The present disclosure relates to a system for detecting the presence of airborne objects. More particularly, the present disclosure is directed towards a system for detecting the presence of airborne objects within a shared field of view between two or more transceivers.
Birds are often attracted to airports and the area around airports, as they tend to view the area as an ideal place for resting, gathering in flocks, or hiding from predators. However, birds interfere with an airport's runways and airways. For example, a bird may accidently fly into the path of an aircraft either during takeoff or landing. In addition to birds, other airborne objects such as drones may also intersect the path of an aircraft during takeoff or landing. For example, a rouge drone may cause large scale interruptions to flight schedules.
As a result, it is common for an airport to employ one or more individuals to monitor the area where aircraft arrive and depart. However, it is often difficult for an individual to determine if an airborne object may intersect an aircraft's path. In another approach, the individuals may be provided with lights or lasers in an effort to try and distract and chase birds away. However, this approach is labor intensive. Furthermore, an individual may easily miss a bird or a flock of birds since it is difficult, if not impossible, to observe the entire airport.
According to several aspects, a system for detecting airborne objects within a shared field of view is disclosed. The system includes a first transceiver positioned in a first discrete location and having a first field of view that represents a detection area of the first transceiver, and a second transceiver positioned in a second discrete location and having a second field of view represents the detection area of the second field of view. The first field of view and the second field of view intersect one another to create the shared field of view. Both the first transceiver and the second transceiver are both configured to emit an array of signals towards the shared field of view. The system also includes one or more processors in electronic communication with the first transceiver and the second transceiver and a memory coupled to the one or more processors. The memory stores data into a database and program code that, when executed by the one or more processors, causes the system to instruct either the first transceiver or the second transceiver to emit the array of signals. The array of signals are configured to reflect from airborne objects located within the shared field of view to create one or more reflected signals. The system is also caused to monitor the first transceiver and the second transceiver for the one or more reflected signals. The system is also caused to receive an indication that at least one of the first transceiver and the second transceiver has received the one or more reflected signals. In response to receiving the indication, the system generates a notification indicating an airborne object is located within the shared field of view.
In another aspect, a system for detecting airborne objects along a runway for landing and takeoff of an aircraft is disclosed. The aircraft follows a flight path during takeoff or landing. The system includes a first transceiver positioned in a first discrete location at a first end of the runway and having a first field of view that represents a detection area of the first transceiver and a second transceiver positioned in a second discrete location at a second end of the runway and having a second field of view represents the detection area of the second field of view. The first field of view and the second field of view intersect one another to create a shared field of view. Both the first transceiver and the second transceiver are both configured to emit an array of signals towards the shared field of view. The system also includes one or more processors in electronic communication with the first transceiver and the second transceiver and a memory coupled to the one or more processors, the memory storing data into a database and program code that, when executed by the one or more processors, causes the system to instruct either the first transceiver or the second transceiver to emit the array of signals. The array of signals are configured to reflect from airborne objects located within the shared field of view to create one or more reflected signals. The system is also caused to monitor the first transceiver and the second transceiver for the one or more reflected signals. The system is also caused to receive an indication that at least one of the first transceiver and the second transceiver has received the one or more reflected signals. In response to receiving the indication, the system generates a notification indicating an airborne object is located within the shared field of view, where at least a portion of the flight path of the aircraft is located within the shared field of view.
In still another aspect, a method for detecting airborne objects within a shared field of view between a first transceiver and a second transceiver is disclosed. The method includes instructing, by a computer, either the first transceiver or the second transceiver to emit an array of signals. The array of signals are configured to reflect from airborne objects located within the shared field of view to create one or more reflected signals. The shared field of view is created as a first field of view of the first transceiver and a second field of view of a second transceiver intersect one another. The method also includes monitoring, by the computer, the first transceiver and the second transceiver for the one or more reflected signals. The method also includes receiving, by the computer, an indication that at least one of the first transceiver and the second transceiver has received the one or more reflected signals. In response to receiving the indication, the method includes generating a notification indicating an airborne object is located within the shared field of view.
