This invention relates to a medicament delivery device and a method of delivering a medicament. In particular, but not exclusively the present invention relates to a device and a method for providing an implant in the uterine myometrium (in females) or prostate gland (in males) and the delivery of medicament to the pelvic area and organs thereof, for example the bladder, peritoneum, and in females the vulva, vagina, fallopian tubes, ovaries and uterus and then into the bloodstream.
There are many drugs which may be administered to the human and animal body for the prevention or treatment of disease. Different types of drugs call for different ways of administering the drug to the human or animal body.
Currently, most benign gynaecological conditions, for example endometriosis or fibroids, are treated using traditional methods of medicament or drug delivery, primarily oral and intravenous administration. Where possible, drugs are provided in pill, capsule, powder or liquid form for oral administration to a human or animal. The drug is then absorbed by the digestive system and will usually enter the blood stream via the liver to take effect. However, far from all drugs are suitable for such administration. For example, many drugs are broken down by the digestion process and destroyed before they can enter the blood stream. This problem is caused by what is commonly referred to as the “first pass liver metabolism” of the human or animal body, i.e. the process by which all substances absorbed by the digestive system must pass through the liver into the blood stream. Therefore, to provide sufficient drug to the female reproductive organs, relatively large doses of a drug are required. These large doses can cause side effects.
To avoid or minimise the problem of the first pass liver metabolism, drugs can be provided by injection, for example drugs desired to take an instant effect in the blood stream of a human or animal body may be injected into a vein, i.e. intravenously. Alternatively, drugs may be injected into muscle tissue from which the drug is absorbed more slowly into the blood stream. Drugs for injection into muscle tissue may, for example, be provided in an oily base which helps to regulate the rate of absorption. However, injections can be painful and difficult, particularly injections into muscle tissue, and can lead to tissue damage where frequent injections are required on a long term basis, e.g. of insulin for diabetics.
Other types of drug delivery include nasal sprays for administration of drugs to the nasal tissues and lungs; patches, such as the Nicorette® patch, for the application of Nicotine, or Ortho Evra, a contraceptive patch which releases oestrogen/progesterone through the skin; and lotions or ointments for topical application, i.e. directly to an affected part of the body.
However, these alternative types of drug delivery means can suffer from disadvantages. For example, skin patches can cause skin irritation, suffer from disattachment and cause cosmetic issues.
Although the above drug delivery methods are useful for particular types of drugs and medicines, with the exception of intramuscular depot injections, they are unable to provide therapeutic levels of drugs over a long term, e.g. weeks, months and years rather than days, without repeated application by the patient, a carer, physician or general practitioner.
For application of drugs on a long term basis, various implants have been developed. One such type of implant may be inserted under the skin and have a mechanism for slowly releasing a drug into the blood stream of the human or animal in which it is implanted. For example, Norplant® or Implanon® comprise an implant having small capsules or rods which slowly release levonorgestrel or etonorgestrel into the blood stream to provide a contraceptive effect for women. Norplant® can be effective for up to five years.
However, these implants inserted under the skin suffer from a number of disadvantages. In particular the insertion of such an implant is painful, can cause significant bruising and discomfort at the implant site and requires local anaesthesia on both insertion and removal. In addition, as such implants are placed under the skin in for example the arm, they can be visible and cause discolouration of the skin. Furthermore, as the arm contains many different types of tissue and planes of tissue, movement of the implant along or through these tissue planes can occur. This can mean the implant moves to locations other than where it was placed during insertion which can lead to complications for the patient, in particular during removal of the implant. Difficulties with the Norplant® implant has led to it being withdrawn from clinical use.
For gynaecological conditions, long term local drug delivery through the vagina or endometrium is useful to deliver drugs to the pelvic region and organs thereof for example to the bladder, peritoneum, vulva, vagina, ovaries and uterus.
Current delivery means include vaginal creams, gels, intrauterine devices (contraceptive coils, IUD or IUCD) and vaginal rings or tampons.
Intrauterine devices (IUDs) are placed in the endometrial cavity typically to provide a contraceptive effect. For example, Leiras (Schering AG) market an intrauterine device called Mirena which releases 20 mcg of levonorgestrel, to reduce the thickening of the endometrium of the uterus, each day for up to 5 years.
Vaginal rings, comprising soft plastic rings of around 4 cm to 5 cm in diameter impregnated with a desired drug, are placed in the vagina around the cervix where they slowly release a drug into the bloodstream through the soft tissue of the cervix. Organon's Nuvaring releases oestrogen/progesterone.
Although the above provide long term local drug delivery to the pelvic region, for various reasons, they tend to suffer from low levels of patient compliance.
Typically creams and gels are considered by patients to be messy and unhygienic while vaginal rings can be uncomfortable, particularly during sexual intercourse, and may cause discharge. Intrauterine devices require inconvenient regular visits to the clinic for physician fitting and can cause severe discomfort such as stomach cramps due to the direct application of levonorgestrel to the endometrium of the uterus. In addition, such intrauterine devices may cause discharge, menstrual disturbance and fertility effects.
It is an aim of the present invention to provide means to deliver medicaments to the pelvic region which minimises the above difficulties.
According to the present invention there is provided an implantable medicament delivery device which is insertable into the myometrium or prostate comprising means capable of providing controlled delivery of a medicament over a period of time.
A medicament may be any pharmaceutical, neutraceutical, prophylactic or therapeutic agent wherein a therapeutic agent includes, but is not limited to, means for radiotherapy such as radioactive sources for example caesium, iridium, radioactive iodine, radioactive strontium or radioactive phosphorus.
The term “medicament” herein also includes energy sources which may be delivered to the myometrium by targeting the delivery device. Such energy sources include electromagnetic radiation, heating and cooling energies such as to selectively destroy tissues.
Preferably the medicament delivery device is an implant which can be insertable into the myometrium, or prostate and retainable therein for a defined period of time.
The retention of the implantable delivery device in the myometrium (in females) or prostate (in males) provides for direct and local delivery of a medicament to the pelvic region and organs thereof for example the bladder, peritoneum, bloodstream and in females the vulva, vagina, ovaries, fallopian tubes and uterus over a determined period of time.
Preferably the implantable delivery device is capable of being insertable in and retainable in the smooth muscle myometrial tissue of the cervix.
Insertion and retention of the implantable medicament delivery device in the myometrium of the cervix enables the implant to be checked and monitored by speculum examination or other visualisation or palpation following implantation.
Alternatively the implantable delivery device may be inserted in any suitable location in the myometrium, usually of the body of the uterus. The implant may be placed in the myometrium of the body of the uterus, or other positions not accessible by access via the vagina.
Preferably the implantable medicament delivery device comprises a body having an outer surface and opposing first and second ends said body comprising a medicament wherein the first end of the body is a semi-sharp point.
A semi-sharp point enables the tissue to be sufficiently disrupted to allow insertion of the implantable device, but causes minimal tissue damage.
In one preferred arrangement the body of the device is elongate and the second end of the body includes a head portion wherein the head portion is a lateral extension from the longitudinal axis of the elongate body.
Preferably the head portion is a substantially flat plate which extends in all radial directions from the second end of the body of the device.
The provision of a semi-sharp point at a first end of the delivery device is advantageous as it allows the device to be easily inserted into the smooth muscle of the myometrium or the tissue of the prostate.
Preferably the means capable of providing the controlled delivery of a medicament over a period of time is a pharmaceutically acceptable carrier such as at least one of a hydrogel, a silicone based material, elastomer, proteinaceous material, polyethylene glycol (PEG) material, polysaccharide or other carbohydrate material, microspheres, polymeric material or plastics material which may comprise, be contained by, or coated onto the device, or other means known to those skilled in the art.
Preferably the means capable of providing the controlled delivery of a medicament are present in the body of the device.
Alternatively, in those embodiments wherein there is a head, the means capable of providing the controlled delivery of a medicament may be present in the head of the device.
In particular embodiments the means are present in both the body and the head of the device.
In embodiments where the means capable of providing the controlled delivery of a medicament are provided in the body of the device, medicament delivery is substantially through the myometrium to the tissues and organs of the pelvic region.
In embodiments where the means capable of providing the controlled delivery of a medicament are provided in the head of the device, medicament delivery is substantially to the vaginal cavity and tissues and organs of the pelvic region.
Preferably the second end of the device includes retrieval means.
Retrieval means are advantageous as they allow the implant to be removed from the myometrium or prostate tissue after a determined period of time. Thus the delivery device can be easily removed from the body and does not require to be retained in the body forever. Removal of the implantable device provides a means of control over the length of time an active agent of a medicament is delivered.
The retrieval means can be any means which allow the removal of the implantable device from the myometrium or the prostate following a determined period of time.
In arrangements of the device which are insertable and retainable in the myometrium, preferably the retrieval means comprises an elongate flexible member, for example a thin length of cord, twine or fibre or string.
Preferably the elongate flexible member can be left outside the myometrium and soft tissue surrounding the uterus and/or vaginal cavity without causing irritation to a patient, nor affecting sexual intercourse. When it is desired to remove the implantable delivery device from the tissues in which the implant is inserted, for example the myometrium, the flexible member can be manipulated to pull the implant out of the tissue.
Preferably the second end of the device for example the head and/or retrieval means remain visible or palpable during examination by a physician when, in use, the delivery device is inserted into the myometrium or prostate.
This is advantageous as the location of the implantable delivery device can be easily monitored and checked by visual or physical inspection.
Preferably, the overall implantable device of the present invention is significantly smaller than the overall size of coils, IUD or vaginal rings. This is advantageous as there will be less discomfort to the person in which the drug delivery device is implanted and less likelihood of rejection of the implant by the body or responses such as inflammation.
Preferably the device has an axial length in the range 5 mm to 45 mm.
More preferably the device has an axial length in the range 10 mm to 45 mm.
Preferably the device has a diameter of from 0.5 mm to 4 mm.
Preferably the body has a large surface area to volume ratio. This has the advantage of providing maximal absorption of the drug into the surrounding tissues and/or smooth muscle.
The device of the present invention may be used to deliver a wide range of active agents for example, but not limited to, steroids, hormones such as a progestin, agents which promote a contraceptive effect, for example levonorgestrel or etonorgestrel, agents for treating disorders of the pelvis, for example, GnRH analogues, NSAIDs, COX-II inhibitors and aromatase inhibitors, vagina and organs and tissues thereof, cytotoxic agents for killing cancer cells or treating cancer, particularly cancer cells of the bladder, prostate or cervix or other pelvic malignancies and agents for the treatment of benign prostatic hypertrophy, impotence, erectile dysfunction and the like. Further, the device may be used to deliver agents for the treatment of an over active bladder, such drugs including anti-cholinergic drugs or calcium antagonists, or agents for radiotherapy.
Preferably the medicament of the device is chosen from the group consisting of, but not limited to, anti-infectives, antimicrobials, antivirals, antibiotics, anti-allergenics, anti-inflammatories, anti-fungals, anti-cholinesterases, nutritional agents such as essential amino-acids, fats and vitamins, prebiotics, probiotics and acidifiers, cardiovascular agents, anti-hypertensive agents and chemotherapeutic agents.
Preferably the medicament is a therapy for oestrogen dependent proliferative disorders of the pelvis, for example endometriosis and/or fibroids and other pelvic disorders as would be known to those skilled in the art for example functional cysts and polycystic ovary syndrome.
Preferably said therapy for endometriosis includes progestins, GnRH agonists and antagonists, NSAIDs, COX-II inhibitors, combined oral contraceptives, Danazol, smooth muscle relaxants or aromatase inhibitors. The skilled person would also appreciate other similar therapies which could be used in relation to such disorders and the suitable dosage that would be required.
A drug delivered by the present invention may additionally or alternatively include a microbicide. A microbicide is any agent detrimental to, or destructive of, the life of microbes, viruses or bacterial organisms. Such a microbicide could be used to destroy organisms responsible for sexually transmitted diseases such as gonorrhoea, chlamydia, genital herpes, Human Immunodeficiency Virus, Human Papilloma Virus or bacterial vaginosis.
The concentration and the time period over which the above active agents and those described below should be provided will be as determined by those skilled in the art. Those skilled in the art can determine these parameters, which depend on for example the potency (the amount required to effect the desired change), toxicity and in vivo diffusion of the active agent using standard procedures.
Preferably, in use, the cumulative release of therapeutic agent is in an amount selected from 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99% and 100% relative to the total amount of medicament in the device after implantation for a period of 1 week, 2 weeks, 1 month, 2 months, 3 months, 4 months, 6 months, 1 year, 2 years, 3 years, 4 years or 5 years.
According to a second aspect of the present invention there is provided a kit for implanting a device of the first aspect of the invention comprising
According to a third aspect of the present invention there is provided a method of providing a medicament to a female mammal comprising the step of inserting a device according to a first aspect of the invention into the myometrium.
The implantable delivery device is capable of being inserted into the smooth muscle myometrial tissue of the cervix via the vagina, into the myometrium of the uterine body through serosa surrounding the myometrium during open or laparoscopic surgery or into the myometrium through the endometrial cavity.
Preferably the method of the third aspect of the invention comprises the steps of
Preferably the method further comprises the step of mounting the implantable medicament delivery device on an insertion tool.
Particular embodiments of the medicament delivery device are implantable in the prostate. The prostate is a gland in males which surrounds the urethra below the bladder.
