The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
First stage logic circuit 36A comprises an inverter 38A and an AND logic gate 39A. Inverter 38A inverts second stage output signal OUT2 from second stage flip-flop 32(2nd) and generates an inverting logic signal. AND logic gate 39A is coupled between inverter 38A and first stage sample latch circuit 34(1st). AND gate 39A receives the inverting logic signal from inverter 38A and first stage output signal OUT1 from first stage flip-flop 32(1st) producing first control signal SP1.
Nth stage logic circuit 36B comprises an inverter 38B and an AND logic gate 39B. Inverter 38B inverts (N−2)th stage output signal OUT(N−2) from (N−2)th stage flip-flop 32((N−2)th) and generates an inverting logic signal. AND logic gate 39B is coupled between inverter 38B and Nth stage sample latch circuit 34(Nth). AND gate 39B receives the inverting logic signal from inverter 38B and (N−1)th stage output signal OUT(N−1) from (N−1)th stage flip-flop 32((N−1)th) for producing Nth control signal SPn.
According to the embodiment of the invention, each stage logic circuit 36C may be an AND logic gate. Using a second stage logic circuit as an example, the second stage AND logic gate 36C is coupled between second stage sample latch circuit 34(2nd) and second stage flip-flop 32(2nd), and receives first stage output signal OUT1 from first stage flip-flop 32(1st) and second stage output signal OUT2 from second stage flip-flop 32(2nd) for producing second control signal SP2.
Second stage flip-flop 32(2nd) receives clock horizontal signal CKH and first stage output signal OUT1 respectively and transmits second stage output signal OUT2. Second stage flip-flop 32(2nd) comprises inverters 46˜48. The output of inverter 47 is coupled to the input of inverter 48. Inverter 46 receives and inverts first stage output signal OUT1 and output to the input of inverter 47.
When clock horizontal signal CKH is at high voltage level, first stage D-type flip-flop 32(1st) transfers the voltage level of start pulse horizontal signal STH to first stage output signal OUT1. When clock horizontal signal CKH is at low voltage level, second stage D-type flip-flop 32(2nd) transfers the voltage level of first stage output signal OUT1 to second stage output signal OUT2. The other stage flip-flop is similar to the above D-type flip-flop.
In the first embodiment of the invention, clock horizontal signal CKH transmits to each stage flip-flop 32(1st˜(N−1)th) and triggers each stage flip-flop to receive output signal (OUT1,OUT2 . . . OUT(N−1)) from each prior stage flip-flop. For example, when clock horizontal signal CKH is at high voltage level, first stage flip-flop 32(1st) receives start pulse horizontal signal STH and transmits first stage output signal OUT1 to second stage flip-flop 32(2nd). When clock horizontal signal CKH is at low voltage level, second stage flip-flop 32(2nd) receives first stage output signal OUT1 and transmits second stage output signal OUT2 to third stage flip-flop 32(3rd).
When first stage output signal OUT1 is triggered to high voltage level and second stage output signal OUT2 is at low voltage level, first inverter 38A inverts second stage output signal OUT2 to high voltage level. The inverting second stage output signal OUT2 (high voltage level) and the first stage output signal OUT1 (high voltage level) both input to AND logic gate 39A. Thus, first stage control signal SP1 is also triggered to high voltage level. When second stage output signal OUT2 is triggered to high voltage level and first stage output signal OUT1 is at high voltage level, simultaneously second stage control signal SP2 is triggered to high voltage level and first control signal SP1 switches to low voltage level.
When N−2 stage output signal OUT (N−2) is at high voltage level and N−1 stage output signal OUT(N−1) is also triggered to high voltage level, N−1 stage control signal SP(n−1) is triggered to high voltage level simultaneously. When N−2 stage output signal OUT(N−2) switches to low voltage level, inverter 38B inverts N−2 stage output signal OUT(N−2) to high voltage level. Inverting N−2 stage output signal OUT(N−2) (high voltage level) and N−1 stage output signal OUT(N−1) (high voltage level) both input to AND logic gate 39B. Thus, N stage control signal SPn is triggered to high voltage level and N−1 stage control signal SP(n−1) switches to low voltage level. Therefore, each control signal (SP1, SP2, SP3 . . . SP(n−1), SPn) is triggered to high voltage level serially.
According to the second embodiment of the invention, an N stage logic circuit 66 comprises an inverter 68 and a NOR logic gate 69. Inverter 68 inverts N−1 stage output signal OUT(N−1) from N−1 stage flip-flop 32((N−1)th) and generates an inverting logic signal. NOR logic gate 69 is coupled between inverter 68 and N stage sample latch circuit 34(Nth). NOR logic gate 69 bases on the receiving inverting signal from inverter 68 and N−2 stage output signal OUT(N−2) from N−2 stage flip-flop 32((N−2)th) to generate N stage control signal SPn.
According to the third embodiment of the invention, a first stage logic circuit 76 comprises an inverter 78 and a NOR logic gate 79. Inverter 78 inverts first stage output signal OUT1 from first stage flip-flop 32(1st) and generates an inverting logic signal. NOR logic gate 79 is coupled between inverter 78 and first stage sample latch circuit 34(1st). NOR logic gate 79 bases on the receiving inverting signal from inverter 78 and second stage output signal OUT2 from second stage flip-flop 32(2nd) to generate first stage control signal SP1.
According to the fourth embodiment of the invention, a first stage logic circuit 76 comprises an inverter 78 and an NOR logic gate 79. Inverter 78 inverts first stage output signal OUT1 from first stage flip-flop 32(1st) and generates an inverting logic signal. NOR logic gate 79 is coupled between inverter 78 and first stage sample latch circuit 34(1st). NOR logic gate 79 bases on the receiving inverting signal from inverter 78 and second stage output signal OUT2 from the second stage flip-flop 32(2nd) to generate first stage control signal SP1.
Therefore, the digital data sampling circuit 60 in
According to the embodiment of the invention, digital data sampling circuit (30, 60, 70 and 80) can in advance generate control signals (SP1, SP2, SP3 . . . SP(n−1), SPn). For example, according to the embodiment of the invention, control signals (SP1, SP2, SP3 . . . SP(n−1), SPn) of digital data sampling circuit 30 in
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.