The features, functions, and advantages that have been discussed may be achieved independently in various embodiments or may be combined in other embodiments further details of which can be seen with reference to the following description and drawings.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The present disclosure is directed towards a system for detecting airborne objects. The system includes two or more transceivers. For example, in one embodiment, the system includes a first transceiver having a first field of view and a second transceiver having a second field of view, where the first field of view and the second view of view overlap to create a shared field of view. One of the transceivers emit an array of signals, where each signal is configured to reflect off an airborne object that is located within the shared field of view. A computer is in electronic communication with both the transceivers and determines when an airborne object is located within the shared field of view. In one embodiment, the system is used to detect airborne objects along a runway for an aircraft. Therefore, the computer generates a notification to flight management personnel informing them of a potential obstruction located within the immediate vicinity of an aircraft's trajectory during takeoff or landing.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
Referring to
In the non-limiting embodiments as shown in the figures, the system 10 monitors the runway 40 for airborne objects that intersect or are located within proximity of a flight path 62 (
The first transceiver 20 and the second transceiver 22 are both configured to transmit and receive wireless signals. Specifically, the first transceiver 20 and the second transceiver 22 are configured to emit and receive any type of electromagnetic signal, except for visible light. Some examples of electromagnetic signals include, but are not limited to, radio frequency signals, microwave signals, or infrared signals. Referring to
It is to be appreciated that while both transceivers 20, 22 are configured to emit the array of signals 46, only one of the two transceivers 20, 22 emit the array of signals 46 towards the shared field of view F. Although only one of the transceivers 20, 22 emit the array of signals 46, it is to be appreciated that the shared field of view F is monitored by both transceivers 20, 22. Monitoring the shared field of view F with two more transceivers 20, 22 results in greater accuracy when compared to an area that is only monitored by a single transceiver.
Referring to
Referring to
As seen in
In the embodiment as shown in
The one or more reflected signals 78 are received by both the first transceiver 20 and the second transceiver 22. The control module 26 monitors the first transceiver 20 and the second transceiver 22 for the one or more reflected signals 78. In response to receiving an indication that at least one of the first transceiver 20 and the second transceiver 22 has received the one or more reflected signals 78, the control module 26 generates a notification indicating the airborne object 68 is located within the shared field of view F. In one embodiment, the notification is sent to flight management personnel. Accordingly, the notification generated by the system 10 informs flight management personnel of a potential obstruction located within the immediate vicinity of an aircraft's trajectory during takeoff or landing. Therefore, the flight management personnel may take preventative action such as, for example, aborting a takeoff or landing of the aircraft.
In some instances, only one of the first transceiver 20 and the second transceiver 22 receive the reflected signals 78, however, it is to be appreciated that this typically occurs with objects that have a reduced radar signature. In the event only one of the transceivers 20, 22 receive the reflected signals 78, then the control module 26 still detects the airborne object 68 within the shared field of view F. However, in at least some embodiments, the control module 26 indicates an airborne object is detected with a reduced about of certainty or integrity.
Furthermore, it is also to be appreciated that the second discrete location 32 of the second transceiver 22 is positioned closer to the shared field of view F when compared to the first discrete location 30 of the first transceiver 20. Thus, as explained below, the second transceiver 22 provides finer granularity to a rasterized representation 60 of the shared field of view F, which is shown in
Referring to
Referring to
Referring to
It is also to be appreciated that each signal of the array of signals 46 includes a unique signature. The unique signature indicates a specific identity of the transceiver 20, 22 emitting the array of signals 46. For example, referring to
In block 204, the control module 26 monitors the first transceiver 20 and the second transceiver 22 for the one or more reflected signals 78. The method 200 may then proceed to decision block 206.
In decision block 206, if the control module 26 does not receive any reflected signals 78, then no airborne objects are disposed within the shared field of view F. The method 200 may then return to block 202 or, alternatively, the method 200 may terminate. However, in block 208, the control module 26 receives an indication that at least one of the first transceiver 20 and the second transceiver 22 has received the one or more reflected signals 78. The method 200 may then proceed to block 210.
In block 210, in response to receiving the indication, the control module 26 generates a notification indicating an airborne object is located within the shared field of view F. The method 200 may then terminate.
