System for displaying oxygen state indications

Information

  • Patent Grant
  • 12059274
  • Patent Number
    12,059,274
  • Date Filed
    Wednesday, March 31, 2021
    3 years ago
  • Date Issued
    Tuesday, August 13, 2024
    5 months ago
Abstract
A patient monitoring system can have a display screen or portion thereof with graphic user interface for displaying indications of a patient's oxygen state. The indications can include the patient's SpO2, dissolved oxygen index, and/or an increasing or decreasing trend of dissolved oxygen index. The displays of oxygen state indications can be compact, and/or able to provide direct visual information to a user of various aspects of the patient's oxygen state. The display elements can be used to represent any other physiological parameters.
Description
FIELD

The present invention relates to the field of noninvasive oxygen delivery measurement using optical based sensors, and in particular, to displaying indication(s) of a patient's oxygen state.


BACKGROUND

The measurement of oxygen delivery to the body and the corresponding oxygen consumption by the body's organs and tissues is vitally important to medical practitioners in the diagnosis and treatment of various medical conditions. Oxygen delivery is useful, for example, during certain medical procedures, where artificially providing additional oxygen to the patient's blood stream may become necessary. Patients may need supplemental oxygen in surgery, conscious sedation, or the intensive care unit. For example, during an intubation procedure, the patient will stop breathing while the procedure is performed. The patient is typically provided with oxygen before the intubation procedure. However, because the patient stops breathing during an intubation procedure, the patient's blood oxygen saturation level can fall. The medical practitioner must ensure that the patient has sufficient reserves of oxygen in the system before intubation so that suffocation is avoided during the intubation procedure. At the same time, providing oxygen at a high pressure to a patient can have its own negative effects in some patients, some of which include damages to the patient's lungs, and in particular, to the alveoli structures in the lungs. In some patients, for example neonates, even oxygen levels on the high end of a normal oxygenation range can cause blindness.


SUMMARY

When oxygen molecules come into contact with blood, the majority of the oxygen molecules are bound to the hemoglobin in red-blood cells and a small portion is dissolved directly in the blood plasma. The current standard of care is to measure oxygen delivery through the use of a pulse oximeter. Pulse oximeters noninvasively measure and display oxygen saturation (SpO2), which is the percentage of the patient's hemoglobin bound to oxygen molecules.


Another possible indicator of oxygen delivery is the partial pressure of oxygen (PaO2) in the arterial blood. However, there are currently no reliable ways to measure arterial PaO2 noninvasively. Invasive PaO2 measurements require a blood gas analysis. The analysis may be needed intermittently during a surgical procedure and can interrupt and/or delay the surgical procedure. The analysis may require expensive sensors. Invasive PaO2 measurements may also carry serious side effects that can harm the health of a patient.


One of the challenges of commercially available physiological monitors that provide SpO2 readings is that the relationship between a patient's PaO2 and SpO2 is not linear. Specifically, SpO2 measured by pulse oximetry can be reported as high as about 98% even when PaO2 is as low as about 70 mmHg. A patient can be in a hypoxic state when the patient's PaO2 falls below about 80 mmHg. Therefore, SpO2 may not provide advance warning of falling arterial oxygenation until the patient's PaO2 is already in the hypoxia range, which may not be adequate for providing advance warning of impending hypoxia. In an effort to prevent hypoxia, clinicians can provide supplemental oxygen to maintain SpO2 at greater than about 98% during surgery to provide a “safety cushion” of oxygenation in the event of unexpected changes in oxygen delivery. However, the “safety cushion” can result in significant hyperoxia. When the SpO2 level reaches or is close to 100%, the PaO2 level can continue to rise if oxygen continues to be dissolved in the plasma. SpO2 is not able to inform clinicians or any other users of an increasing amount of oxygen dissolved in the patient's blood beyond 100% SpO2, when substantially all the hemoglobin has been fully saturated with oxygen modules. Hyperoxia have its own negative effects, including those described above. Therefore, providing information of the patient's hypersaturation condition can be helpful in allowing the clinician to stop delivery of supplemental oxygen temporarily and resume oxygen delivery when it is safe to do so.


Pulse oximeters according to the present disclosure can provide an index indicative of oxygen dissolved in the blood (hereinafter referred to as the “dissolved oxygen index” or the “index”). Example methods of determining such an index are described in U.S. Pat. No. 9,131,881, titled “ ”HYPERSATURATION INDEX” and issued Sep. 15, 2015, the entirety of which is incorporated by reference herein. An example of the index is the Oxygen Reserve Index™ (ORi™). The index can add to or supplement information from SpO2, and/or invasive PaO2 measurements using other equipment. The index is configured to provide information about oxygen dissolved in a patient's blood, which can indicate the patient's oxygenation in a moderate hyperoxic range. The moderate hyperoxic range can be, for example, when the patient's PaO2 is between about 100 mmHg to about 200 mmHg. The pulse oximeter can be a standalone device or docked to a multi-parameter medical hub. The index can be displayed on a display screen of the standalone device and/or on a display screen of the medical hub.