Preferably the implant is insertable into the prostate by a transrectal route. Alternatively the implant can be inserted into the prostate by a trans-perineal route.
Preferably the medicament delivery device is insertable into the prostate using ultrasound.
Provision of an implantable medicament delivery device in the prostate has the advantage that drugs can be delivered to the tissue of the prostate, tissue surrounding the prostate, and the bloodstream. Further, delivery of drugs directly to the prostate means the drugs are not subjected to liver metabolism as would be the case for drugs provided orally.
Preferably the prostate implantable medicament delivery device provides for the cumulative release of a therapeutic agent in an amount selected from 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99% and 100% relative to the total amount of medicament in the device after implantation for a period of 1 week, 2 weeks, 1 month, 2 months, 3 months, 4 months, 6 months, 1 year, 2 years, 3 years, 4 years or 5 years.
According to a fourth aspect of the present invention there is provided the use of a delivery device according to the first aspect of the invention to provide long term local delivery, for example 3 months to 5 years, of medicaments to the pelvic region and organs thereof, for example to the bladder, peritoneum, vulva, vagina, ovaries and uterus.
In one preferred embodiment of the fourth aspect of the invention a device according to the first aspect of the present invention is used to deliver medicament(s) to treat gynaecological conditions, for example endometriosis, fibroids, cervical cancer or overactive bladder.
In a second preferred embodiment of the fourth aspect of the invention a device according to the first aspect of the present invention is used to treat male conditions for example benign prostatic hypertrophy, impotence, erectile dysfunction and the like.
The medicament delivery device and method of the present invention promote smooth, controlled release of drugs to the pelvic region, which allows absorption of drugs without subjecting drugs to liver metabolism.
Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings, in which:
Referring to
In the embodiment described which is insertable into the myometrium, retrieval means 14 are provided by a cord. The cord extends substantially from the centre point of the depression 12 in the head portion 8. In use, the cord extends from the second end of the implant and allows the device to be removed from the tissue after suitable delivery of the medicament or if the patient requests removal. The device is typically retained in the body for at least a day, a few weeks, months or up to 5 years. It may be removed at any point during this period. In embodiments wherein the device is comprised of biodegradable material the device may not need to be removed at a later time point and thus will not require a head portion or retrieval means.
In this embodiment the means capable of providing controlled delivery of the medicament is located in or on the elongate body 2 of the device. Delivery of the medicament is substantially through the myometrium and into pelvic organs and tissues. This embodiment of the device is particularly advantageous for the delivery of medicament for the treatment of endometriosis and or fibroids.
In use, the body 2 is inserted in the tissues of the myometrium and the head portion remains in the vaginal cavity. This embodiment of the device substantially delivers medicament to the vaginal cavity, mucosa thereof and pelvic tissues, such an embodiment is particularly advantageous for delivery of medicaments suitable for treating bacterial vaginosis.
Alternative embodiments of the implantable device are illustrated by
The body may be any suitable shape which allows the implant to be inserted into the myometrium or prostate. Indeed the cross section of the body can be of any preferred shape, which allows insertion of the implant into the myometrium or prostate, or that influences the drug delivery characteristics of the implantable delivery device. For example the body of the device may be cross-shaped to increase the surface area of the delivery device exposed to the surrounding tissue. Further, the body may be formed by a mesh or other method to increase the surface area of the implant in contact with the myometrial or prostate tissue. The amount of surface area of the implant in contact with surrounding tissue or muscle can influence the drug delivery characteristics of the implant.
As shown in
Alternatively, as shown in
In the embodiment illustrated by
In a preferred embodiment, the body of the implant which may be porous, non-porous or microporous, can be dipped into a solution of the selected drug delivery medium containing a solution or slurry of drug, such that a thin layer of drug and drug delivery medium is coated onto the body of the implant and bonds securely in the dry state to the body of the implant via a mechanical or adhesive hold.
Alternatively, the medicament can be impregnated, or absorbed by or into the device and allow the medicament to be released over time. As a further alternative the medicament may be applied to the device using any suitable means that allow the medicament to be attached or bonded to the device and which allow the medicament to be available for absorption/release into the surrounding tissues, for example the myometrium or vaginal cavity.
The drug delivery medium may be capable of slowly releasing the active agent of the medicament into the myometrium, vaginal cavity or the prostate, and thus providing drugs to the pelvic region and organs thereof the surrounding soft tissues and blood vessels.
Hydrogel releases drug by diffusion or via microcracks in the hydrogel. An alternative biodegradable hydrogel system releases drug via an erosion or degradation mechanism. Varying release rates of drugs can be achieved, as can continuous dosing with small levels of drugs, and flexibility of drug release may depend on different drugs being utilised
Depending of the release characteristics of the hydrogel and the chemical composition of the active agent; release of the active agent will typically occur up to 5 years from implantation of the delivery device.
The medicament delivery device may be formed by any biocompatible material, for example the medicament delivery device can be formed from plastics or biocompatible metals. Suitable materials include, but are not limited to, high density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), polypropylene (PP), polyvinyl chloride (PVC), polymethylmethacrylate (PMMA), polyethyleneterephthalate (PET), polytetra-fluoroethylene (PTFE), polycarbonate (PC), styrene-butadine-styrene (SBS), stainless steel (361/316L/317), nickel free stainless steel, cobalt chrome alloy (CoCrMo), titanium (specifically Ti6Al4V) and Liquid Metal.
In one particular embodiment of the delivery device, the delivery device is formed from the medium carrying the drug. In this example, if the medium carrying the drug is absorbable, the complete delivery device may be absorbed by the body over the period of time that the drug is administered.
Wherein the implant itself is the medium by which the drug to be administered is carried it can be envisaged that an insertion device for example a trocar containing the implant may be used to deliver the implant. In this embodiment the delivery device may be pushed out of or injected from the trocar into the myometrium 44. The use of an implant comprising the medium in which the drug to be administrated is included, would allow insertion of the implant into the myometrium 44 and delivery of the drug to be limited to a shorter time scale for example 1 day, 3 months to 12 months. The implant would not require to be removed at a later date as it may degrade over time and be absorbed by the body.
The drug may be delivered to the myometrium 44 and be absorbed within a few minutes, hours, days or weeks depending on the medium. It can be appreciated that where the implant comprises the drug delivery medium, removal of the implant is not required. An absorbable implant therefore does not require retrieval means.
The uterine myometrium has few or no somatic pain fibres and thus insertion, provision and withdrawal of the implant in the myometrium will cause minimal pain and discomfort to the patient.
A device of the present invention capable of being implanted into the myometrium tissue is advantageous over subcutaneous delivery devices previously known in the art, such as Norplant® which are inserted under the skin which has somatic sensory (pain) nerves.
As there is little tissue or muscle movement in the myometrium compared with for example the tissues of the arm or the leg and the myometrium does not comprise as many layers or planes of tissue as in the arm or leg, there is little likelihood of the implant moving to a different location following insertion.
As shown in
In use, an embodiment of the implant can be inserted into the myometrium via the vagina and then through the cervix or alternatively may be inserted into the myometrium during open or laproscopic surgery.
The myometrium of the cervix is in a convenient location, at the top of the vaginal cavity, for insertion and removal of the implant via vaginal access. Further insertion of the device by this route has the advantage that the implant can be suitably located using a speculum in an outpatient setting. The insertion of the implant in the myometrium would be similar in both the time taken and the discomfort to the patient as the taking of a smear.
Insertion of the implantable medicament delivery device during open or laproscopic surgery has the advantage of allowing the implant to be placed at any suitable location in the myometrium, usually in the body of the uterus. The implant may thus be placed in the myometrium of the body of the uterus, or other positions which would not be accessible by access via the vagina.
Location of the implant within the smooth muscle myometrial tissue of the cervix and uterus provides a novel means of drug delivery to the pelvic region and organs thereof for example to the bladder, peritoneum, vulva, vagina, ovaries and uterus. Local delivery of active agents of a medicament via insertion of the implant in the uterine myometrium promotes rapid, efficient absorption of the active agent directly into these organs the surrounding tissue and then the bloodstream. Further, delivery of medicaments in this way avoids the first pass liver effect.
The active insertion of the implantable delivery device into the smooth muscle of the cervix of the uterine body means that the present invention differs from an IUD or a vaginal ring as an IUD is located in the cavity of the uterus (endometrium) and vaginal rings are placed at the top of the vagina around the cervix.
While inserted in the myometrium the device will not be felt by the patient. As previously discussed, this provides a further advantage of the present invention over intrauterine devices and vaginal rings. Furthermore, the device of the present invention will not cause menstrual or fertility disturbances and will be acceptable to women of a range of religious faiths.
Moreover, drug delivery by means placed around tissues or in cavities such as vaginal rings and intrauterine devices can suffer from decreased absorption as the active agents have to pass through epethelial layers overlying the surrounding tissues before they enter the tissue. For example, drugs released from a vaginal ring must pass through the vaginal epithelium before being absorbed into the vaginal wall and passing into the blood stream.
Locating medicament delivery means and delivery of the medicament in the myometrium minimises the risk of poor absorption as the active agents are not required to pass through epithelium. Medicament absorption is facilitated by high local blood flow.
In particular embodiments locating medicament delivery means in the myometrium and delivery of the medicament into the vaginal cavity enables delivery to the epithelium lining the vagina and the local tissues thereof.
Therefore drug delivery directly into the myometrium or vagina will likely require smaller amounts of a drug to achieve significant clinical affect, substantially reducing the risk of side effects.
In specific embodiments of the medicament delivery devices, suitable for delivery of drugs to the tissues of the myometrium, for example
The implant may have any structure suitable for insertion and retention in the smooth muscle of the myometrium or the tissue of the prostate. For example the implant may comprise barbed portions or surface patterns to promote retention of the implant in the myometrium or prostate. This may be advantageous if movement of the tissue in which the implant is inserted is likely to cause the implant to work loose and move from its intended position.
To aid insertion of the medicament delivery device into the myometrium by a vaginal route an insertion tool may be used.
An embodiment of an insertion tool is shown in
A first end of the shaft is provided with device mounting means 74 and a second end is provided with handle means 62. In the example shown the device mounting means, illustrated more clearly in
The device is mounted on the first end of the insertion tool and then the device is introduced into the body via the vagina. Using the insertion tool the device is advanced into the vagina 34 towards the cervix 36 and inserted into the myometrium 44. The point 4 of the implant facilitates the easy insertion into the smooth muscle of the myometrium 44.
The device is inserted into the myometrium until only the head portion of the device or retrieval means remain outside.
After a determined period of time, the implant can be removed from the myometrium. Removal may be due to the implant reaching the end of its useful life, i.e. the drug has been administered for the intended length of time or the patient requesting removal of the implant. The implantable delivery device can be removed by pulling on the retrieval means 14, for example a cord or hook to withdraw the implant from the myometrium 44. Again, this is a straightforward procedure without routine need for local anaesthetic.
The delivery device is typically removed from the tissue after it has released a therapeutic agent in an amount selected from 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 99% and 100% relative to the total amount of medicament in the device after implantation for a period of 1 week, 2 weeks, 1 month, 2 months, 3 months, 4 months, 6 months, 1 year, 2 years, 3 years, 4 years or 5 years.
Alternative insertion tools may be used to insert the device.
For example if the implant has a blunt first end 4, as illustrated in
This may be advantageous, as the implant which is retained in the tissue does not then require to have a semi-sharp portion.
In further embodiments of the insertion tool, instead of or in addition to device mounting means, the insertion tool may comprise means for releasably containing the implant within the tool. This embodiment of the insertion tool is driven into the myometrium, the implantable device is released into the myometrium and the tool is then withdrawn leaving the implant in place. For example, the insertion tool may comprise a collar for releasably retaining the medicament delivery device.
During insertion, use and removal the implantable device may be manipulated using any suitable surgical tool, such as forceps or the like.
As discussed above, the implantable medicament delivery device can be provided with medicament for release into the surrounding tissues in a number of ways.
Where the medium carrying the active agent of the medicament is provided by the body of the delivery device, the agent is released from the medium and passes through drug delivery means present in the delivery device to enter the surrounding tissue, for example the myometrial tissues. Drug delivery means may be provided along the entire length, at least part of the body, the head, or the body and head of the implantable device.
When inserted in the myometrium the body of the medicament delivery device is surrounded by smooth muscle and soft tissue. As smooth muscle of the cervix is highly vascularised, drug delivery to these tissues show good pharmacokinetics.
These drugs are able to pass through the highly vascularised tissues of the myometrium and target the pelvic region and organs thereof, for example, the bladder, peritoneum, and in females the vulva, vagina, ovaries and uterus. The drugs may further enter the bloodstream without being subjected to first pass liver metabolism.
Alternatively, drug delivery means may be provided at the head portion at the second end of the delivery device. When, in use, the implant is inserted into myometrial tissue, the head portion protrudes from the myometrial tissue into the vagina. In this particular embodiment, the implant provides a means of targeting drug delivery to the tissues of the vagina.
The implantable delivery device may be retained in the myometrium or the prostate and drug delivered over a period of at least, 1 day, 1 to 3 months, 1 to 6 months, 1 to 12 months, 1 to 2 years, 1 to 3 years or 1 to 5 years.
The implant of the present invention may be used to deliver a wide range of drugs. In particular, the implant can be used to deliver drugs which cannot be delivered orally.
Examples of conditions which can be treated using the drug delivery device will now be provided.
Endometriosis
Endometriosis is a painful condition caused by the endometrium (cells lining the uterus) migrating to other parts of the body. This can cause functional and hormonally responsive endometrial lesions. Typically lesions are found on the uterine muscles, ovary, peritoneum and intestine. Symptoms of endometriosis include excessive bleeding, dysmenorrhoea, pelvic pain and infertility (up to 60% of women suffering from endometriosis become infertile).
Fibroids
Fibroids or myoma are benign encapsulated tumours of the smooth muscle and/or fibrous tissue elements of the uterine myometrium. They are usually asymptomatic, but may give rise to menstrual and/or fertility problems.
At present, an oral treatment (Danazol) is one of the most effective drugs to treat endometriosis, but the androgenic side effects of this drug limits treatment to 6 months. Endometriosis can also be treated using subcutaneous depot injections or nasal sprays of GnRH analogues. However, these treatments also have unpleasant side effects such as bone density loss, hot flushes and nausea.
The present implantable medicament delivery device provides pharmacokinetic advantages over the above for the treatment of endometriosis and fibroids. In particular the present delivery system provides long term delivery of a drug locally to the pelvic region, without the disadvantage of current local delivery systems such as vaginal rings or intrauterine devices.
A number of active agents may be provided using the device of the present invention for treatment of endometriosis.
Progestin
Progestins have advantages over Gonadotrophin Releasing Hormone (GnRH) Agonists in that they are cheaper with an improved side effect profile. In addition, Progestin therapy is most effective in controlling the symptoms associated with endometriosis, more specifically dysmenorrhea.
Progestin refers to synthetic progestogens wherein Progestogen is a generic term for all substances with progesterone like activity. Progesterone refers to the natural progesterone molecule.
There are two main groups of progestogen, progesterone and its analogues (dydrogesterone, gestrinone and medroxyprogesterone) and testosterone analogues (norethisterone and norgestrel). The newer progestogens (desogestrel, megestrol, norelgestromin, norgestimate, etonogestrol, etynodiol or ethynodiol and gestodene) are all derivatives of norgestrel; levonorgestrel is the active isomer of norgestrel and has twice its potency. Progesterone and its analogues are less androgenic than the testosterone derivatives. Testosterone analogues are the norethindrone family (estranes)—including norethindrone, norethindrone acetate, ethynodiol diacetate, lynestrenol, and norethisterone acetate; and the levonorgestrel family (gonanes)—including levonorgestrel, norgestrel, desogestrel, norgestimate, gestodene, megestrol, norelgestromin, and etonogestrol.
Common progestins include medroxyprogesterone and levonorgestrel.
Non Steroidal Anti Inflammatory Drugs (NSAIDS)
Non Steroidal Anti Inflammatory Drug (NSAIDs) have good efficacy, low cost and comparatively mild side effect profile, and offer immediate pain management. They are most effective in controlling the symptoms associated with endometriosis. Common NSAID's include mefenamic acid, diclofenac or piroxicam.
GnRH Analogues
The main therapy shown to improve the severity of endometriosis is the gonadotrophin releasing hormone (GnRH) agonists.
However, this class suffers two main drawbacks, these being cost and severe side effects profile primarily bone density loss associated with inducing a temporary chemical menopause. Common GnRH agonists include leuprolide, goserelin and nafarelin.
In addition to the above sole therapies the device of the present invention can also be used to deliver a number of combination therapies. For example,
Progestin/NSAID,
Progestin/GnRH analogues,
GnRH/NSAID or,
GnRH add back therapy (tibolone)
GnRH with Add Back Therapy
Add-back therapy in conjunction with a GnRH agonist does not eradicate bone loss, however it does reduce the rate of bone demineralization and hence, enable longer use of GnRH agonists. The progestin tibolone is of particular interest for use as add back therapy, particularly for osteoporosis prophylaxis.
Owing to the poor solubility of all proposed drugs in water, a hydrogel (flooded with water, thus low driving farce only required to release drugs) is ideally used as the drug carrier on the implant. The porous but permeable active drug/carrier can be coated onto the body of the implant via mechanical/adhesive hold. In such an embodiment a microporous implant may be necessary. This exterior coating of hydrogel/active drug may be biodegradable and should be a highly concentrated but thin layer (high drug reservoir/low distance to travel) to obtain maximum rate of drug release via an erosion mechanism.
The amount of drug required to elicit effect can be determined by those skilled in the art, using conventional means. However, estimates of the amount of a drug which may be provided based on preliminary results which should not be considered limiting in any way on the device of the present invention are given below by way of example only.
Levonorgestrel
Currently, oral daily doses for levonorgestrel are 60 mcg. Using vaginal delivery analogy of 10% drug required compared to oral doses, daily myometrial doses would be 6 mcg for levonorgestrel
A mare feasible daily dose to enable drug delivery via a hydrogel would likely be 20 mcg for levonorgestrel (33% of oral dose)
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer could be in the range of 3 to 15 mg.
The body of the implant could accommodate 3, 6 or 12 month or longer doses.
Leuprolide
Currently, the daily dose for leuprolide is 125 mcg (intramuscular). Typical daily myometrial doses could be around 62 mcg for leuprolide (50% of intramuscular dose)
However in the absence of clinical data, it is impossible to estimate the clinical effectiveness of such doses of leuprolide.
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer would be in the range of 10 m to 45 mg.
The body of the implant could accommodate 3, 6 or 12 month or longer doses.
Piroxicam
Currently, oral daily doses for piroxicam are 10 to 40 mg. Using vaginal delivery analogy of 10% drug required compared to oral doses, a daily myometrial doses could be 3 mg for piroxicam. A more feasible daily dose to enable drug delivery via a hydrogel could be 300 mcg for piroxicam (1% of oral dose). However in the absence of clinical data, it is impossible to estimate the clinical effectiveness of such low doses of piroxicam.
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer would be around 50 to 220 mg.
The body of the implant could accommodate 3, 6, or 12 month or longer doses.
Levonorgestrel/Piroxicam
Currently, oral daily doses for levonorgestrel are 60 mcg, and piroxicam 10-40 mg. Using vaginal delivery analogy of 10% drug required compared to oral doses, daily myometrial doses could be 3 mg for piroxicam 6 mcg for levonorgestrel. A more feasible daily dose to enable drug delivery via a hydrogel (levonorgestrel dose as per Mirena coil dose) would be 300 mcg for piroxicam (1% of oral dose), 20 mcg for levonorgestrel (33% of oral dose). However in the absence of clinical data, it is impossible to estimate the clinical effectiveness of such low doses of piroxicam.
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer would be in the range of around 55 mg to 230 mg.
The body of the implant could accommodate 3, 6, 12 month or longer doses.
Levonorgestrel/Leuprolide
Currently, daily doses for levonorgestrel are 60 mcg (oral), and leuprolide 125 mcg (intramuscular). Using vaginal delivery analogy of 10% drug required compared to oral doses, daily myometrial doses could be 62.5 mcg for leuprolide and 6 mcg for levonorgestrel. A more feasible daily dose to enable drug delivery via a hydrogel would be 62.5 mcg for leuprolide (50% of intramuscular dose) and 20 mcg for levonorgestrel (33% of oral dose). However in the absence of clinical data, it is impossible to estimate the clinical effectiveness of such low doses of leuprolide.
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer could be in the range of around 14 mg to 60 mg.
The body of the implant could accommodate 3, 6, 12 month or longer doses.
Leuprolide/Tibolone
Currently, daily doses for leuprolide are 125 mcg (intramuscular), and tibolone 2.5 mg (oral). Using vaginal delivery analogy of 10% drug required compared to oral doses daily myometrial doses could be 62.5 mcg for leuprolide (50% of intramuscular dose) and 250 mcg for tibolone. However in the absence of clinical data, it is impossible to estimate the clinical effectiveness of such doses of leuprolide.
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer would be in the range of around 55 mg to 225 mg.
The body of the implant could accommodate 3, 6 or 12 month or longer doses.
Leuprolide/Piroxicam
Currently, daily doses for leuprolide are 125 mcg (intramuscular), and piroxicam 10-40 mg (oral). Using vaginal delivery analogy of 10% drug required compared to oral doses daily myometrial doses could be 62.5 mcg for leuprolide and 3 mg for piroxicam.
A more feasible daily dose to enable drug delivery via a hydrogel could be 62.5 mcg for leuprolide (50% of intramuscular dose) and 300 mcg for piroxicam (1% of oral dose). However in the absence of clinical data, it is impossible to estimate the clinical effectiveness of such doses of piroxicam and leuprolide.
Assuming 50% w/w of drug to hydrogel, the total weight of the drug/carrier layer would be in the range of around 65 mg to 261 mg respectively.
The body of the implant could accommodate 3, 6 or 12 month or longer doses.
Bacterial Vaginosis
Bacterial vaginosis, an abnormal colonisation of the vagina which may lead to vaginitis, is an inflammation which occurs in the vagina. It includes several strains of organism that cause bacterial vaginosis, yeast infections and trichomoniasis. Bacterial vaginosis occurs mostly during the reproductive years although women of all ages are susceptible. Typically infection affects the vagina, urethra, bladder and skin in the genital area.
Primary causes of bacterial vaginosis include an overgrowth of anaerobic bacteria and the Gardnerella organism. Although the healthy vagina includes a small amount of these bacteria and organisms, when the vaginal balance is disrupted by the overgrowth of these bacteria, another protective aerobic bacterium (lactobacilli) is unable to adequately perform its normal function. Lactobacilli normally provides a natural disinfectant (similar to hydrogen peroxide) which helps maintain the healthy and normal balance of microorganisms in the vagina. The vaginal anerobic to aerobic bacteria ratio is 1000 to 1, normal vaginal flora is 5 to 1 ratio. During vaginosis a change in pH of vaginal fluid also occurs.
Bacterial Vaginosis can cause a range of symptoms such as discharge. In addition, the change in pH of the vaginal fluid to more than 4.5 can also cause odour and some itching.
The medicament delivery device of the present invention may be used to deliver medicaments to restore normal vaginal bacteria by inhibiting anaerobic bacteria, but not the normal vaginal lactobacilli, in order to eliminate symptoms of discharge and odour.
In particular embodiments, one of which is illustrated in
In this embodiment the medicament is contained or absorbed by or coated onto the head portion of the device such that it can be released over time into the vaginal cavity. Any suitable pharmaceutical means may be used to carry the drug and enable its release over time to the vaginal cavity.
Drugs which may be used to treat bacterial vaginosis include Flagyl (also known as Metronidazole), acidifiers to decrease pH to less than 5, less than 4.5, prebiotics, and probiotics. Other treatments include cleocin, ampicillin, ceftriaxone and tetracycline. Other drugs suitable for treating bacterial vaginosis such as pH regulators, suitable antibiotics and other drugs will be known to those skilled in the art.
The location of the implant in the smooth muscle myometrium of the cervix and/or part of the body of the smooth muscle myometrium of the uterus allows the implant to be easily inserted. During retention of the implant in the myometrium of the cervix, straightforward examination of the vaginal cavity 34 by a medical practitioner can verify that the implant is in its intended position in the myometrium. Whilst there is little chance of the implant becoming displaced, as the retrieval means, for example the cord or hook and in particular embodiments the head portion remains outside the myometrium, any such displacement can be easily observed.
Various improvements and modifications may be made without departing from the scope of the present invention. For example, as detailed above the body of the implant may be formed from absorbable polymers. This would avoid the need to remove the implant at a later date. Any suitable retrieval means can be provided on the implant to allow the implant to be moved into and out of the tissue of the myometrium or prostate.
Number | Date | Country | Kind |
---|---|---|---|
0307082.8 | Mar 2003 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
1450101 | Mathewson | Mar 1923 | A |
2097018 | Chamberlin | Oct 1937 | A |
2427176 | Aldeen | Sep 1947 | A |
2738790 | Todt, Sr. et al. | Mar 1956 | A |
3054406 | Usher | Sep 1962 | A |
3124136 | Usher | Mar 1964 | A |
3126600 | De Marre | Mar 1964 | A |
3182662 | Shirodkar | May 1965 | A |
3311110 | Singerman et al. | Mar 1967 | A |
3384073 | Van Winkle, Jr. | May 1968 | A |
3472232 | Pendleton | Oct 1969 | A |
3580313 | McKnight | May 1971 | A |
3763860 | Clarke | Oct 1973 | A |
3789828 | Schulte | Feb 1974 | A |
3858783 | Kapitanov et al. | Jan 1975 | A |
3888975 | Ramwell | Jun 1975 | A |
3911911 | Scommegna | Oct 1975 | A |
3913179 | Rhee | Oct 1975 | A |
3913573 | Gutnick | Oct 1975 | A |
3916899 | Theeuwes et al. | Nov 1975 | A |
3924633 | Cook et al. | Dec 1975 | A |
3993058 | Hoff | Nov 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
4019499 | Fitzgerald | Apr 1977 | A |
4037603 | Wendorff | Jul 1977 | A |
4128100 | Wendorff | Dec 1978 | A |
4172458 | Pereyra | Oct 1979 | A |
4233968 | Shaw, Jr. | Nov 1980 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4246660 | Wevers | Jan 1981 | A |
4409866 | McBride | Oct 1983 | A |
4441497 | Paudler | Apr 1984 | A |
4444933 | Columbus et al. | Apr 1984 | A |
4452245 | Usher | Jun 1984 | A |
4509516 | Richmond | Apr 1985 | A |
4632100 | Somers et al. | Dec 1986 | A |
4633873 | Dumican et al. | Jan 1987 | A |
4646731 | Brower | Mar 1987 | A |
4655221 | Devereux | Apr 1987 | A |
4769038 | Bendavid et al. | Sep 1988 | A |
4775380 | Seedhom et al. | Oct 1988 | A |
4784139 | Demos | Nov 1988 | A |
4799484 | Smith et al. | Jan 1989 | A |
4857041 | Annis et al. | Aug 1989 | A |
4865031 | O'Keeffe | Sep 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4911164 | Roth | Mar 1990 | A |
4920986 | Biswas | May 1990 | A |
4938760 | Burton et al. | Jul 1990 | A |
5004468 | Atkinson | Apr 1991 | A |
5013292 | Lemay | May 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5085661 | Moss | Feb 1992 | A |
5112344 | Petros | May 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
5123910 | McIntosh | Jun 1992 | A |
5149329 | Richardson | Sep 1992 | A |
5188636 | Fedotov | Feb 1993 | A |
5207694 | Broome | May 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5219352 | Atkinson | Jun 1993 | A |
5234436 | Eaton et al. | Aug 1993 | A |
5250033 | Evans et al. | Oct 1993 | A |
5256133 | Spitz | Oct 1993 | A |
5259835 | Clark et al. | Nov 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5306279 | Atkinson | Apr 1994 | A |
5328077 | Lou | Jul 1994 | A |
5336239 | Gimpelson | Aug 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5342376 | Ruff | Aug 1994 | A |
5356432 | Rutkow et al. | Oct 1994 | A |
5362294 | Seitzinger | Nov 1994 | A |
5368595 | Lewis | Nov 1994 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5386836 | Biswas | Feb 1995 | A |
5397353 | Oliver et al. | Mar 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5413598 | Moreland | May 1995 | A |
5434146 | Labrie et al. | Jul 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5456711 | Hudson | Oct 1995 | A |
5473796 | Fusillo | Dec 1995 | A |
5474543 | McKay | Dec 1995 | A |
5486197 | Le et al. | Jan 1996 | A |
5507754 | Green et al. | Apr 1996 | A |
5507796 | Hasson | Apr 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5522896 | Prescott | Jun 1996 | A |
5544664 | Benderev et al. | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5562685 | Mollenauer et al. | Oct 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5569273 | Titone et al. | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5591163 | Thompson | Jan 1997 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5633286 | Chen | May 1997 | A |
5645568 | Chervitz et al. | Jul 1997 | A |
5647836 | Blake, III et al. | Jul 1997 | A |
5655270 | Boisvert | Aug 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5689860 | Matoba et al. | Nov 1997 | A |
5693072 | McIntosh | Dec 1997 | A |
5695525 | Mulhauser et al. | Dec 1997 | A |
5697931 | Thompson | Dec 1997 | A |
5697978 | Sgro | Dec 1997 | A |
5720766 | Zang et al. | Feb 1998 | A |
5749884 | Benderev et al. | May 1998 | A |
5766221 | Benderev et al. | Jun 1998 | A |
5774994 | Stein et al. | Jul 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5816258 | Jervis | Oct 1998 | A |
5830220 | Wan et al. | Nov 1998 | A |
5836314 | Benderev et al. | Nov 1998 | A |
5836315 | Benderev et al. | Nov 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5851229 | Lentz et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5904692 | Steckel et al. | May 1999 | A |
5919232 | Chaffringeon et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5934283 | Willem et al. | Aug 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5954057 | Li | Sep 1999 | A |
5971967 | Willard | Oct 1999 | A |
5972000 | Beyar et al. | Oct 1999 | A |
5988171 | Sohn et al. | Nov 1999 | A |
5997554 | Thompson | Dec 1999 | A |
6005191 | Tzeng et al. | Dec 1999 | A |
6010447 | Kardjian | Jan 2000 | A |
6030393 | Corlew | Feb 2000 | A |
6031148 | Hayes et al. | Feb 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042536 | Tihon et al. | Mar 2000 | A |
6042583 | Thompson et al. | Mar 2000 | A |
6048306 | Spielberg | Apr 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6050937 | Benderev | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6063094 | Rosenberg | May 2000 | A |
6068591 | Bruckner et al. | May 2000 | A |
6071290 | Compton | Jun 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6077216 | Benderev et al. | Jun 2000 | A |
6090116 | D'Aversa et al. | Jul 2000 | A |
6106545 | Egan | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6117067 | Gil Vernet | Sep 2000 | A |
6159207 | Yoon | Dec 2000 | A |
6162962 | Hinsch et al. | Dec 2000 | A |
6168611 | Rizvi | Jan 2001 | B1 |
6174329 | Callol et al. | Jan 2001 | B1 |
6190401 | Green et al. | Feb 2001 | B1 |
6197036 | Tripp et al. | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6221005 | Bruckner et al. | Apr 2001 | B1 |
6221060 | Willard | Apr 2001 | B1 |
6231496 | Wilk et al. | May 2001 | B1 |
6245082 | Gellman et al. | Jun 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6267772 | Mulhauser et al. | Jul 2001 | B1 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6287316 | Agarwal et al. | Sep 2001 | B1 |
6292700 | Morrison et al. | Sep 2001 | B1 |
6302840 | Benderev | Oct 2001 | B1 |
6306079 | Trabucco | Oct 2001 | B1 |
6319264 | Tormala et al. | Nov 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6328744 | Harari et al. | Dec 2001 | B1 |
6334446 | Beyar | Jan 2002 | B1 |
6336731 | Chien | Jan 2002 | B1 |
6352553 | van der Burg et al. | Mar 2002 | B1 |
6355065 | Gabbay | Mar 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6387041 | Harari et al. | May 2002 | B1 |
6406423 | Scetbon | Jun 2002 | B1 |
6406480 | Beyar et al. | Jun 2002 | B1 |
6408656 | Ory et al. | Jun 2002 | B1 |
6418930 | Fowler | Jul 2002 | B1 |
6440154 | Gellman et al. | Aug 2002 | B2 |
6443964 | Ory et al. | Sep 2002 | B1 |
6461332 | Mosel et al. | Oct 2002 | B1 |
6475139 | Miller | Nov 2002 | B1 |
6478727 | Scetbon | Nov 2002 | B2 |
6478791 | Carter et al. | Nov 2002 | B1 |
6482214 | Sidor, Jr. et al. | Nov 2002 | B1 |
6491703 | Ulmsten | Dec 2002 | B1 |
6494887 | Kaladelfos | Dec 2002 | B1 |
6494906 | Owens | Dec 2002 | B1 |
6502578 | Raz et al. | Jan 2003 | B2 |
6506190 | Walshe | Jan 2003 | B1 |
6527802 | Mayer | Mar 2003 | B1 |
6530943 | Hoepffner et al. | Mar 2003 | B1 |
6544273 | Harari et al. | Apr 2003 | B1 |
6575897 | Ory et al. | Jun 2003 | B1 |
6575998 | Beyar | Jun 2003 | B2 |
6582443 | Cabak et al. | Jun 2003 | B2 |
6592515 | Thierfelder et al. | Jul 2003 | B2 |
6596001 | Stormby et al. | Jul 2003 | B2 |
6599235 | Kovac | Jul 2003 | B2 |
6599318 | Gabbay | Jul 2003 | B1 |
6599323 | Melican et al. | Jul 2003 | B2 |
6612977 | Staskin et al. | Sep 2003 | B2 |
6638210 | Berger | Oct 2003 | B2 |
6638211 | Suslian et al. | Oct 2003 | B2 |
6638284 | Rousseau et al. | Oct 2003 | B1 |
6641524 | Kovac | Nov 2003 | B2 |
6641525 | Rocheleau et al. | Nov 2003 | B2 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6652595 | Nicolo | Nov 2003 | B1 |
6666817 | Li | Dec 2003 | B2 |
6669706 | Schmitt et al. | Dec 2003 | B2 |
6669735 | Pelissier | Dec 2003 | B1 |
6673010 | Skiba et al. | Jan 2004 | B2 |
6675483 | Bond et al. | Jan 2004 | B2 |
6679896 | Gellman et al. | Jan 2004 | B2 |
6689047 | Gellman | Feb 2004 | B2 |
6691711 | Raz et al. | Feb 2004 | B2 |
6695855 | Gaston | Feb 2004 | B1 |
6702827 | Lund et al. | Mar 2004 | B1 |
6737371 | Planck et al. | May 2004 | B1 |
6755781 | Gellman | Jun 2004 | B2 |
6764474 | Nielsen et al. | Jul 2004 | B2 |
6783554 | Amara et al. | Aug 2004 | B2 |
6786861 | Pretorius | Sep 2004 | B1 |
6830052 | Carter et al. | Dec 2004 | B2 |
6860887 | Frankle | Mar 2005 | B1 |
6878756 | Cinelli et al. | Apr 2005 | B2 |
6884212 | Thierfelder et al. | Apr 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6932759 | Kammerer et al. | Aug 2005 | B2 |
6936052 | Gellman et al. | Aug 2005 | B2 |
6953428 | Gellman et al. | Oct 2005 | B2 |
6960160 | Browning | Nov 2005 | B2 |
7025063 | Snitkin et al. | Apr 2006 | B2 |
7063716 | Cunningham | Jun 2006 | B2 |
7070556 | Anderson et al. | Jul 2006 | B2 |
7070558 | Gellman et al. | Jul 2006 | B2 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7094199 | Petros et al. | Aug 2006 | B2 |
7112171 | Rocheleau et al. | Sep 2006 | B2 |
7112210 | Ulmsten et al. | Sep 2006 | B2 |
7131943 | Kammerer | Nov 2006 | B2 |
7131944 | Jacquetin | Nov 2006 | B2 |
7140956 | Korovin et al. | Nov 2006 | B1 |
7156858 | Schuldt Hempe et al. | Jan 2007 | B2 |
7204802 | De Leval | Apr 2007 | B2 |
7229404 | Bouffier | Jun 2007 | B2 |
7288063 | Petros et al. | Oct 2007 | B2 |
7290410 | Meneghin et al. | Nov 2007 | B2 |
7297102 | Smith et al. | Nov 2007 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7347812 | Mellier | Mar 2008 | B2 |
7371245 | Evans et al. | May 2008 | B2 |
7387634 | Benderev | Jun 2008 | B2 |
7395822 | Burton et al. | Jul 2008 | B1 |
7404819 | Darios et al. | Jul 2008 | B1 |
7410460 | Benderev | Aug 2008 | B2 |
7500945 | Cox et al. | Mar 2009 | B2 |
7517313 | Thierfelder et al. | Apr 2009 | B2 |
7527633 | Rioux | May 2009 | B2 |
7559885 | Merade et al. | Jul 2009 | B2 |
7594921 | Browning | Sep 2009 | B2 |
7601118 | Smith et al. | Oct 2009 | B2 |
7611454 | De Leval | Nov 2009 | B2 |
7614258 | Cherok et al. | Nov 2009 | B2 |
7621864 | Suslian et al. | Nov 2009 | B2 |
7628156 | Astani et al. | Dec 2009 | B2 |
7673631 | Astani et al. | Mar 2010 | B2 |
7686760 | Anderson et al. | Mar 2010 | B2 |
7691050 | Gellman et al. | Apr 2010 | B2 |
7713188 | Bouffier | May 2010 | B2 |
7722528 | Arnal et al. | May 2010 | B2 |
7740576 | Hodroff et al. | Jun 2010 | B2 |
7766926 | Bosley, Jr. et al. | Aug 2010 | B2 |
7789821 | Browning | Sep 2010 | B2 |
7794385 | Rosenblatt | Sep 2010 | B2 |
7815662 | Spivey et al. | Oct 2010 | B2 |
7927342 | Rioux | Apr 2011 | B2 |
7975698 | Browning | Jul 2011 | B2 |
7981022 | Gellman et al. | Jul 2011 | B2 |
8007430 | Browning | Aug 2011 | B2 |
8016741 | Weiser et al. | Sep 2011 | B2 |
8016743 | Maroto | Sep 2011 | B2 |
8047983 | Browning | Nov 2011 | B2 |
8092366 | Evans | Jan 2012 | B2 |
8097007 | Evans et al. | Jan 2012 | B2 |
8100924 | Browning | Jan 2012 | B2 |
8118727 | Browning | Feb 2012 | B2 |
8118728 | Browning | Feb 2012 | B2 |
8123673 | Browning | Feb 2012 | B2 |
8128554 | Browning | Mar 2012 | B2 |
8157821 | Browning | Apr 2012 | B2 |
8157822 | Browning | Apr 2012 | B2 |
8162818 | Browning | Apr 2012 | B2 |
8167785 | Browning | May 2012 | B2 |
8182412 | Browning | May 2012 | B2 |
8182413 | Browning | May 2012 | B2 |
8215310 | Browning | Jul 2012 | B2 |
8273011 | Browning | Sep 2012 | B2 |
8449450 | Browning | May 2013 | B2 |
8454492 | Browning | Jun 2013 | B2 |
8469875 | Suslian et al. | Jun 2013 | B2 |
8469877 | Browning | Jun 2013 | B2 |
8512223 | Browning | Aug 2013 | B2 |
8574148 | Browning et al. | Nov 2013 | B2 |
8668635 | Browning | Mar 2014 | B2 |
8709471 | Browning | Apr 2014 | B2 |
8801596 | Browning | Aug 2014 | B2 |
8821369 | Browning | Sep 2014 | B2 |
8821370 | Browning | Sep 2014 | B2 |
8852075 | Browning | Oct 2014 | B2 |
9005222 | Evans et al. | Apr 2015 | B2 |
9186489 | Browning | Nov 2015 | B2 |
9345867 | Browning | May 2016 | B2 |
20010000533 | Kovac | Apr 2001 | A1 |
20010018549 | Scetbon | Aug 2001 | A1 |
20010039423 | Skiba et al. | Nov 2001 | A1 |
20010049467 | Lehe et al. | Dec 2001 | A1 |
20010049538 | Trabucco | Dec 2001 | A1 |
20010051815 | Esplin | Dec 2001 | A1 |
20010053916 | Rioux | Dec 2001 | A1 |
20020005204 | Benderev et al. | Jan 2002 | A1 |
20020007222 | Desai | Jan 2002 | A1 |
20020022841 | Kovac | Feb 2002 | A1 |
20020028980 | Thierfelder et al. | Mar 2002 | A1 |
20020042658 | Tyagi | Apr 2002 | A1 |
20020049503 | Milbocker | Apr 2002 | A1 |
20020052612 | Schmitt et al. | May 2002 | A1 |
20020052653 | Durgin | May 2002 | A1 |
20020052654 | Darois et al. | May 2002 | A1 |
20020055748 | Gellman et al. | May 2002 | A1 |
20020058959 | Gellman | May 2002 | A1 |
20020068948 | Stormby et al. | Jun 2002 | A1 |
20020072694 | Snitkin et al. | Jun 2002 | A1 |
20020077526 | Kammerer et al. | Jun 2002 | A1 |
20020078964 | Kovac et al. | Jun 2002 | A1 |
20020082619 | Cabak et al. | Jun 2002 | A1 |
20020083949 | James | Jul 2002 | A1 |
20020091298 | Landgrebe | Jul 2002 | A1 |
20020091373 | Berger | Jul 2002 | A1 |
20020099258 | Staskin et al. | Jul 2002 | A1 |
20020099259 | Anderson et al. | Jul 2002 | A1 |
20020099260 | Suslian et al. | Jul 2002 | A1 |
20020103542 | Bilbo | Aug 2002 | A1 |
20020107430 | Neisz et al. | Aug 2002 | A1 |
20020107525 | Harari et al. | Aug 2002 | A1 |
20020115906 | Miller | Aug 2002 | A1 |
20020119177 | Bowman et al. | Aug 2002 | A1 |
20020128670 | Ulmsten et al. | Sep 2002 | A1 |
20020138025 | Gellman et al. | Sep 2002 | A1 |
20020147382 | Neisz et al. | Oct 2002 | A1 |
20020151762 | Rocheleau et al. | Oct 2002 | A1 |
20020151909 | Gellman et al. | Oct 2002 | A1 |
20020151910 | Gellman et al. | Oct 2002 | A1 |
20020156487 | Gellman et al. | Oct 2002 | A1 |
20020156488 | Gellman et al. | Oct 2002 | A1 |
20020161382 | Neisz et al. | Oct 2002 | A1 |
20020183588 | Fierro | Dec 2002 | A1 |
20020188169 | Kammerer et al. | Dec 2002 | A1 |
20030004395 | Therin | Jan 2003 | A1 |
20030009181 | Gellman et al. | Jan 2003 | A1 |
20030023136 | Raz et al. | Jan 2003 | A1 |
20030023137 | Gellman | Jan 2003 | A1 |
20030023138 | Luscombe | Jan 2003 | A1 |
20030036676 | Scetbon | Feb 2003 | A1 |
20030050530 | Neisz et al. | Mar 2003 | A1 |
20030065246 | Inman et al. | Apr 2003 | A1 |
20030065402 | Anderson et al. | Apr 2003 | A1 |
20030069469 | Li | Apr 2003 | A1 |
20030078468 | Skiba et al. | Apr 2003 | A1 |
20030100954 | Schuldt Hempe et al. | May 2003 | A1 |
20030130670 | Anderson et al. | Jul 2003 | A1 |
20030149440 | Kammerer et al. | Aug 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030176762 | Kammerer | Sep 2003 | A1 |
20030176875 | Anderson et al. | Sep 2003 | A1 |
20030191360 | Browning | Oct 2003 | A1 |
20030199732 | Suslian et al. | Oct 2003 | A1 |
20030212305 | Anderson et al. | Nov 2003 | A1 |
20030220538 | Jacquetin | Nov 2003 | A1 |
20040029478 | Planck et al. | Feb 2004 | A1 |
20040034373 | Schuldt Hempe et al. | Feb 2004 | A1 |
20040039453 | Anderson et al. | Feb 2004 | A1 |
20040059356 | Gingras | Mar 2004 | A1 |
20040097974 | De Leval | May 2004 | A1 |
20040106847 | Benderev | Jun 2004 | A1 |
20040144395 | Evans et al. | Jul 2004 | A1 |
20040172048 | Browning | Sep 2004 | A1 |
20040231678 | Fierro | Nov 2004 | A1 |
20040243166 | Odermatt et al. | Dec 2004 | A1 |
20040249240 | Goldmann et al. | Dec 2004 | A1 |
20040249373 | Gronemeyer et al. | Dec 2004 | A1 |
20040249397 | Delorme et al. | Dec 2004 | A1 |
20040249473 | Delorme et al. | Dec 2004 | A1 |
20050000524 | Cancel et al. | Jan 2005 | A1 |
20050004576 | Benderev | Jan 2005 | A1 |
20050065486 | Fattman | Mar 2005 | A1 |
20050080317 | Merade | Apr 2005 | A1 |
20050107805 | Bouffier et al. | May 2005 | A1 |
20050240076 | Neisz et al. | Oct 2005 | A1 |
20050277806 | Cristalli | Dec 2005 | A1 |
20050278037 | Delorme et al. | Dec 2005 | A1 |
20050283040 | Greenhalgh | Dec 2005 | A1 |
20060015069 | Evans et al. | Jan 2006 | A1 |
20060025649 | Smith et al. | Feb 2006 | A1 |
20060025783 | Smith et al. | Feb 2006 | A1 |
20060041185 | Browning | Feb 2006 | A1 |
20060058578 | Browning | Mar 2006 | A1 |
20060089524 | Chu | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060130848 | Carey | Jun 2006 | A1 |
20060205995 | Browning | Sep 2006 | A1 |
20060264698 | Kondonis et al. | Nov 2006 | A1 |
20070015953 | MacLean | Jan 2007 | A1 |
20070020311 | Browning | Jan 2007 | A1 |
20070032695 | Weiser | Feb 2007 | A1 |
20070032881 | Browning | Feb 2007 | A1 |
20070059199 | Labuschagne | Mar 2007 | A1 |
20070149555 | Kase et al. | Jun 2007 | A1 |
20070219606 | Moreci et al. | Sep 2007 | A1 |
20080021263 | Escude et al. | Jan 2008 | A1 |
20080161837 | Toso et al. | Jul 2008 | A1 |
20080161850 | Weisenburgh et al. | Jul 2008 | A1 |
20080167518 | Burton et al. | Jul 2008 | A1 |
20080196729 | Browning | Aug 2008 | A1 |
20080200751 | Browning | Aug 2008 | A1 |
20080281148 | Evans et al. | Nov 2008 | A1 |
20090123522 | Browning | May 2009 | A1 |
20090137862 | Evans et al. | May 2009 | A1 |
20090171377 | Intoccia et al. | Jul 2009 | A1 |
20090221868 | Evans | Sep 2009 | A1 |
20090287229 | Ogdahl | Nov 2009 | A1 |
20100022822 | Walshe | Jan 2010 | A1 |
20100056856 | Suslian et al. | Mar 2010 | A1 |
20100063351 | Witzmann et al. | Mar 2010 | A1 |
20100113869 | Goldman | May 2010 | A1 |
20100130814 | Dubernard | May 2010 | A1 |
20100198002 | O'Donnell | Aug 2010 | A1 |
20100222794 | Browning | Sep 2010 | A1 |
20100222974 | Nakamura et al. | Sep 2010 | A1 |
20100256442 | Ogdahl et al. | Oct 2010 | A1 |
20100274074 | Khamis et al. | Oct 2010 | A1 |
20100280308 | Browning | Nov 2010 | A1 |
20100298630 | Wignall | Nov 2010 | A1 |
20110021868 | Browning | Jan 2011 | A1 |
20110034759 | Ogdahl et al. | Feb 2011 | A1 |
20110105833 | Gozzi et al. | May 2011 | A1 |
20110124954 | Ogdahl et al. | May 2011 | A1 |
20110124956 | Mujwid et al. | May 2011 | A1 |
20110201872 | Browning | Aug 2011 | A1 |
20110230705 | Browning | Sep 2011 | A1 |
20110230708 | Browning | Sep 2011 | A1 |
20110230709 | Browning | Sep 2011 | A1 |
20110237865 | Browning | Sep 2011 | A1 |
20110237866 | Browning | Sep 2011 | A1 |
20110237867 | Browning | Sep 2011 | A1 |
20110237868 | Browning | Sep 2011 | A1 |
20110237869 | Browning | Sep 2011 | A1 |
20110237870 | Browning | Sep 2011 | A1 |
20110237873 | Browning | Sep 2011 | A1 |
20110237874 | Browning | Sep 2011 | A1 |
20110237875 | Browning | Sep 2011 | A1 |
20110237876 | Browning | Sep 2011 | A1 |
20110237877 | Browning | Sep 2011 | A1 |
20110237878 | Browning | Sep 2011 | A1 |
20110237879 | Browning | Sep 2011 | A1 |
20110238095 | Browning | Sep 2011 | A1 |
20110245594 | Browning | Oct 2011 | A1 |
20110282136 | Browning | Nov 2011 | A1 |
20110319705 | Browning | Dec 2011 | A1 |
20110319706 | Browning | Dec 2011 | A1 |
20120083651 | Browning | Apr 2012 | A1 |
20120116154 | Evans et al. | May 2012 | A1 |
20120143000 | Browning | Jun 2012 | A1 |
20120149977 | Browning | Jun 2012 | A1 |
20120199133 | Browning | Aug 2012 | A1 |
20140039244 | Browning | Feb 2014 | A1 |
20140039247 | Browning | Feb 2014 | A1 |
20140039248 | Browning | Feb 2014 | A1 |
20140051917 | Browning | Feb 2014 | A1 |
20140303429 | Evans et al. | Oct 2014 | A1 |
20140303430 | Evans et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2592617 | Feb 2004 | CA |
2305815 | Aug 1974 | DE |
4220283 | Dec 1993 | DE |
4304353 | Apr 1994 | DE |
10019604 | Jun 2002 | DE |
10211360 | Oct 2003 | DE |
0009072 | Apr 1980 | EP |
0024781 | Aug 1984 | EP |
0024780 | Oct 1984 | EP |
0248544 | Apr 1991 | EP |
0437481 | Jul 1991 | EP |
0139286 | Aug 1991 | EP |
0470308 | Feb 1992 | EP |
0556313 | Aug 1993 | EP |
0557964 | Sep 1993 | EP |
0632999 | Jan 1995 | EP |
0650703 | May 1995 | EP |
0706778 | Apr 1996 | EP |
0740925 | Nov 1996 | EP |
0745351 | Dec 1996 | EP |
0778749 | Jun 1997 | EP |
0854691 | Jul 1998 | EP |
0983033 | Mar 2000 | EP |
1093758 | Apr 2001 | EP |
0719527 | Aug 2001 | EP |
1151722 | Nov 2001 | EP |
1159921 | Dec 2001 | EP |
0643945 | Mar 2002 | EP |
1342454 | Sep 2003 | EP |
1545285 | Jun 2005 | EP |
1060714 | Aug 2006 | EP |
1274370 | Sep 2006 | EP |
1296614 | Sep 2006 | EP |
1353598 | Oct 2007 | EP |
0797962 | Sep 2009 | EP |
1274370 | Oct 1961 | FR |
2712177 | May 1995 | FR |
2732582 | Oct 1997 | FR |
2735015 | Feb 1998 | FR |
2811218 | Nov 2000 | FR |
2787990 | Apr 2001 | FR |
0378288 | Aug 1932 | GB |
2353220 | Feb 2001 | GB |
4452180 | Nov 2005 | JP |
2187251 | Aug 2002 | RU |
2196518 | Jan 2003 | RU |
1225547 | Apr 1986 | SU |
1342486 | Oct 1987 | SU |
1475607 | Apr 1989 | SU |
WO9003766 | Apr 1990 | WO |
WO9100714 | Jan 1991 | WO |
WO9317635 | Sep 1993 | WO |
WO9319678 | Oct 1993 | WO |
WO9533454 | Dec 1995 | WO |
WO9603091 | Feb 1996 | WO |
WO9606567 | Mar 1996 | WO |
WO9706567 | Feb 1997 | WO |
WO9713465 | Apr 1997 | WO |
WO9722310 | Jun 1997 | WO |
WO9743982 | Nov 1997 | WO |
WO9819606 | May 1998 | WO |
WO9835606 | Aug 1998 | WO |
WO9835616 | Aug 1998 | WO |
WO9835632 | Aug 1998 | WO |
WO9857590 | Dec 1998 | WO |
WO9916381 | Apr 1999 | WO |
WO9952450 | Oct 1999 | WO |
WO9959477 | Nov 1999 | WO |
WO0007520 | Feb 2000 | WO |
WO0013601 | Mar 2000 | WO |
WO0015141 | Mar 2000 | WO |
0018325 | Apr 2000 | WO |
WO0018319 | Apr 2000 | WO |
0027304 | May 2000 | WO |
WO0038784 | Jul 2000 | WO |
WO0057812 | Oct 2000 | WO |
0066030 | Nov 2000 | WO |
WO0064370 | Nov 2000 | WO |
WO0074594 | Dec 2000 | WO |
WO0074613 | Dec 2000 | WO |
WO0074633 | Dec 2000 | WO |
WO0106951 | Feb 2001 | WO |
WO0126581 | Apr 2001 | WO |
WO0139670 | Jun 2001 | WO |
WO0145589 | Jun 2001 | WO |
0152750 | Jul 2001 | WO |
WO0152729 | Jul 2001 | WO |
WO0156499 | Aug 2001 | WO |
WO0180773 | Nov 2001 | WO |
WO0202031 | Jan 2002 | WO |
0219946 | Mar 2002 | WO |
0228315 | Apr 2002 | WO |
WO0226108 | Apr 2002 | WO |
WO0228312 | Apr 2002 | WO |
WO0230293 | Apr 2002 | WO |
WO0232284 | Apr 2002 | WO |
WO0232346 | Apr 2002 | WO |
0239914 | May 2002 | WO |
WO0234124 | May 2002 | WO |
WO0239890 | May 2002 | WO |
02058562 | Aug 2002 | WO |
02058563 | Aug 2002 | WO |
02058564 | Aug 2002 | WO |
02058565 | Aug 2002 | WO |
02062237 | Aug 2002 | WO |
02065922 | Aug 2002 | WO |
02065923 | Aug 2002 | WO |
WO02060371 | Aug 2002 | WO |
WO02065921 | Aug 2002 | WO |
WO02065944 | Aug 2002 | WO |
02071931 | Sep 2002 | WO |
WO02069781 | Sep 2002 | WO |
WO02071953 | Sep 2002 | WO |
WO02078548 | Oct 2002 | WO |
WO02078552 | Oct 2002 | WO |
WO02078568 | Oct 2002 | WO |
WO02078571 | Oct 2002 | WO |
02098322 | Dec 2002 | WO |
WO02098340 | Dec 2002 | WO |
WO03002027 | Jan 2003 | WO |
03013369 | Feb 2003 | WO |
WO03013392 | Feb 2003 | WO |
WO03057074 | Jul 2003 | WO |
WO03068107 | Aug 2003 | WO |
03075792 | Sep 2003 | WO |
WO03022260 | Oct 2003 | WO |
WO03086205 | Oct 2003 | WO |
03096928 | Nov 2003 | WO |
03096930 | Nov 2003 | WO |
WO03092546 | Nov 2003 | WO |
WO03094781 | Nov 2003 | WO |
WO2004002370 | Jan 2004 | WO |
WO2004002379 | Jan 2004 | WO |
WO2004004600 | Jan 2004 | WO |
2004016196 | Feb 2004 | WO |
WO2004012626 | Feb 2004 | WO |
2004019786 | Mar 2004 | WO |
2004012579 | May 2004 | WO |
WO2004098461 | Nov 2004 | WO |
WO2005018494 | Mar 2005 | WO |
WO2005112842 | Dec 2005 | WO |
WO2006015031 | Feb 2006 | WO |
WO2006015042 | Feb 2006 | WO |
WO2006136625 | Dec 2006 | WO |
WO2007059199 | May 2007 | WO |
WO2007149555 | Dec 2007 | WO |
WO2008007086 | Jan 2008 | WO |
WO2008018494 | Feb 2008 | WO |
Entry |
---|
Petros and Ulmsten, “Part III: Surgical Principles Deriving from the Theory,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:41-52. |
Petros and Ulmsten, “Part IV: Surgical Applications of the Theory—Development of the Intravaginal Sling Plasty (IVS) Procedure,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:53-54. |
Petros and Ulmsten, “Pinch Test for Diagnosis of Stress Urinary Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl.153):33-35. |
Petros and Ulmsten. An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence. Scandinavian Journal of Urology and Nephrology, Supplement No. 153, 1993. |
Petros and Ulmsten. An Integral Theory of Female Urinary Incontinence. Acta Obstet. Gynecol. Scand., 1990, 69(Suppl.153):7-31. |
Petros and Ulmsten. Pregnancy Effects on the Intravaginal Sling Operation. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 An Integral Theory of Female Urinary Incontinence) :77-78, 1990. |
Petros and Ulmsten. The Combined Intravaginal Sling and Tuck Operation. An Ambulatory Procedure for Cure of Stress and Urge Incontinence. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 An Integral Theory of Female Urinary Incontinence): 53-59, 1990. |
Petros and Ulmsten. The Development of the Intravaginal Slingplasty Procedure: IVS II—(with bilateral “tucks”). Scand. J. Urol. Nephrol., Suppl. 153 An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 61-67, 1993. |
Petros and Ulmsten. The Free Graft Procedure for Cure of the Tethered Vagina Syndrome. Scand. J. Urol. Nephrol., Suppl. 153: 85-87, 1997. |
Petros and Ulmsten. The Further Development of the Intravaginal Slingplasty Procedure: IVS IV—(with “double-breasted” unattached vaginal flap repair and “free” vaginal tapes). Scand. J. Urol. Nephrol., Suppl. 153 An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 73-79, 1993. |
Petros and Ulmsten. The Intravaginal Slingplasty Procedure: IVS VI—Further Development of the “Double-Breasted” Vaginal Flap Repair—Attached Flap. Scand. J. Urol. Nephrol., Suppl. 153 An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 81-84, 1993. |
Petros and Ulmsten. The Posterior Fornix Syndrome: A Multiple Symptom Complex of Pelvic Pain and Abnormal Urinary Symptoms Deriving from Laxity in the Posterior Fornix of Vagina. Scand. J. Urol. Nephrol., Suppl. 153 An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 89-93, 1993. |
Petros and Ulmsten. The Role of a Lax Posterior Vaginal Fornix in the Causation of Stress and Urgency Symptoms: A Preliminary Report. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 An Integral Theory of Female Urinary Incontinence): 71-73, 1990. |
Petros and Ulmsten. The Tethered Vagina Syndrome, Post Surgical Incontinence and I-Plasty Operation for Cure. Acta Obstet. Gynecol. Scand., 69(Suppl.153 An Integral Theory of Female Urinary Incontinence): 63-67, 1990. |
Petros and Ulmsten. The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence. Acta Obstet. Gynecol. Scand., 69(Suppl.153 An Integral Theory of Female Urinary Incontinence): 41-42, 1990. |
Petros and Ulmsten. Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure. Neurourology and Urodynamics, 14:337-350, 1995. |
Petros, Peter E., et al. The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament. Acta Obstet. Gynecol. Scand., 69(Suppl. 153 An Integral Theory of Female Urinary Incontinence):43-51, 1990. |
Petros. Development of Generic Models for Ambulatory Vaginal Surgery—A Preliminary Report. Int. Urogynecol. J., 9:19-27, 1998. |
Plaintiff Coloplast ,A/S's Opening Claim Construction Brief (Jan. 10, 2011) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV 10-227 BHS. |
Plaintiff Coloplast A/S's Answer to Defendant Generic Medical Devices, Inc.'s Counterclaims (Mar. 22, 2010) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV10-227 BHS. |
Plaintiff Coloplast A/S's Disclosure of Asserted Claims and Infringement Contentions (Jul. 6, 2010) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV '10-227 BHS. |
Plaintiff's Reply to Counterclaim (Mar. 30, 2004) Mentor Corporation v. American Medical Systems, Inc. (Civ. No. 04-1000). |
Product Monograph for Aris Transobturator Tape for the Treatment of Female Stress Urinary Incontinence, 2004, 40 pages. |
Rackley, Raymond R., et al. Tension-free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures. Techniques in Urology, 7(2):90-100, 2001. |
Rackley, Raymond. Synthetic Slings: Five Steps for Successful Placement—Follow These Steps to Insert Transvaginal/Percutaneous Slings Using Vaginal Approach Alone. Urology Times, 28:46-49, 2000. |
Random House Webster's Unabridged Dictionary, 2001. |
Raz, Shlomo, et al. The Raz Bladder Neck Suspension: Results in 206 Patients. The Journal of Urology: Urological Neurology and Urodynamics, 148:845-850, 1992. |
Raz, Shlomo. Modified Bladder Neck Suspension for Female Stress Incontinence. Urology, 17(1):82-85, 1981. |
Richardson, David A., et al. Delayed Reaction to the Dacron Buttress Used in Urethropexy. The Journal of Reproductive Medicine, 29(9):689-692, 1984. |
Ridley, John H. Appraisal of the Goebell-Frangenheim-Stoeckel Sling Procedure. American Journal of Obstetrics and Gynecology, 95(5):714-721, 1966. |
Sand et al., “Prospective randomized trial of polyglactin 910 mesh to prevent recurrence of cystoceles and rectoceles,” American Journal of Obstetrics & Gynecology vol. 184, Issue 7, pp. 1357-1364, Jun. 2001. |
Schettini, M. et al., “Abdominal sacral colpopexy with prolene mesh,” Int Urogynecol J Pelvic Floor Dysfunct (1999) 10(5): 259-299. |
Schumpelick, V. et at., “Minimized polypropylene mesh for preperitoneal net plasty (PNP) of incisional hernias,” Chirurg 70:422-430 (1999). |
Shaw, W., “An Operation for the Treatment of Stress Incontinence,” Br. Med. J. 1949:1070-1073. |
Sheiner et al., “An unusual complication of obturator foramen arterial bypass,” J. Cardiovasc. Surg., 1969, 10(4):324-328. |
Sirls and Leach, “Use of Fascia Lata for Pubovaginal Sling,” Female Urology, 1996, Raz (ed.). W.B. Saunders Company, Chapter 32, pp. 376-381. |
Sloan and Barwin, “Stress Incontinence of Urine: A Retrospective Study of the Complications and Late Results of Simple Suprapubic Suburethral Fascial Slings,” J. Urol., 1973, 110:533-536. |
Solyx™ SIS System, The Carrier Tip That Allows for Advanced Control, (Accessed: Feb. 28, 2011). |
Sottner et al. “New Single-Incision Sling System MiniArc™ in treatment of the female stress urinary incontinence” Gynekologicko-porodnická klinika [Online] 2010, 75(2), pp. 101-104. |
Spencer et al., “A Comparison of Endoscopic Suspension of the Vesical Neck with Suprapubic Vesicourethropexy for Treatment of Stress Urinary Incontinence,” J. Urol., 1987, 137:411-415. |
Spinosa, JP et al., Transobturator surgery for female stress incontinence: a comparative anatomical study of outside-in vs. inside-out techniques, BJU Intl., 100(5), pp. 1097-1102 (Nov. 2007). |
Stamey, “Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females,” Annals of Surgery, 1980, 192(4):465-471. |
Stanton, Stuart L. Suprapubic Approaches for Stress Incontinence in Women. The Journal of the American Geriatrics Society, 38(3):348-351, 1990. |
Staskin et al., “The Gore-tex sling procedure for female sphincteric incontinence: indications, technique, and results,” World J. Urol., 1997, 15:295-299. |
Stothers et al., “Anterior Vaginal Wall Sling,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 35, pp. 395-398. |
Supplemental European Search Report issued in EP Application No. 03751825, Jun. 19, 2009, 5 pages. |
Surgimesh Sling Treatment of Incontinence http://www.aspide.com Mar. 4, 2011. |
Ulmsten and Petros, “Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence,” Scand. J. Urol. Nephrol., 1995, 29:75-82. |
Ulmsten et al., “A three-year follow up of tension free vaginal tape for surgical treatment of female stress urinary incontinence,” Br. J. Obstet. Gynecol., 1999, 106:345-350. |
Ulmsten et al., “An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence,” Int. Urogynecol. J., 1996, 7:81-86. |
Abdel-fattah, Mohamed et al. Evaluation of transobturator tapes (E-TOT) study: randomised prospective single-blinded study comparing inside-out vs. outside-in transobturator tapes in management of urodynamic stress incontinence: Short term outcomes, European Journal of Obstetrics & Gynecology and Reproductive Biology (2009). |
Accelerated Examination Search for Surgical Implant—Abutment System and Method, Mar. 31, 2011, 10 pages. |
Accelerated Examination Search for Surgical Implant—Adjustable, Mar. 4, 2011, 10 pages. |
Accelerated Examination Search for Surgical Implant—Fiber Entanglement, Mar. 4, 2011, 8 pages. |
Accelerated Examination Search for Surgical Implant—Introducer, Mar. 31, 2011, 12 pages. |
Adjustable Mini-Sling, Just-Swing SVS “Secured Vaginal Sling”, Polypropylene, Mar. 2010. |
Ajust Adjustable Single-Incision Sling, http://www.bardnordic.com, Mar. 1, 2011. |
Ajust(TM) Adjustable Single-Incision Sling, retrieved from www.bardnordic.com/main/product.asp?sectionTypeId=2§ion, accessed Mar. 1, 2011, 1 page. |
Aldridge, “Transplantation of Fascia for Relief of Urinary Stress Incontinence,” Am. J. Obstet. Gynecol., 1942, 44:398-411. |
Amended Answer and Counterclaim (Mar. 30, 2004) American Medical Systems, Inc. v. Mentor Corporation, Civ. No. 03-5759. |
American Heritage Dictionary, 2nd College Edition (1991). |
AMS's Reply to Mentor's Counterclaim (Apr. 5, 2004) American Medical Systems, Inc. v. Mentor Corporation, Civ. No. 03-CV-5759. |
Answer and Counterclaim (Mar. 15, 2004) American Medical Systems, Inc. v. Mentor Corporation, Civ. No. 03-5759. |
Answer and Counterclaim of American Medical Systems, Inc. (Mar. 11, 2004) Mentor Corporation v. American Medical Systems, Inc., Civ. Case No. 04-1000 DWF/SRN. |
Araki et al., “The Loop-Loosening Procedure for Urination Difficulties After Stamey Suspension of the Vesical Neck,” J. Urol., 1990, 144:319-323. |
Asmussen and Ulmsten, “Simultaneous Urethro-Cystometry with a New Technique,” Scand. J. Urol. Nephrol., 1976, 10:7-11. |
Beck and McCormick, “Treatment of Urinary Stress Incontinence with Anterior Colporrhaphy,” Obstetrics and Gynecology, 1982, 59(3):271-274. |
Benderev, “A Modified Percutaneous Outpatient Bladder Neck Suspension System,” J. Urol., 1994, 152:2316-2320. |
Benderev, “Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension,” Urology, 1992, 40(5):409-418. |
Bergman and Elia, “Three surgical procedures for genuine stress incontinence: Five-year follow-up of a prospective randomized study,” Am. J. Obstet. Gynecol., 1995, 173:66-71. |
BioArc SP Sling Kit, www.AmericanMedicalSystems.com, 2006. |
BioArc(R) SP Sling Kit: 12 Step Procedure, American Medical Systems Inc. Online Brochure 2006, 2 pages. |
Blaivas and Jacobs, “Pubovaginal Fascial Sling for the Treatment of Complicated Stress Urinary Incontinence,” J. Urol., 1991, 145:1214-1218. |
Blaivas and Salinas, “Type III Stress Urinary Incontinence: Importance of Proper Diagnosis and Treatment,” American College of Surgeons Surgical Forum, 1984, 70.sup.th Annual Clinical Congress, San Francisco, CA, vol. XXXV, pp. 473-474. |
Botros, Cystocele and Rectocele Repair: More Success With Mesh? Jun. 2006. |
Bryans, “Marlex gauze hammock sling operation with Coopers ligament attachment in the management of recurrent urinary stress incontinence,” Am. J. Obstet. Gynecol., 1979, 133(3):292-294. |
Burch, “Urethrovaginal fixation to Cooper's ligament for correction of stress incontinence, cystocele, and prolapse,” Am. J. Obstet. Gynecol., 1961, 81(2):281-290. |
Canepa, G. et al., “Horseshoe-shaped Marlex mesh for the treatment of pelvic floor prolapse,” European Urology (Jan. 2001) 39 (Supl 2): 23-27. |
Priority document for GB Application No. 0025068.8, filed Oct. 12, 2000, 38 pages. |
Priority document for GB Application No. 0208359.0, filed Apr. 11, 2002, 50 pages. |
Priority document for GB Application No. 0411360.1, filed May 21, 2004, 31 pages. |
Chen, Biologic Grafts and Synthetic Meshes in Pelvic Reconstructive Surgery, Jun. 2007. |
Choe and Staskin, “Gore-Tex Patch Sling: 7 Years Later,” Urology, 1999, 54:641-646. |
Chopra et al., “Technique of Rectangular Fascial Sling,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 34, pp. 392-394. |
Churchill's Medical Dictionary (1989). |
Complaint and Jury Demand (Feb. 8, 2010), Coloplast A/S v. Mpathy Medical Devices, Inc., Court File No. CV10-206. |
Complaint for Declaratory Judgment (Oct. 28, 2003) American Medical Systems, Inc. v. Mentor Corporation. |
Complaint for Patent Infringement (Feb. 20, 2004) Mentor Corporation v. American Medical Systems, Inc. |
Complaint for Patent Infringement and Exhibits (Feb. 8, 2010) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV10-227 BHS. |
Cook, Urogynecology, Product Technical Datasheet and Order form, 1996. |
D. Elliott Declaration and Attachment 1 (Jan. 5, 2011) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV 10-227 BHS. |
Dargent, D. et al., Pose d'un ruban sous uretral oblique par voie obturatrice dans le traitement de L'incontinence urinary feminine [English “Insertion of a transobturator oblique suburethral sling in the treatment of female urinary incontinence”], Gynecol. Obstet. Ferril. 14, pp. 576-582 (2002) [including English translation at the beginning of document]. |
Das and Palmer, “Laparoscopic Colpo-Suspension,” J. Urol., 1995, 154:1119-1121. |
de Leval, J., “Novel Surgical Technique for the Treatment of Female Stress Urinary Continence: Transobturator Vaginal Tape Inside-Out,” European Urology, 2003, 44:724-730. |
DeBord, James R., (1998), “The Historical Development of Prosthetics in Hernia Surgery,” Surgical Clinics of North America, 78(6): 973-1006. |
Declaration of Dr. George D. Webster in Support of Generic Medical Devices, Inc.'s Briefing on Claim Construction and Exhibits for Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV 10-227 BHS, signed Jan. 5, 2011. |
Declaration of Jeya Paul and Attachment 1 (Jan. 10, 2011) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV 10-227 BHS. |
Declaration of Marc Belloli in Support of GMD's Opening Claim Construction Brief and Exhibits A-J (Jan. 10, 2011) Coloplast A/S v. Generic Medical Devices, Inc., Court File No. CV 10-227 BHS. |
Decter, “Use of the Fascial Sling for Neurogenic Incontinence: Lessons Learned,” J. Urol., 1993, 150:683-686. |
Delmore, E. et al., La bandelette trans-obturatrice: Un procede mini-invasif pour traiter l'incontinence urinaire d'effort de la femme, Progres en Urologie, vol. 11, pp. 1306-1313 (2001) [including English translation at the beginning of document]. |
deTayrac, et al. Prolapse repair by vaginal route using . . . Int. Urogynecol. J. (published online May 13, 2006). |
Dwyer, Transvaginal repair of anterior and posterior compartment prolapse with Atrium polypropylene mesh, BJOG: An International Journal of Obstetrics & Gynaecology, Aug. 2004. |
Enzelsberger et al., “Urodynamic and Radiologic Parameters Before and After Loop Surgery for Recurrent Urinary Stress Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69:51-54. |
Eriksen et al., “Long-Term Effectiveness of the Burch Colposuspension in Female Urinary Stress Incontinence,” Acta Obstet. Gynecol. Scand., 1990, 69:45-50. |
Falconer et al., “Clinical Outcome and Changes in Connective Tissue Metabolism After Intravaginal Slingplasty in Stress Incontinent Women,” Int. Urogynecol. J., 1996, 7:133-137. |
Falconer et al., “Influence of Different Sling Materials on Connective Tissue Metabolism in Stress Urinary Incontinent Women,” Int. Urogynecol. J., 2001, (Suppl. 2):S19-S23. |
Generic Medical Devices, Inc.'s Answer to Complaint and Counterclaims (Mar. 1, 2010) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV10-227 BHS. |
Generic Medical Devices, Inc.'s Non, Infringement and Invalidity Contentions and Accompanying Document Production (Aug. 9, 2010) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV-I0-227 BHS. |
Generic Medical Devices, Inc.'s Opening Claim Construction Brief (Jan. 10, 2011) Coloplast A/S, v. Generic Medical Devices, Inc., Court File No. CV10-227 BHS. |
Gilja et al., “A Modified Raz Bladder Neck Suspension Operation (Transvaginal Burch),” J. Urol., 1995, 153:1455-1457. |
Gittes and Loughlin, “No-Incision Pubovaginal Suspension for Stress Incontinence,” J. Urol., 1987, 138:568-570. |
Gruss, “The Obturator Bypass. Indications. Techniques. Outcomes,” Chirurgie, 1971, 97:220-226. |
Guido and Moore, “The Surgeon At Work. Obturator Bypass Technique,” Surgery, Gynecology & Obstetrics, 1969, pp. 1307-1315. |
Handa et al., “Banked Human Fascia Lata for the Suburethral Sling Procedure: A Preliminary Report,” Obstet. Gynecol., 1996, 88:1045-1049. |
Hardiman, et al. Cystocele repair using polypropylene mesh. Br. J. Obstet. Gynaecol. 107: 825-26 (2000). |
Henriksson and Ulmsten, “A urodynamic evaluation of the effects of abdominal urethrocystopexy and vaginal sling urethroplasty in women with stress incontinence,” Am. J. Obstet. Gynecol., 1978, 131:77-82. |
Hodgkinson and Kelly, “Urinary Stress Incontinence in the Female. III. Round-ligament technique for retropubic suspension of the urethra,” Obstet. Gynecol., 1957, 10:493-499. |
Hohenfellner and Petri, “Sling Procedures,” Surgery of Female Incontinence, 2nd edition, SpringerVeriag, pp. 105-113, 1986. |
Holschneider et al., “The Modified Pereyra Procedure in Recurrent Stress Urinary Incontinence: A 15-Year Review,” Obstet. Gynecol., 1994, 83:573-578. |
Horbach et al., “A Suburethral Sling Procedure with Polytetrafluoroethylene for the Treatment of Genuine Stress Incontinence in Patients with Low Urethral Closure Pressure,” Obstet. Gynecol., 1988, 71:648-652. |
Horbach, “Suburethral Sling Procedures,” Urogynecology and Urodynamics—Theory and Practice, 1996, Williams & Wilkins, pp. 569-579. |
Ingelman-Sundberg and Ulmsten, “Surgical Treatment of Female Urinary Stress Incontinence,” Contr. Gynec. Obstet., 1983, 10:51-69. |
International Preliminary Examination Report issued in PCT/GB01/04554, completed Nov. 22, 2002, 6 pages. |
International Preliminary Examination Report issued in PCT/GB2002/001234, completed Jul. 1, 2003, 18 pages. |
International Search Report and Written Opinion issued in PCT/GB2004/001390, mailed Sep. 3, 2004, 12 pages. |
International Search Report and Written Opinion issued in PCT/US03/24212, mailed May 28, 2004, 11 pages. |
International Search Report for PCT/GB2009/050174, mailed Jun. 24, 2009. |
International Search Report issued in PCT/GB01/04554, mailed Jan. 29, 2002, 3 pages. |
International Search Report issued in PCT/GB2002/01234 mailed Jun. 5, 2002, 3 pages. |
International Search Report issued in PCT/GB2007/002589, mailed Jan. 22, 2008, 5 pages. |
Jacquetin, Bernard, “2. Utilisation du “TVT” dans la chirurgie de l'incontinence urinaire feminine”, J. Gynecol. Obstet. Biol. Reprod. 29: 242-47 (2000). |
Jeffcoate, “The Results of the Aldridge Sling Operation for Stress Incontinence,” The Journal of Obstetrics and Gynaecology of the British Empire, 1956, 63:36-39. |
Jeter, “The Social Impact of Urinary Incontinence,” Female Urology, Raz (ed.), W. B. Saunders Company, 1996, Chapter 7, pp. 80-86. |
Joint Claim Construction and Prehearing Statement Pursuant to Local Patent Rule 132 and Appendix A (Nov. 15, 2010) Coioplast A/S, v. Generic Medical Devices, Inc., Court File No. CV10-227 BHS. |
Just-Swing(R) Adjustable mine-sling, Textile Hi-Tec Online Brochure 2010, 4 pages. |
Karram and Bhatia, “Patch Procedure: Modified Transvaginal Fascia Lata Sling for Recurrent or Severe Stress Urinary Incontinence,” Obstet Gynecol., 1990, 75:461-463. |
Kennelly et al. “Prospective Evaluation of a Single Incision Sling for Stress Urinary Incontinence” The Journal of Urology [Online] 2010, 184, pp. 604-609. |
Kerdiles et al., “Bypass via the Obturator Foramen in Reconstructive Arterial Surgery of the Lower Extremities,” Ann. Chir. Thorac. Cardio-Vasc., 1974, 13(4):335-341. |
Kerr and Staskin, “The Use of Artificial Material for Sling Surgery in the Treatment of Female Stress Urinary Incontinence,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 33, pp. 382-391. |
Kersey, “The gauze hammock sling operation in the treatment of stress incontinence,” Br. J. Obstet. Gynecol., 1983, 90:945-949. |
Klinge et al., “Functional and Morphological Evaluation of a Low-Weight, Monofilament Polypropylene Mesh for Hernia Repair,” Journal of Biomedical Material Research, Jan. 24, 2002, pp. 129-137. |