As seen in
In block 224, the control module 26 renders each of the plurality of pixels 70 of the rasterized representation 60 sequentially while monitoring the first transceiver 20 and the second transceiver 22 for the one or more reflected signals 78. The method 220 may then proceed to block 226.
In block 226, the control module 26 maps the one or more reflected signals 78 onto the rasterized representation 60 as the obstruction 84. The method 220 may then terminate.
Referring generally to the figures, the disclosed system provides various technical effects and benefits. Specifically, the disclosed system provides an objective approach for detecting airborne obstructions along an airport runway. Conventional solutions rely upon individuals to monitor runways, which tend to be ineffective since it is difficult for an individual to monitor multiple runways at once. Furthermore, the disclosed system also provides improved or enhanced accuracy when compared to a system that only relies upon a single transceiver to monitor the runways. The disclosed system may be used in all types of weather conditions as well. In contrast, sometimes individuals may not be able to effectively watch for birds or other objects during periods of severe weather or when visibility is limited.
Referring now to
The processor 1032 includes one or more devices selected from microprocessors, micro-controllers, digital signal processors, microcomputers, central processing units, field programmable gate arrays, programmable logic devices, state machines, logic circuits, analog circuits, digital circuits, or any other devices that manipulate signals (analog or digital) based on operational instructions that are stored in the memory 1034. Memory 1034 includes a single memory device or a plurality of memory devices including, but not limited to, read-only memory (ROM), random access memory (RAM), volatile memory, non-volatile memory, static random-access memory (SRAM), dynamic random-access memory (DRAM), flash memory, cache memory, or any other device capable of storing information. The mass storage memory device 1036 includes data storage devices such as a hard drive, optical drive, tape drive, volatile or non-volatile solid-state device, or any other device capable of storing information.
The processor 1032 operates under the control of an operating system 1046 that resides in memory 1034. The operating system 1046 manages computer resources so that computer program code embodied as one or more computer software applications, such as an application 1048 residing in memory 1034, may have instructions executed by the processor 1032. In an alternative example, the processor 1032 may execute the application 1048 directly, in which case the operating system 1046 may be omitted. One or more data structures 1049 also reside in memory 1034, and may be used by the processor 1032, operating system 1046, or application 1048 to store or manipulate data.
The I/O interface 1038 provides a machine interface that operatively couples the processor 1032 to other devices and systems, such as the network 1026 or external resource 1042. The application 1048 thereby works cooperatively with the network 1026 or external resource 1042 by communicating via the I/O interface 1038 to provide the various features, functions, applications, processes, or modules comprising examples of the disclosure. The application 1048 also includes program code that is executed by one or more external resources 1042, or otherwise rely on functions or signals provided by other system or network components external to the computer system 1030. Indeed, given the nearly endless hardware and software configurations possible, persons having ordinary skill in the art will understand that examples of the disclosure may include applications that are located externally to the computer system 1030, distributed among multiple computers or other external resources 1042, or provided by computing resources (hardware and software) that are provided as a service over the network 1026, such as a cloud computing service.
The HMI 1040 is operatively coupled to the processor 1032 of computer system 1030 in a known manner to allow a user to interact directly with the computer system 1030. The HMI 1040 may include video or alphanumeric displays, a touch screen, a speaker, and any other suitable audio and visual indicators capable of providing data to the user. The HMI 1040 also includes input devices and controls such as an alphanumeric keyboard, a pointing device, keypads, pushbuttons, control knobs, microphones, etc., capable of accepting commands or input from the user and transmitting the entered input to the processor 1032.
A database 1044 may reside on the mass storage memory device 1036 and may be used to collect and organize data used by the various systems and modules described herein. The database 1044 may include data and supporting data structures that store and organize the data. In particular, the database 1044 may be arranged with any database organization or structure including, but not limited to, a relational database, a hierarchical database, a network database, or combinations thereof. A database management system in the form of a computer software application executing as instructions on the processor 1032 may be used to access the information or data stored in records of the database 1044 in response to a query, where a query may be dynamically determined and executed by the operating system 1046, other applications 1048, or one or more modules.
The description of the present disclosure is merely exemplary in nature and variations that do not depart from the gist of the present disclosure are intended to be within the scope of the present disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure.