina 12C is pressed into selective engagement base lamina 12B defining a series of sequential storage units 10X and 10Y and 10Z with frangible seal 14F (no hatching) and destruct seal 14D (double hatching). Sealed medication chamber 16M is proximate the destruct seal within each storage unit. Chamber access region 16R is proximate the frangible seal within each storage unit. Diagonal chamber seal 14S (single hatching) extends across each storage unit. Breachable bubble 16B is positioned within each chamber access region and expands under applied pressure towards the frangible seal of the storage unit (see FIGS. 1A and 1B). The expansion separates the opposed laminae until the bubble produces perimeter breach 12P (see FIG. 1C) in the frangible seal. Flexible peel flap 14C is formed by the flexible cover lamina along the breached frangible seal as the bubble breaches. The flap is peeled away from the base lamina by the user, parting the chamber seal to open the medication chamber providing access to the medication stored therein.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

Further objects and advantages of the sequence of storage units and the operation of the breachable bubble will become apparent from the following detailed description and drawings (not drawn to scale) in which:



FIG. 1A is a fragmentary top view of a series of storage units 10X and 10Y and 10Z showing medication chamber 16M containing medications 1CM;



FIG. 1B is a fragmentary sectional view taken generally along reference line IB-IB of FIG. 1A prior to the breaching of bubble 16B;



FIG. 1C is a fragmentary side view of the storage units after to the breaching of bubble 16B;



FIG. 2 is a fragmentary top view of delivery sheet 20 of storage units 20U;



FIG. 3 is a top view of delivery strip 30 of storage units 30U showing catch tray 32T;



FIG. 4 is a side view of medication dispenser 48D for supporting delivery spool 48 containing a roll of sequential storage units 40U; and



FIG. 5 is a front view of a calendar medication delivery system 50 having rigid base 52B.





The first digit of each reference numeral in the above figures indicates the figure in which an element or feature is most prominently shown. The second digit indicates related elements or features, and a final letter (when used) indicates a sub-portion of an element or feature.


REFERENCE NUMERALS IN DRAWINGS

The table below lists the reference numerals employed in the figures, and identifies the element designated by each numeral.














10 Delivery system










10K
Corner



10M
Medication(s)



10X
Sequential Storage Unit



10Y
Sequential Storage Unit



10Z
Sequential Storage Unit



10XY
Boundary



10YZ
Boundary



12B
Base Lamina



12C
Cover Lamina



12P
Perimeter Breach



14B
Base Flexible peel flap



14C
Cover Flexible peel flap



14D
Destruct Seal Portion (left and right)



14F
Frangible Seal Portion (left and right)



14S
Diagonal Chamber Seal



14XY
Tear-Away Cut Lines



14YZ
Tear-Away Cut Lines



16B
Breachable Bubble



16M
Sealed Medication Chamber



16R
Chamber Access Region







20 Delivery Sheet










20K
Corner



20U
Sequential Storage Unit



24P
Tear-Away Perforations 24P



26R
Chamber Access Region







30 Delivery Strip










30L
Medical Data Label



30U
Sequential Storage Unit



32B
Base Lamina



32C
Cover Lamina



32T
Catch Tray



34F
Frangible Seal Portions



36M
Medication Chamber



36R
Chamber Access Region



40M
Medications



40U
Sequential Storage Unit







48 Delivery Spool










48D
Medication Dispenser



48M
Inner Mooring End



48T
Outer Terminal End







50 Calendar Matrix










50A
am Storage Unit



50P
pm Storage Unit



50U
Storage Units



52B
Rigid Base Lamina










General Embodiment—(FIGS. 1ABC)

System 10 delivers specified components in specified quantities such as medication(s) 10M of a specified dosage, in a specified sequence (see FIG. 1A). Flexible cover lamina 12C is pressed into selective engagement base lamina 12B (see FIG. 1B). The selective engagement of the opposed laminae defines a series of sequential storage units 10X and 10Y and 10Z. A perimeter seal is formed around each storage unit by the pressed selective engagement. The perimeter seal has a frangible seal portion and a destruct seal portion. The perimeter seal for storage unit 10Y has frangible seal portion 14F (no hatching) and destruct seal portion 14D (double hatching). A frangible seal formed by two laminae heat pressed together can be separated without harmful damage to either lamina, simply by pulling the laminae apart. A destruct seal, however, cannot be separated without damage to one or both of the laminae.


Sealed medication chamber 16M for storing a dosage of the medication, is proximate the destruct seal within each storage unit. Chamber access region 16R for accessing the medication chamber, is proximate the frangible seal portion within each storage unit. Diagonal chamber seal 14S (single hatching) formed by the pressed selective engagement of the opposed laminae, extends across each storage unit between the medication chamber and the chamber access region. Breachable bubble 16B is positioned within each chamber access region between the frangible seal portion and the chamber seal. The bubble is formed by a volume gas, such as ambient air, trapped between the opposed laminae during the selective engagement. The bubble expands under applied pressure towards the frangible seal of the storage unit (see FIGS. 1A and 1B). The expansion separates the opposed laminae forming the bubble, until the bubble produces perimeter breach 12P (see FIG. 1C) in the frangible seal portion. Flexible peel flap 14C is formed by the flexible cover lamina along the breached frangible seal as the bubble breaches. The flap is peeled away from the base lamina by the user, parting the chamber seal to open the medication chamber providing access to the medication stored therein. The user may be the patient who is under medication, or the caretaker who administers the medication or other healthcare professional.


The destruct seals are stronger than the frangible seals due to a higher temperature and/or pressure and/or dwell-time during the pressing stage of seal formation. That is, the destruct seals are fused together more than the frangible seals. Preferably the chamber seal has a strength greater than the weak frangible seal but not as great as the strong destruct seal. The chamber seal is stronger than the weak frangible seal so that the chamber seal will not separate during breaching of the bubble which produces the perimeter breach. The chamber seal is weaker than the strong destruct seal so that the medication chamber can be pulled opened after breach of the frangible seal.


U.S. Pat. No. 6,726,364 issued on Apr. 27, 2004 to the present inventor shows a breaching bubble which provides opposed peel flaps along a perimeter breach. The flaps are peeled back by the user to open a chamber and present a product. The subject matter of U.S. Pat. No. 6,726,364 is hereby incorporated by reference in its entirety into this disclosure.


Diagonal Chamber Seal—FIG. 1A

The chamber seal within each storage unit may extend diagonally across the storage unit between the medication chamber and the chamber access region. Diagonal chamber seal 14S (see FIG. 1A) defines triangular shapes for medication chamber 16M and chamber access region 16R. The triangular medication chamber has destruct seals 14D (left and right) along the two legs, and diagonal chamber seal 14S across the hypotenuse. The triangular chamber access region has frangible seals 14F (left and right) along the two legs, and chamber seal 14S across the hypotenuse. The chamber seal is about 1.4 times as long as a single leg of the frangible seal. When the chamber seal is parted, the user has maximum finger or hand access to the medications in the medication chamber. Other non-diagonal configurations may be employed. FIG. 2 shows a non-symmetrical embodiment in which chamber access region 26R is limited to a small area in corner 20K. FIG. 3 shows a straight embodiment in which medication chamber 36M is larger than chamber access region 36R.


The boundaries between the sequential storage units has both a destruct seal and a frangible seal. Boundary 10XY between unit 10X and 10Y has frangible seal 14F (right) of unit 10X, adjacent to destruct seal 14D (left) of unit 10Y. Likewise, boundary 10YZ between unit 10Y and 10Z has frangible seal 14F (right) of unit by, adjacent to destruct seal 14D (left) of unit 10Z. The frangible seal must peel away as a storage unit is opened, leaving the adjacent destruct seal intact for maintaining the integrity of the adjacent storage unit. Cover lamina 12C has tear-away cut line 14XY along boundary 10XY, and tear-away cut line 14YZ along boundary 10YZ. The cut lines are between the frangible seal and the destruct seal to permit the cover lamina of one storage unit to pull-away from the cover lamina of the adjacent storage unit. This tear-away cut line is preferable a depth controlled laser cut through the cover lamina, which terminates at the base lamina.


The delivery system may have a flexible cover lamina with a rigid base lamina, which provides a single flexible peel flap. The user holds the rigid base down and pulls the flexible flap away to expose the medication. Alternatively, base lamina 12B may also be flexible forming flexible peel flap 14B opposed to peel flap 14C formed by flexible cover lamina 12C (see FIG. 1C). The pair of peel flaps facilitates pulling apart the chamber seal.


The peel flaps may be positioned at a corner of each storage unit. Corner 10K permits ease of gripping the peel flaps by the user (see FIG. 1C) and peeling them back unsealing frangible seal 14F (left and right). Alternatively, the peel flap may be positioned in the middle between two corners (see FIG. 3).


Strip Embodiment—FIG. 3

The base lamina and cover lamina may be a strip for sequential presentation of the series of sequential storage units in a strip array. Base lamina strip 32B (see FIG. 3) may be wider than cover lamina strip 32C and extend beyond perimeter frangible seal portion 34F of the cover lamina. This extension provides tray 32T for catching the stored medications as they are delivered. The catch tray may have a raised edge berm for retaining the medication on the tray.


The strip of opposed laminae may be wound onto delivery spool 48 (see FIG. 4) with inner mooring end 48M and outer terminal end 48T, for sequential presentation of the strip of sequential storage units from the terminal end. Medication dispenser 48D may be provided for supporting the delivery spool and the storage units. Medications 40M may be vacuum packed within the sealed medication chambers on the strip of storage units. Removing the air from the medication chamber reduces the shipping volume and spool size requirements. Even a slight vacuum locks the medications in place during shipment and handling, preventing them from grinding against one another. Alternatively, an inert gas may be provided within the sealed medication chamber for preserving the medication. A nitrogen flush introduced just before sealing the medication chamber displaces the ambient oxygen.


The cover lamina may be transparent permitting visible identification of the medication. Medications are frequently known to the user or caretaker only by color or size or shape. The lamina may be color coded to indicate the period of day for taking the medications. For example, pink may indicate morning, yellow may indicate noon, and blue may indicate evening. Alternatively, the cover lamina and the base lamina may be opaque for preventing UV and other photo damage.


Row and Column Embodiments—FIG. 2 and FIG. 5

The series of sequential storage units may be a matrix of rows and columns across a sheet of opposed laminae. The entire inventory of medication can be seen at a glance. A series of tear-away perforations 24P (see FIG. 2) traverse the matrix between adjacent storage units 20U, permitting presentation of a single storage unit. A medication storage unit may be torn-away from the matrix and distributed individually. Alternatively, each of the sequential storage units may be firmly secured to the preceding storage unit and to the succeeding storage unit (see FIG. 3) along the strip of opposed laminae. The empty storage units remain on the strip after delivery, along with the full storage units containing forgotten medication, as a record of compliance.


Calendar matrix 50 of sequential storage units 50U may have a plurality of horizontal rows corresponding to the weeks of a particular month. The matrix may also have seven vertical columns corresponding to the seven days of each week. The user can easily locate and identify the medication for each day. The calendar day may be divided into am and pm storage units 50A and SOP as shown for Tuesday the 4th in FIG. 5. The base lamina for the calendar matrix may be sufficiently rigid to be self standing and function as a stand-up display of the matrix of storage units and of the medications sequentially stored therein.


Medical Data

Medical data relating to the medication may be associated with each storage unit. The name and dosage of the medication may be listed along with the schedule (date and time of day for taking). Important side effects and emergency numbers may be listed. The patient's name and age, and the name of the doctor or caretaker may be provided. The medical data may be printed directly on the lamina, or on label 30L later affixed to the lamina (see FIG. 3), or inserted into the medication chamber or chamber access region. The basic information may be included in a quick scan format such as bar code. More extensive data, such as medical history may be included in a suitable mega format such as toned digital data.


INDUSTRIAL APPLICABILITY

It will be apparent to those skilled in the art that the objects of this invention have been achieved as described hereinbefore. Various changes may be made in the structure and embodiments shown herein without departing from the concept of the invention. Further, features of embodiments shown in various figures may be employed in combination with embodiments shown in other figures. Therefore, the scope of the invention is to be determined by the terminology of the following claims and the legal equivalents thereof.

Claims
  • 1) System for delivering specified components in specified quantities in a specified sequence, comprising: a base lamina;a flexible cover lamina opposed to the base lamina, and pressed into selective engagement therewith;an series of sequential storage units, defined by the selective engagement of the opposed laminae;a perimeter seal formed around each storage unit by the selective engagement, having a frangible seal portion and a destruct seal portion;a component chamber within each storage unit proximate the destruct seal portion for storing specified components in specified quantities;a chamber access region within each storage unit proximate the frangible seal portion for accessing the component chamber;a chamber seal formed by the selective engagement of the opposed laminae, and extending across each storage unit between the component chamber and the chamber access region;a breachable bubble within each chamber access region between the frangible seal portion and the chamber seal, and formed by the opposed laminae during the selective engagement;the bubble expands under applied pressure towards the frangible seal portion of the storage unit, which expansion separates the opposed laminae forming the bubble, until the bubble produces a perimeter breach in the frangible seal portion; anda flexible peel flap formed by the flexible cover lamina along the breached frangible seal portion as the bubble breaches, which flap is peeled away from the base lamina detaching the chamber seal to open the component chamber providing delivery of the components stored therein.
  • 2) The system of claim 1, wherein the flexible peel flap is positioned at a corner of each storage unit.
  • 3) The system of claim 1, wherein the chamber seal within each storage unit extends diagonally across the storage unit between the component chamber and the chamber access region.
  • 4) The system of claim 1, wherein the base lamina is also flexible forming a peel flap opposed to the peel flap formed by the flexible cover lamina.
  • 5) The system of claim 1, wherein the base lamina and the cover lamina are strips forming a strip of opposed laminae for sequential presentation of the series of sequential storage units.
  • 6) The system of claim 5, further comprising a series of tear-away perforations traversing the strip of opposed laminae between the sequential storage units, to permit presentation of a single storage unit.
  • 7) The system of claim 5, wherein the base lamina strip is wider than the cover lamina strip and extends beyond the perimeter frangible seals of the cover lamina to provide a tray for catching the stored components as they are delivered.
  • 8) The system of claim 5, wherein the strip of opposed laminae is wound onto a delivery spool, and has an inner mooring end and an outer terminal end for sequential presentation of the strip of sequential storage units from the terminal end.
  • 9) The system of claim 8, further comprising a dispenser for supporting the delivery spool during the sequential presentation of the strip of sequential storage units.
  • 10) The system of claim 1, wherein each of the sequential storage units is firmly secured to the preceding storage unit and to the succeeding storage unit along the strip of opposed laminae.
  • 11) The system of claim 1, wherein the cover lamina is transparent permitting visible identification of the components.
  • 12) The system of claim 1, wherein the cover lamina and the base lamina are opaque.
  • 13) The system of claim 1, further comprising component data associated with each storage unit and related to the components stored therein.
  • 14) The system of claim 1, wherein the specified components are specified medications of specified dosages delivered in a specified sequence.
  • 15) The system of claim 14, wherein the series of sequential storage units is a matrix of rows and columns across the opposed laminae.
  • 16) The system of claim 15, wherein the base lamina is sufficiently rigid to be self standing and function as a stand-up display of the matrix of storage units and of the medications sequentially stored therein.
  • 17) The system of claim 15, wherein the matrix of rows and columns of the sequential storage units has a plurality of horizontal rows corresponding to the weeks of a particular month, and has seven vertical columns corresponding to the seven days of each week.
  • 18) The system of claim 14, wherein the medications are vacuum packed within the sealed medication chamber.
  • 19) The system of claim 14, further comprising an inert gas within the sealed medication chamber for preserving the medication.
Parent Case Info

This application claims the benefit of provisional application Ser. No. 60/790,482, filed Apr. 10, 2006.

Provisional Applications (1)
Number Date Country
60790482 Apr 2006 US