Klinge, U. et al., “Influence of polyglactin-coating on functional and morphological parameters of polypropylene-mesh modifications for abnormal wall repair,” Biomaterials 20 (1999), pp. 613-623. |
Klinge, U. et al., “Modified Mesh for Hernia Repair that is Adapted to the Physiology of the Abdominal Wall,” Eur J Surg 164:951-960 (1998). |
Klinge, U. et al., “Pathophysiology of the abdominal wall,” Der Chirurg, (1996),67: 229-233. |
Klosterhalfen, B, et al., “Functional and morphological evaluation of different polypropylene-mesh modifications for abdominal wall repair,” Biomaterials 19:2235-2246 (1998). |
Klosterhalfen, B. et al., “Morphological correlation of the functional mechanics of the abdominal wall after mesh implantation,” Langenbecks Arch Chir 382:87-94 (1997). |
Klutke et al., “The Anatomy of Stress Incontinence: Magnetic Resonance Imaging of the Female Bladder Neck and Urethra,” J. Urol., 1990, 143:563-566. |
Klutke et al., “Transvaginal Bladder Neck Suspension to Cooper's Ligament: A Modified Pereyra Procedure,” Obstet. Gynecol., 1996, 88:294-297. |
Korda et al., “Experience with Silastic Slings for Female Urinary Incontinence,” Aust. NZ J. Obstet. Gynaecol., 1989, 29:150-154. |
Kovac and Cruikshank. Pubic bone suburethral stabilization sling: a long-term cure for SUI? Contemporary OB/GYN: Surgical Techniques, 43(2):52-76, 1998. |
Kovac, R. S. Follow-Up of the Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence (Kovac Procedure). Journal of Pelvic Surgery, 5(3): 156-160, 1999. |
Kovac, R., et. al. Pubic Bone Suburethral Stablization Sling for Recurrent Urinary Incontinence. Obstetrics & Genecology: Instruments & Methods, 89(4): 624-627, Apr. 1997. |
Lazarevski, M.B., Suburethral Duplication of the Vaginal Wall—An Original Operation for Urinary Stress Incontinence in Women, 6 Int'l Urogynecol. J. 73-79 (1995). |
Leach et al., “Female Stress Urinary Incontinence Clinical Guidelines Panel Summary Report on Surgical Management of Female Stress Urinary Incontinence,” J. Urol., 1997, 158:875-880. |
Leach, “Bone Fixation Technique for Transvaginal Needle Suspension,” Urology, 1988, 31(5):388-390. |
Lichtenstein et al., “The Tension-Free Hernioplasty,” Am. J. Surgery, 1989, 157:188-193. |
Lipton, S. and Estrin, J., “A Biomechanical Study of the Aponeurotic Iguinal Hernia Repair,” Journal of the American College of Surgeons, Jun. 1994, vol. 178, pp. 595-599. |
Loughlin et al., “Review of an 8-Year Experience with Modifications of Endoscopic Suspension of the Bladder Neck for Female Stress Urinary Incontinence,” J. Urol., 1990, 143:44-45. |
Maher, Surgical Management of Anterior Vaginal Wall Prolapse: An Evidence Based Literature Review, 2006. |
Mahoney and Whelan, “Use of Obturator Foramen in Iliofemoral Artery Grafting: Case Reports,” Annals of Surgery, 1966, 163(2):215-220. |
Marshall et al., “The Correction of Stress Incontinence by Simple Vesicourethral Suspension,” J. Urol., 2002, 168:1326-1331. |
McGuire and Gormley, “Abdominal Fascial Slings,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 31, pp. 369-375. |
McGuire and Lytton, “Pubovaginal Sling Procedure for Stress Incontinence,” J. Urol., 1978, 119:82-84. |
McGuire et al., “Experience with Pubovaginal Slings for Urinary Incontinence at the University of Michigan,” J. Urol., 1987, 138:525-526. |
McGuire, “Abdominal Procedures for Stress Incontinence,” Urologic Clinics of North America, 1985, 12(2):285-290. |
McIndoe et al., “The Aldridge Sling Procedure in the Treatment of Urinary Stress Incontinence,” Aust. NZ J. Obstet. Gynaecol., 1987, 27:238-239. |
McKiel, Jr. et al., “Marshall-Marchetti Procedure: Modification,” J. Urol., 1966, 96:737-739. |
Migliari, R. et al., “Tension-Free Vaginal Mesh Repair for Anterior Vaginal Wall Prolapse,” European Urology (2000) 38(2): 151-155. |
Miklos, Mini Sling Incontinence Treatment—Vagina Plastic Surgery, http://www.miklosandmoore.com/mini—sling.php, Feb. 28, 2011. |
MiniArc Single-Incision Sling http://www.americanmedicalsystems.com Mar. 4, 2011. |
Moir, “The Gauze-Hammock Operation,” The Journal of Obstetrics and Gynaecology of the British Commonwealth, 1968, 75(1):1-9. |
Monseur, J., Anatomie Chirurgicale: Les Ligaments Du Perinee Feminin, Sep. 4, 2008. |
Moore et al. “Single-Center Retrospective Study of the Technique, Safety, and 12 Month Efficacy or the MiniArc™ Single Incision Sling: A New Minimally Invasive Procedure for Treatment of Female SUI” [Online] 2009, 18, pp. 175-181. |
Morgan et al., “The Marlex sling operation for the treatment of recurrent stress urinary incontinence: A 16-year review,” Am. J. Obstet. Gynecol., 1985, 151:224-226. |
Morgan, “A sling operation, using Marlex polypropylene mesh, for treatment of recurrent stress incontinence,” Am. J. Obstet. Gynecol., 1970, 106(3):369-376. |
Narik and Palmrich, “A simplified sling operation suitable for routine use,” Am. J. Obstet. Gynecol., 1962, 84:400-405. |
Nichols, “The Mersilene Mesh Gauze-Hammock for Severe Urinary Stress Incontinence,” Obstet. Gynecol., 1973, 41(1):88-93. |
Nicita, Giulio, (1998), “A New Operation for Genitourinary Prolapse,” The Journal of Urology, 160:741-745. |
Nickel et al., “Evaluation of a Transpelvic Sling Procedure With and Without Colpolsuspension for Treatment of Female Dogs With Refractory Urethral Sphincter Mechanism Incompetence,” Veterinary Surgery, 1998, 27:94-104. |
Norris et al., “Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach,” J. Endocrinology, 1996, 10(3):227-230. |
Novak, “Abdonomovaginal Techniques,” Gynecological Surgical Technique, 1977, Piccin Editore, Padua, 5 pages. |
O'Donnell, “Combined Raz Urethral Suspension and McGuire Pubovaginal Sling for Treatment of Complicated Stress Urinary Incontinence,” J. Arkansas Medical Society, 1992, 88(8):389. |
Order dismissing cases (Sep. 16, 2004) Civ. No. 03-5759 and Civ. No. 04-1000. |
Parker, MC and Phillips, RK, “Repair of rectocoele using Marlex mesh,” Ann R Coll Surg Engl (May 1993) 75(3):193-194. |
Parra and Shaker, “Experience with a Simplified Technique for the Treatment of Female Stress Urinary Incontinence,” British Journal of Urology, 1990, 66:615-617. |
Pelosi II and Pelosi III, “New transobturator sling reduces risk of injury,” OBG Management, 2003, pp. 17-37. |
Pelosi III and Pelosi. Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence. Journal of Laparoendoscopic & Advanced Surgical Techniques: 9(1): 45-50, 1999. |
Penson and Raz, “Why Anti-incontinence Surgery Succeeds or Fails,” Female Urology, 1996, Raz (ed.), W.B. Saunders Company, Chapter 41, pp. 435-442. |
Pereyra et al., “Pubourethral Supports in Perspective: Modified Pereyra Procedure for Urinary Incontinence,” Obstet Gynecol., 1982, 59:643-648. |
Petros and Konsky, “Anchoring the midurethra restores bladder-neck anatomy and continence,” The Lancet, 1999, 354:997-998. |
Petros and Ulmsten, “An analysis of rapid pad testing and the history for the diagnosis of stress incontinence,” Acta Obstet. Gynecol. Scand., 1992, 71:529-536. |
Petros and Ulmsten, “An Anatomical Basis for Success and Failure of Female Incontinence Surgery,” Scand. J. Urol. Nephrol., 1993, (Suppl. 153):55-60. |
Petros and Ulmsten, “Bladder Instability in Women: A Premature Activation of the Micturition Reflex,” Neurourology and Urodynamics, 1993, 12:235-239. |
Petros and Ulmsten, “Cough Transmission Ratio: An Indicator of Suburethral Vaginal Wall Tension Rather than Urethral Closure?” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):37-38. |
Petros and Ulmsten, “Cure of Stress Incontinence by Repair of External Anal Sphincter,” Acta. Obstet. Gynecol Scand., 1990, 69(Suppl. 153):75. |
Petros and Ulmsten, “Cure of Urge Incontinence by the Combined Intravaginal Sling and Tuck Operation,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153)61-62. |
Petros and Ulmsten, “Further Development of the Intravaginal Slingplasty Procedure—IVS III—(with midline “tuck”),” Scand. J. Urol. Nephrol., Suppl. 153 An Integral Theory and its Method for the Diagnosis and Management of Female Urinary Incontinence: 69-71 , 1993. |
Petros and Ulmsten, “Non Stress Non Urge Female Urinary Incontinence—Diagnosis and Cure: A Preliminary Report,” Acta Obstet. Gynecol. Scand., 1990, 69(Suppl. 153):69-70. |
Petros and Ulmsten, “Part I: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:5-28. |
Petros and Ulmsten, “Part II:The Biomechanics of Vaginal Tissue and supporting Ligaments with Special Relevance to the Pathogenesis of Female Urinary Incontinence,” Scand. J. Urol. Nephrol., 1993, Suppl. 153:29-40. |
Ulmsten et al., “Different Biochemical Composition of Connective Tissue in Continent and Stress Incontinent Women,” Acta Obstet. Gynecol. Scand., 1987, 66:455-457. |
Ulmsten et al., “The unstable female urethra,” Am. J. Obstet. Gynecol., 1982, 144:93-97. |
Ulmsten, “Female Urinary Incontinence—A Symptom, Not a Urodynamic Disease. Some Theoretical and Practical Aspects on the Diagnosis and Treatment of Female Urinary Incontinence,” Int. Urogynecol. J., 1995, 6:2-3. |
Ulstem et al., “A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence,” Int. Urogynecol. J., 1998, 9:210-213. |
U.S. Appl. No. 13/149,994, filed Jun. 1, 2011. |
U.S. Appl. No. 60/327,160, filed Oct. 4, 2001. |
U.S. Appl. No. 10/106,086, filed Mar. 25, 2002. |
U.S. Appl. No. 11/199,061, filed Aug. 8, 2005. |
U.S. Appl. No. 60/279,794, filed Mar. 29, 2001. |
U.S. Appl. No. 60/302,929, filed Jul. 3, 2001. |
U.S. Appl. No. 60/307,836, filed Jul. 25, 2001. |
U.S. Appl. No. 60/322,309, filed Sep. 14, 2001. |
U.S. Appl. No. 60/362,806, filed Mar. 7, 2002. |
U.S. Appl. No. 60/380,797, filed May 14, 2002. |
U.S. Appl. No. 60/393,969, filed Jul. 5, 2002. |
U.S. Appl. No. 60/402,007, filed Aug. 8, 2002. |
U.S. Appl. No. 60/414,865, filed Sep. 30, 2002. |
Webster and Kreder, “Voiding Dysfunction Following Cystourethropexy: Its Evaluation and Management,” J. Urol., 1990, 144:670-673. |
Weidemann, Small Intestinal Submucosa for Pubourethral Sling Suspension for the Treatment of Stress Incontinence: First Histopathological Results in Humans, Jul. 2004. |
Winter, “Peripubic Urethropexy for Urinary Stress Incontinence in Women,” Urology, 1982, 20(4):408-411. |
Woodside and Borden, “Suprapubic Endoscopic Vesical Neck Suspension for the Management of Urinary Incontinence in Myelodysplastic Girls,” J. Urol., 1986, 135:97-99. |
Written Opinion for PCT/GB2009/050174, mailed Jun. 24, 2009. |
Written Opionion issued in PCT/GB2007/002589, mailed Jan. 22, 2008, 5 pages. |
Zacharin and Hamilton, “Pulsion Enterocele: Long-Term Results of an Abdominoperineal Technique,” Obstet. Gynecol., 1980, 55(2):141-148. |
Zacharin, “The suspensory mechanism of the female urethra,” J. Anat., 1963, 97(3):423-427. |
Number | Date | Country | |
---|---|---|---|
20160228620 A1 | Aug 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14882458 | Oct 2015 | US |
Child | 15131043 | US | |
Parent | 14201962 | Mar 2014 | US |
Child | 14882458 | US | |
Parent | 12246263 | Oct 2008 | US |
Child | 14201962 | US | |
Parent | 10550699 | US | |
Child | 12246263 | US |