The present disclosure provides various displays of indications of a patient's oxygen state including a patient's blood oxygenation state, such as the index, a patient's impending hypoxia and/or hyperoxia, and/or SpO2. For example, the displays can inform a user of the patient's index when SpO2 is high, such as greater than about 98%. Displaying various oxygen state indications on the same screen can provide a more comprehensive picture of the patient's oxygen state than displaying only SpO2. The displays can be useful for patients who are on supplemental oxygen therapy, a ventilator or closed-loop positive pressure delivery device, or for any other medical applications where a patient's oxygen state needs to be monitored.


Another one of the challenges of commercially available physiological monitors is the limited display screen size, when patient monitors continue to expand in the number and type of monitored parameters made available to a user for review. Although a user is able to conveniently access a large amount of a patient's data from a single display screen, the display can become cluttered with the large number of parameters. It can also be challenging for the user to quickly and accurately understand the various oxygen state parameters shown on the display screen, among other physiological parameters, so as to make decisions about how to care for the patient.


The displays of oxygen state indications according to the present disclosure can be compact, and/or able to provide direct visual information of various aspects of the patient's oxygen state to a user reading the display screen. Examples of the aspects of the patient's oxygen state can include graphs, symbols, numerical indications, and/or a combination thereof, of SpO2, the index, such as ORi™, and/or an increasing or decreasing trend of the index.


A noninvasive patient monitoring system for providing an indication of a patient's oxygen state system for providing an indication of a patient's oxygen state can comprise one or more sensors for outputting signals in response to a plurality of a patient's physiological parameters; one or more signal processors configured to receive the signals and calculate a first indicator responsive to a percentage of hemoglobin molecules bound to oxygen, a second indicator responsive to a quantity of oxygen dissolved in the patient's blood and not bound to any hemoglobin molecule, the second indicator providing different information to a caregiver than the first indicator, and a third indicator responsive to an increasing or decreasing trend of the second indicator; and a display responsive to output of the one or more signal processors to display the first, second, and third indicators. The first indicator can comprise the patient's oxygen saturation. The first indicator can be displayed as a graph and/or a numerical value. The second indicator can comprise a noninvasive index of dissolved oxygen in blood of the patient. The second indicator can be displayed as a plurality of shapes, the number of shapes being displayed corresponding to the patient's noninvasive index of dissolved oxygen in the blood. The shape can be a rectangle, a circle, a triangle, or a diamond. No shape may be displayed when the first indicator is below about 98%. The third indicator can further comprise a rate of increase or decrease of the patient's noninvasive index of dissolved oxygen in the blood. The third indicator can be displayed as an arrow pointing at an angle, a direction of the arrow corresponding to the increasing or decreasing trend of the patient's noninvasive index of dissolved oxygen in the blood and a magnitude of the angle corresponding to the rate of increase or decrease of the patient's noninvasive index of dissolved oxygen in the blood. The arrow can be displayed as pointing generally horizontally when the first indicator is below about 98%. The second indicator can be displayed as a shape that is empty, partially filled, or fully filled, the amount of filling corresponding to the patient's noninvasive index of dissolved oxygen in the blood. The shape can be empty when the first indicator is below about 98%. The shape can comprise a circle, a triangle, a rectangle, or a diamond. The third indicator can be displayed as a pointer placed at an angle, the pointer coupled with the shape to form a dial, a clock direction of the pointer corresponding to the increasing or decreasing trend of the patient's noninvasive index of dissolved oxygen in the blood and/or the rate of increase or decrease of the patient's noninvasive index of dissolved oxygen in the blood. The dial can display about 3 o'clock when the first indicator is below about 98%. The one or more sensors can comprise an optical sensor having at least one light emitter emitting light of a plurality of wavelengths into the body of the patient and a light detector detecting the light after attenuation of the body, wherein the attenuation can be responsive to oxygenation of the patient's blood. The first indicator can be determined based at least in part on the detected light. The second indicator can be determined based at least in part on the detected light. The third indicator can be determined based at least in part on the detected light.


A noninvasive patient monitoring system for providing an indication of a patient's oxygen state system for providing an indication of a patient's oxygen state can comprise at least one light emitter emitting light of a plurality of wavelengths into the body of the patient; a light detector detecting the light after attenuation of the body, wherein the attenuation can be responsive to oxygenation of the patient's blood, and outputting one or more signals from the light detector, the one or more signals responsive to said attenuation; one or more signal processors configured to process the one or more signals to electronically calculate a first indicator responsive to a quantity of oxygen dissolved in the patient's blood and not bound to any hemoglobin molecule, and a second indicator responsive to an increasing or decreasing trend of the first indicator; and a display responsive to output of the one or more signal processors to display the first and second indicators. The one or more signal processors can be further configured to calculate a third indicator responsive to a percentage of hemoglobin molecules bound to oxygen, the third indicator providing different information to a caregiver than the first or second indicator, and the display can be configured to display the third indicator. The third indicator can comprise the patient's oxygen saturation. The third indicator can be displayed as a graph and/or a numerical value. The first indicator can comprise the patient's noninvasive index of dissolved oxygen in the blood. The first indicator can be displayed as a plurality of shapes, the number of shapes being displayed corresponding to the patient's noninvasive index of dissolved oxygen in the blood. The shape can be a rectangle, a circle, a triangle, or a diamond. No shape may be displayed when the patient's oxygen saturation is below about 98%. The second indicator can further comprise a rate of increase or decrease of the patient's noninvasive index of dissolved oxygen in the blood. The second indicator can be displayed as an arrow at an angle, a direction of the arrow corresponding to the increasing or decreasing trend of the patient's noninvasive index of dissolved oxygen in the blood and a magnitude of the angle corresponding to the rate of increase or decrease of the patient's noninvasive index of dissolved oxygen in the blood. The arrow can be displayed as pointing generally horizontally when the first indicator is below about 98%. The first indicator can be displayed as a shape that is empty, partially filled, or fully filled, the amount of filling corresponding to the patient's noninvasive index of dissolved oxygen in the blood. The shape can be empty when the patient's oxygen saturation is below about 98%. The shape can comprise a circle, a triangle, a rectangle, or a diamond. The second indicator can be displayed as a pointer directed at an angle, the pointer coupled with the shape to form a dial, a clock direction of the pointer corresponding to an increasing or decreasing trend of the patient's noninvasive index of dissolved oxygen in the blood and/or the rate of increase or decrease of the patient's noninvasive index of dissolved oxygen in the blood. The dial can display about three o'clock when the first indicator is below about 98%.


A noninvasive patient monitoring system for providing an indication of a physiological parameter can comprise one or more sensors for outputting signals in response to a patient's physiological conditions; one or more signal processors configured to receive the signals and calculate a first indicator responsive to a magnitude of a physiological parameter, and a second indicator responsive to an increase or decrease of the physiological parameter; and a display responsive to output of the one or more signal processors to display the first and second indications. The second indicator can be further responsive to a rate of change of the physiological parameter. The first indicator can comprise a plurality of shapes, the number of shapes displayed corresponding to the magnitude of the physiological parameter. No shape may be displayed when the physiological parameter is zero or cannot be calculated. The shape can comprise a rectangle, a circle, a triangle, or a diamond. The second indicator can comprises an arrow. An angle of the arrow can correspond to the rate of change of the physiological parameter. The first indicator can comprise a shape that is empty, partially filled, or fully filled, the amount of filling corresponding to the magnitude of the physiological parameter. The shape can be empty when the physiological parameter is zero or cannot be calculated. The shape can comprise a circle, a triangle, a rectangle, or a diamond. The second indicator can comprise a pointer, the pointer coupled with the shape to form a dial, a clock direction of the pointer corresponding to the increase or decrease of the physiological parameter and/or the rate of change of the physiological parameter. The physiological parameter can be a patient's noninvasive index of dissolved oxygen in blood.


A noninvasive patient monitoring system for providing an indication of a patient's oxygen state system for providing an indication of a patient's oxygen state can comprise at least one light emitter emitting light of a plurality of wavelengths into the body of the patient, a light detector detecting the light after attenuation of the body, wherein the attenuation is responsive to oxygenation of the patient's blood, and outputting one or more signals from the light detector, the one or more signals responsive to said attenuation, and one or more signal processors configured to process the one or more signals to electronically calculate an indicator responsive to a quantity of oxygen dissolved in the patient's blood and not bound to any hemoglobin molecule and output an alert of the first indicator plateauing at a maximum value in response to an increase in oxygen supply to the patient. The system can further comprise a display screen responsive to output of the one or more signal processors to display the first indicator. The display can be further configured to display the alert. The system can also be configured to output the alert in an audio form. The first indicator can comprise a plurality of shapes, the number of shapes displayed corresponding to the magnitude of the quantity of oxygen dissolved in the patient's blood and not bound to any hemoglobin molecule. The first indicator can further comprise an indication of an increasing or decreasing trend of the magnitude. The increase in oxygen supply to the patient can be determined by monitoring the patient's FiO2.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings and following associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims. Corresponding numerals indicate corresponding parts, and the leading digit of each numbered item indicates the first figure in which an item is found.



FIG. 1A illustrates a perspective view of a patient monitoring system having a user-interface displaying a patient's physiological parameter(s).



FIG. 1B illustrates a block drawing of an example patient monitoring system.



FIG. 2A illustrates a perspective view of an example medical monitoring hub having a user-interface displaying a patient's physiological parameter(s).



FIG. 2B illustrates an example display screen of a medical monitoring hub.



FIG. 3 illustrates an example oxygen dissociation curve of a human patient.



FIG. 4 illustrates an example graph of SpO2 and a patient's hypersaturation indication versus the R/IR ratio.



FIGS. 5A-5F illustrate example display screens or portion thereof with graphic user interface for displaying indications of various oxygen states.



FIGS. 6A-6F illustrate additional example display screens or portion thereof with graphic user interface for displaying indications of various oxygen states.



FIG. 7A illustrates an example flow chart for determining a “RESERVE FULL” status of the oxygen states.



FIGS. 7B and 7C illustrate example display screens or portion thereof with graphic user interface for displaying the “RESERVE FULL” status of the oxygen states.





DETAILED DESCRIPTION

Aspects of the disclosure will now be set forth in detail with respect to the figures and various embodiments. One of skill in the art will appreciate, however, that other embodiments and configurations of the devices and methods disclosed herein will still fall within the scope of this disclosure even if not described in the same detail as some other embodiments. Aspects of various embodiments discussed do not limit the scope of the disclosure herein, which is instead defined by the claims following this description.



FIG. 1A illustrates an example patient monitoring system 100. The patient monitoring system 100 can include a patient monitor 102 attached to a sensor 106 by a cable 104. The sensor 106 can be an optical based sensor including one or more optical emitters and one or more optical detectors. In addition to the sensor 106 as illustrated in FIG. 1A, other types of sensor(s) that can be coupled to the patient monitor 102. The sensor 106 can monitor various physiological data of a patient and send signals indicative of the parameters to the patient monitor 102 for processing. For example, the one or more optical detectors can detect a plurality of wavelengths from the emitters after attenuation by the patient's body tissue. The patient monitoring system 100 can monitor SpO2, indications of hypersaturation, perfusion index (PI), pulse rate (PR), hemoglobin count, and/or other parameters based at least in part on the signals received from the sensor(s).


The patient monitor 102 can include a display 108, control button(s) 110, and a speaker 112 for audible alerts. The display 108 can include a graphic user-interface, which can be capable of displaying readings of various monitored patient parameters. The readings can include numerical readouts, graphical readouts, animations, and/or the like. The display 108 can include a liquid crystal display (LCD), a cathode ray tube (CRT), a plasma screen, a Light Emitting Diode (LED) screen, Organic Light Emitting Diode (OLED) screen, or any other suitable display.



FIG. 1B illustrates details of a patient monitoring system 200 in a schematic form. A sensor 206 can include energy emitters 216 and one or more detectors 220. The energy emitters can be located on one side of a patient monitoring site 218. The one or more detectors 220 can be located generally opposite the energy emitters 216. The patient monitoring site 218 can be a patient's finger as shown in FIG. 1B. The patient monitoring site 218 can also be the patient's toe, ear lobe, and/or the like. The energy emitters 216 can include LEDs or any other suitable optical emitters. The energy emitters 216 can emit various wavelengths of electromagnetic energy through the flesh of a patient at the monitoring site 218. The emitted wavelengths can be in the red and infrared ranges. The electromagnetic energy signals can be attenuated as the signals travel through the flesh of the patient at the monitoring site 218. The detector(s) 220 can detect the attenuated energy and send representative signals in response to the detected energy to the patient monitor 202 for processing. The patient monitor 202 can include a processing board 222 and a host instrument 223. The processing board 222 can include a sensor interface 224, signal processor(s) 226, and an instrument manager 228.


The host instrument can include one or more displays 208, a keypad 210, a speaker 212 for audio messages, and a wireless signal broadcaster 234. The keypad 210 can comprise a full keyboard, a track wheel, control buttons, and the like. The patient monitor 202 can also include buttons, switches, toggles, check boxes, and the like implemented in software and actuated by a mouse, trackball, touch screen, joystick, or other input device.


The sensor interface 224 can receive the signals from the sensor detector(s) 220 and pass the signals to the processor(s) 226 for processing into representations of physiological parameters. The representations of physiological parameters can be passed to the instrument manager 228. The instrument manager 228 can further process the parameters for display by the host instrument 223. The processor(s) 226 can also communicate with a memory 230 located on the sensor 106. The memory 230 can contain information related to properties of the sensor 106 that can be used during processing of the signals. A non-limiting example of information stored in the memory 230 can be the wavelengths emitted by the emitter 216. The various elements of the processing board 222 described above can provide processing of the detected signals. Tracking medical signals can be difficult because the signals may include various anomalies that do not reflect an actual changing patient parameter. The processing board 222 can apply filters and/or algorithms to detect truly changing conditions from limited duration anomalies. The host instrument 223 can display one or more physiological parameters according to instructions from the instrument manager 228. Additionally, the physiological parameter measurements can be sent to a remote server (such as a cloud server) or to a remote monitoring device, such as a cell phone, tablet, or laptop. The patient monitoring system can include a data transmitter, such as a wireless transmitter or transceiver, for electrically communicating with the remote server or remote monitoring device.



FIG. 2A illustrates a perspective view of an exemplary medical monitoring hub 300. The hub 300 can include a display 304 and a docking station 306. The docking station can be configured to mechanically and electrically mate with a portable patient monitor, such as the patient monitor 102, 202 in FIGS. 1A-1B. The display 304 can present various measurement and/or treatment data in numerical, graphical, waveform, or other display indicia 310, such as illustrated in FIG. 2B.


The display 304 can occupy a portion of a front face of the housing 308, or comprise a tablet or tabletop horizontal configuration, a laptop-like configuration or the like. Display information and data can optionally be communicated to a table computer, smartphone, television, or any other display system. The hub 300 can receive data from a patient monitor while docked or undocked from the hub.


Examples of patient monitors that can be docked to the hub 300 can include oximeters or co-oximeters, which are can provide measurement data for a large number of physiological parameters derived from signals output from optical and/or acoustic sensors, electrodes, and/or the like. The physiological parameters can include oxygen saturation, a dissolved oxygen index (such as, for example, ORi™), carboxy hemoglobin, methemoglobin, total hemoglobin, glucose, pH, bilirubin, fractional saturation, pulse rate, respiration rate, components of a respiration cycle, indications of perfusion including perfusion index, signal quality and/or confidences, plethysmograph data, indications of wellness or wellness indexes or other combinations of measurement data, audio information responsive to respiration, ailment identification or diagnosis, blood pressure, patient and/or measurement site temperature, depth of sedation, organ or brain oxygenation, hydration, measurements responsive to metabolism, or combinations of thereof. The hub 300 can also optionally output data sufficient to accomplish closed-loop drug administration in combination with infusion pumps or the like. Additional details of the medical hub 300 are described in U.S. application Ser. No. 14/512,237, filed Oct. 10, 2014 and titled “SYSTEM FOR DISPLAYING MEDICAL MONITORING DATA,” the entirety of which is incorporated herein by reference and should be considered a part of the specification.



FIG. 3 illustrates the nonlinear relationship between the oxygen saturation and the partial pressure of oxygen in blood. The graph in FIG. 3 illustrates how oxygen saturation in the blood, SpO2, or in the arterial blood, SaO2, changes with respect to the PaO2 in the blood. In this disclosure, SpO2 is used interchangeably with SaO2. A patient can be in a hypoxic state (less than normal oxygenation) when the patient's PaO2 is below about 80 mmHg. A patient can be in a normoxic state (normal oxygenation) when the patient's PaO2 is between about 80 mmHg and about 100 mmHg. A patient can be in a hyperoxic state (higher than normal oxygenation) when the patient's PaO2 exceeds about 100 mmHg. A patient can be in a moderate hyperoxic state when the patient's PaO2 is between about 100 mmHg to about 200 mmHg.


As shown in FIG. 3, SpO2 initially increases as PaO2 in the blood increases. After the SpO2 and/or SaO2 level(s) reach about 100%, the PaO2 level continues to rise, but the SpO2 and/or SaO2 level off. As a result, SpO2 measured using pulse oximetry can allow a user to monitor a patient's arterial blood oxygenation in hypoxia and/or normoxia, but not in hyperoxia. In addition, the increase in SpO2 is small when a patient is in the normoxic and hyperoxic states. The SpO2 reading can exceed about 95%, and be as high as about 98%, when PaO2 is as low as about 70 mmHg. Therefore, when PaO2 is transiting from the normoxic range to the hyperoxic range, SpO2 reading may not be sensitive enough to provide advance warning of impending hypoxia. The patient can quickly be in hypoxia after the patient's dissolved oxygen is depleted without warning to the user. It can be too late when the user realizes that the patient is in hypoxia. The patient may continue to have insufficient oxygen until an increased delivery of oxygen brings the patient's oxygenation back to the normoxic range.


As described above, clinicians can deliver oxygen to maintain the patient's SpO2 at greater than about 98% during surgery to have some reserve of oxygen in the blood in the event of unexpected changes in oxygen delivery. Such changes can occur due to, for example, cardiac depression, rapid hemorrhage, and/or interrupted ventilation. However, too much excess oxygen above about 98% SpO2 can result in significant hyperoxia, which cannot be known from SpO2 readings.


The patient monitoring system can be configured to measure the patient's hypersaturation conditions, that is, when the patient is in hyperoxia, in addition to monitoring SpO2 and/or invasive PaO2 measurements. The patient monitoring system can also be configured to inform a user of the patient's impending hypoxia. The patient monitoring system can be the patient monitor 102, 202 of FIGS. 1A and 1, the patient monitor configured to be used with the medical hub 300 of FIGS. 2A and 2B, or any other patient monitoring devices.


As an example, the hypersaturation conditions can be monitored using pulse oximetry according to the present disclosure. Specifically, pulse oximetry can be used to determine a dissolved oxygen index in addition to SpO2. The index is a dimensionless and continuous parameter configured to provide information about a patient's reserve of oxygen dissolved in the blood stream. This index can provide an indication of the patient's oxygenation in the moderate hyperoxic range. The index can assist a user, such as a medical practitioner in exercising her judgment in ensuring that the patient's blood is not overly hypersaturated with oxygen.


The index can be determined because the balance between oxygen supply and demand can alter venous oxygen saturation. As oxygen supply rises, venous oxygen saturation also increases if the patient's oxygen consumption is stable. During situations in which the SpO2 level is at substantially 100%, the patient's oxygen consumption is stable if hemoglobin count and cardiac output are stable. The patient's oxygen consumption is substantially stable during anesthesia, surgery and some other procedures where the patient's oxygen state needs to be monitored. Change in venous oxygen saturation can result in changes in background light absorption at the plurality of wavelengths emitted by an optical sensor of a pulse oximeter in the presence of hyperoxia. Examples of the plurality of emitted wavelengths can include red and infrared wavelengths. The ratios of light absorption at the plurality of emitted wavelengths can be mapped at varying degrees of hyperoxia to allow calculation of the index based on SvO2, which is the patient's oxygen saturation in the venous blood. Changes in SvO2 can be observed when the patient is in moderate hyperoxia as defined herein and can be used to determine the index.



FIG. 4 illustrates an example graph of SpO2 400 and the index 402 versus the red to infrared (R/IR) ratio 401. In the illustrated example, the R/IR ratio 401 is at about 0.5 when the SpO2 level 400 is at about 100%. Although the SpO2 level 400 maxes out at 100% saturation, the R/IR ratio 401 continues to decrease when more oxygen is dissolved in the blood. The index 402 can be determined based on the R/IR ratio after the point 403, where the R/IR ratio translates to a SpO2 level of 100% saturation. The index can also be determined when the SpO2 level is slightly below 100% saturation. For example, the index can be determined when the SpO2 level exceeds about 95%, about 97%, or about 98%.



FIGS. 5A-5F and 6A-6F illustrates example displays or a portion thereof having a user-interface for displaying indications of a patient's oxygen state. The displays 500, 600 can be the display 108, 208 of FIGS. 1A and 1, the display 304 of FIG. 2A and 2B, or any other display for displaying physiological parameters. The indications displayed can include SpO2, the index, and/or an increasing or decreasing trend of the index. SpO2 can be displayed as a numerical value 502, 602 and/or a graph 504, 604 with time as the horizontal axis.


As shown in FIGS. 5A-5F, the index can be displayed as a plurality of bars 508 and/or a graph 510 with time as the x-axis. The SpO2 graph 504 and/or the index graph 510 can be plotted along the same horizontal axis. For example, the SpO2 graph 504 can be plotted below the horizontal axis and the index graph 510 can be plotted above the horizontal axis, as shown in the illustrated example. The graphs 504 and 510 can also be superposed on each other or the graph 504 can be above the horizontal axis and the graph 510 can be below the horizontal axis. Using the same horizontal axis can reduce a display area needed for displaying both graphs 504 and 510, and/or allow direct comparison of the SpO2 and index graphs 504, 510.


The plurality of bars 508 can be stacked generally horizontally, vertically or at any other angle. As shown in FIGS. 5A and 5F, the display 500 does not show any bars when SpO2 is below a threshold level. The threshold level can be about 97%, about 98%, or any other level. The threshold level can vary depending on ambient condition and/or patients. The index graph 510 can be a substantially flat baseline in FIGS. 5A and 5F.


As shown in FIGS. 5B to 5E, SpO2 is above the threshold level and a plurality of rectangular bars 508 are displayed. The number of bars 508 can correspond to an instantaneous index level as shown by a dot in the index graph 510 and can inform the user of the patient's current oxygen reserve. The displays 500 in FIGS. 5B and 5E show two bars. The display 500 in FIG. 5D shows three bars. The display 500 in FIG. 5C shows four bars. Accordingly, the instant index level can be the highest in FIG. 5C and the lowest in FIGS. 5B and 5E. Four bars can be the maximum number of bars so that the index level is at the maximum in FIG. 5C, although other number of bars can be displayed to indicate the maximum index level. The plurality of bars 508 can have the same or different colors. The plurality of bars 508 can also optionally have the same or different shapes and/or sizes. For example, the display 500 can show a plurality of circles, triangles, diamonds, or any other shapes.


The increasing or decreasing trend of the index can be displayed as an arrow 506. The trend of the index can represent the instantaneous gradient of the graph 510. The arrow 506 can be pointing at an angle. The direction of the arrow can correspond to the increasing or decreasing trend of the patient's index. As shown in FIGS. 5A and 5F, when no index bar is shown and/or when the index graph 510 is a substantially flat baseline, the arrow 506 can be pointing generally horizontally. In FIGS. 5B and 5C, when the index is increasing as shown by the slope of the index graph 510, the arrow 506 can be pointing generally upward. In FIGS. 5D and 5E, when the index is decreasing as shown by the slope of the index graph 510, the arrow 506 can be pointing generally downward. The generally upwardly pointing arrow 506 can be on the left hand side of the plurality of bars 508. The generally downwardly pointing arrow 506 can be on the right hand side of the plurality of bars 508. Alternatively, the arrow 506 can always be displayed in the same location relative to the plurality of bars 508, such as on the left, right hand side, on the top, or below the plurality of bars 508.


A magnitude of the angle at which the arrow 506 points can correspond to a rate of increase or decrease of the patient's index. In FIGS. 5B, 5C, and 5D, the index level is increasing or decreasing at a lower rate than the increase or decrease of the index level in FIG. 5E, respectively, as shown by the slope of the corresponding index graph 510. Accordingly, the arrow 506 in FIG. 5E is steeper than the arrow 506 in FIGS. 5B, 5C, and 5D. The rate of increase or decrease of the patient's index can be useful. For example, a clinician to estimate the amount of time before the patient returns from a hypersaturated state to a baseline saturation state based on how quickly the index changes.


As further shown in FIGS. 5B to 5E, the plurality of bars 508 can have incrementally greater lengths. The varying lengths of the plurality of bars 508 can accommodate the arrow 506 at the angle. When the angle of the arrow 506 is small, the increments in the lengths of the plurality of bars 508 can be big. When the angle of the arrow 506 is larger, the increments in the lengths of the plurality of bars 508 can be smaller. The varying lengths of the plurality of bars 508 can allow the display of the plurality of bars 508 and the arrow 506 to be more compact, thereby reducing a display area required for the plurality of bars 508 and the arrow 506. The varying lengths of the plurality of bars 508 can also provide visual indication of the rate of increase or decrease of index. For example, when the plurality of bars 508 are shown as having substantially the same length, the index level can be rapidly increasing or decreasing.


Turning to FIGS. 6A to 6F, the index can be displayed as a circle 608 and/or a graph 610 with time as the horizontal axis. The SpO2 graph 604 and the index graph 610 can be plotted along the same horizontal axis. For example, the SpO2 graph 604 can be plotted below the horizontal axis and the index graph 610 can be plotted above the horizontal axis, as shown in the illustrated example. The graphs 604 and 610 can also be superposed on each other or the graph 604 can be above the horizontal axis and the graph 610 can be below the horizontal axis. Using the same horizontal axis can reduce a display area for displaying both graphs 604 and 610, and/or allow direct comparison of the SpO2 and the index graphs 604, 610. The SpO2 and index graphs 504, 604, 510, 610 can be optional, such as when the display area of a patient monitoring device is too small and/or crowded, or when a user selects a display mode in which the graphs are hidden.


The circle 608 can be empty, partially filled, or fully filled. The circle can also be a triangle, a rectangle, a diamond, or any other shape. As shown in FIGS. 6A and 6F, the circle 608 is substantially empty when SpO2 is below a threshold level. The threshold level can be about 97%, about 98% or any other suitable level. The graph 610 can be a substantially flat baseline in FIGS. 6A and 6F.


As shown in FIGS. 6B to 6E, SpO2 is above the threshold level and the circle 608 is at least partially filled. The amount or extent of filling of the circle 608 can correspond to an instantaneous index level as shown by a dot in the index graph 610 and can inform the user of the patient's current oxygen reserve. FIGS. 6B, 6D, and 6E show the circle 608 as partially filled. The circles 608 in FIGS. 6D and 6E are slightly more fully filled than the circle 608 in FIG. 6B. FIG. 6C shows the circle 608 as substantially fully filled. Accordingly, the instant index level can be the highest in FIG. 6C and the lowest in FIG. 6B. When the circle 608 is substantially fully filled, the patient's oxygen state may have exceeded mild hyperoxia as defined herein and may be in more severe hyperoxia.


The increasing or decreasing trend of index can be displayed as a pointer 606. The trend of index can be the instantaneous gradient of the index graph 610. The pointer 606 can be pointing at an angle. The direction of the pointer 606 can correspond to the increasing or decreasing trend of the patient's index. As shown in FIGS. 6A and 6F, when the circle 608 is substantially empty and/or when the index graph 610 is a substantially flat baseline, the pointer 606 can be pointing generally horizontally. In FIGS. 6B and 6C, when index is increasing as shown by the slope of the index graph 610, the pointer 606 can be pointing generally upward. In FIGS. 6D and 6E, when index is decreasing as shown by the slope of the graph 610, the pointer 606 can be pointing generally downward.


In FIGS. 6A to 6F, the pointer 606 can be located along the perimeter of the circle 608. A dial 607 can be formed by the circle 608 and the pointer 606. A radial or clock position of the pointer 606 can correspond to an increasing or decreasing trend of the index and/or a rate of the increase or decrease. In FIGS. 6A, 6C, 6D, and 6F, where index is leveling off as indicated by the substantially flat line of the index graph 610, the pointer 606 is at about the three o'clock. In FIG. 6B, where the index level is increasing as indicated by an upward slope of the index graph 610, the pointer 606 is at about the one o'clock. In FIG. 6E, where the index level is decreasing rapidly as indicted by the steep downward slope of the index graph 610, the pointer 606 is at between about five o'clock and about six o'clock.


The displayed indications of SpO2, the index, and/or an increasing or decreasing trend of index on the same display can provide direct visual information of the patient's oxygen state or other physiological parameters. The visual information can be easy to understand by a user upon glancing at the display and/or can reduce the need for the user to further mentally process the oxygen state indications.


In FIGS. 5A and 6A, the patient's index is not displayed when the patient's SpO2 is below a threshold. The threshold can be about 97%, about 98%, or any other suitable level. The threshold can be adjusted based on the patient, the medical procedure being performed, and/or ambient conditions. A user viewing the display 500, 600 in FIGS. 5A and 6A can interpret the readings to indicate that the patient is in a normoxic state. A user of the patient monitoring system, such as a clinician, can safely provide supplemental oxygen, or continue to provide supplemental oxygen, to the patient monitored by the system.


In FIGS. 5B and 6B, the patient's SpO2 is at its maximum. The patient's index is at a moderate level and is increasing. The user viewing the display 500, 600 in FIGS. 5B and 6B can interpret the readings to indicate that patient is in mild hyperoxia as defined herein. The user may reduce, slow down, or stop supplemental oxygen delivery to the patient.


In FIG. 5C, the patient's SpO2 is at its maximum. The patient's index is also at its maximum and is still increasing. The user viewing the display 500 in FIG. 5C can interpret the readings to mean that patient is in more severe hyperoxia. The user may need to stop oxygen delivery to the patient immediately. The user may also consider additional interventional procedures to stop or mitigate damages to the patient caused by the more severe hyperoxia.


In FIG. 6C, the patient's SpO2 and the index are still at their maximum. However, the patient's index has stopped increasing and has leveled off. In some implementations, the leveling of index can be caused by the user cutting off supplemental oxygen delivery to the patient.


In FIG. 5D, the patient's SpO2 is still at its maximum. However, the patient's index is no longer at its maximum and is decreasing. The patient is back in the mild hyperoxic state as defined herein. This can be cause by reduced or cutting off of supplemental oxygen delivery. The user may consider resuming supplemental oxygen delivery.


In FIG. 6D, the patient's SpO2 is still at its maximum. The patient's index is no longer at its maximum, and is neither increasing nor decreasing. This can be an oxygen state that the user wants to maintain for the patient, such as an adult patient.


In FIGS. 5E and 6E, although the patient's SpO2 is still at its maximum, the patient's index is no longer at its maximum and is rapidly decreasing. This can be warning of impending hypoxia. As described above, SpO2 alone may be inadequate and/or lack sufficient sensitivity in providing warning of impending hypoxia. The user may need to resume supplemental oxygen delivery or increase the amount of oxygen delivery to the patient.


In FIGS. 5F and 6F, the patient is SpO2 is below an optimal oxygen saturation level and the patient's index is not displayed. The patient can be in hypoxia. The user must resume supplemental oxygen delivery or increase the amount of oxygen delivery to the patient. The user may also need to consider additional interventional procedures to stop or mitigate damages to the patient due to hypoxia.


The displays as shown in FIGS. 5A-5F and 6A-6F can save time needed for and/or improve accuracy in deciding the amount of supplemental oxygen that needs to be delivered to the patient. The patient's safety during the medical procedure can be improved due to better management of supplemental oxygen delivery. Certain damages, including irreversible damages, to the patient due to hypoxia and/or hyperoxia can be reduced and/or avoided. The improved efficiency and accuracy can be critical for survival of patients, such as patients in the intensive care unit or major invasive surgeries.


In some implementations, the processor of the patient monitoring system can monitor the plateauing of the index. The processor can output alert(s) of the plateauing of the index. As shown in FIG. 7A, at step 702 the processor can receive sensor inputs from the sensor(s) coupled to the system. At step 704, the processor can determine a plurality of physiological parameters based on the sensor input, including but not limited to the dissolved oxygen index, oxygen saturation, or otherwise. At decision step 706, the processor can determine whether the calculated dissolved oxygen index is changing. The processor can determine that the index is changing when fluctuations in the index exceeds a predetermined percentage of the previously calculated index value, such as about 1%, about 2%, about 5%, about 10%, or any ranges between those values, and that the index is not changing when the fluctuations are within the predetermined percentage. The processor can also optionally determine that the index is not changing after the index remains substantially same for a predetermined period of time, such as about 1 second, about 3 seconds, about 5 seconds, about 10 seconds, or any value between those ranges. The delay can allow the processor to ignore temporarily stationary values of the index, which may not be indicative of the physiological state of interest, such as the plateauing of the index. If the index is determined to be changing, the processor can return to step 702 to continue receiving inputs from the coupled sensors. If the index is determined to be not changing, at decision step 708, the processor can determine whether the index is at its maximum value and/or when the index is plateauing at its maximum value. If the index is not changing and not at its maximum value, the processor can return to step 702 to continue receiving inputs from the coupled sensors. If the index is plateauing at its maximum value, at step 710, the processor can determine whether oxygen supply to the patient is increasing. If the oxygen supply to the patient is not increasing (such as when oxygen supply to the patient has been stopped or decreased), the processor can return to step 702 to continue receiving inputs from the coupled sensors. If the oxygen supply to the patient is increasing (for example, if the fraction of oxygen inspired (FiO2) is increasing, the flow rate of oxygen to the patient is increasing, or otherwise), at step 712, the processor can output an indication of the plateauing of the dissolved oxygen index.


The indication of the plateauing of the dissolved oxygen index can be presented in one or more forms, such as via a visual indicator, text message, and/or audio message. FIGS. 7B and 7C illustrate examples of display of the indication. As shown, a text message of “RESERVE FULL” 512, 612 can be displayed in the display area for the dissolved oxygen index when the index is plateauing and the oxygen supply is still increasing. FIG. 7B also illustrates a maximum number (for example, four, five, or more) of bars 508 and a generally horizontally pointing arrow 506 when the index is plateauing and the oxygen supply is still increasing. FIG. 7C also illustrates the pointer 606 pointing generally horizontally and the circle 608 being substantially full when the index is plateauing and the oxygen supply is still increasing. Additionally or alternatively to the example displays in FIGS. 7B and 7C, the processor can also output an audio message indicating that the index is plateauing when the oxygen supply is increasing.


In one example, the “RESERVE FULL” indication can be used to indicate the completion of a nitrogen washout performed on the patient. The nitrogen washout is a test for estimating a patient's functional residual capacity of the lungs. As the anatomical dead space of the lungs are filled (such as gradually filled) with oxygen after a nitrogen washout, any addition increase in the partial pressure of oxygen, for example, due to a higher FiO2, a higher flow rate of oxygen supply to the patient, or otherwise, can be due to more oxygen getting dissolved in the blood plasma. Accordingly, when the index does not further increase despite an increase in the oxygen supply to the patient, the nitrogen washout is likely complete on the patient. The indication can be in the form of a simple message, a visual alert, an audible alert, a warning message, or any combination of the above.


The display elements disclosed herein, such as the bar(s), arrow, circle, pointer, any of their variants, and any combinations thereof, can represent any physiological parameters, of which the dissolved oxygen index is one example. The display elements disclosed herein can be used to represent a magnitude, an increasing or decreasing trend, and/or a rate of change of any physiological parameter. When the physiological parameter is zero or outside a range that can be calculated by the patient monitoring device, the display area can show a generally horizontally pointing arrow without a bar or its equivalent, or a dial having an empty circle, or its equivalent, pointing at about 3 o'clock. Displaying indications of the magnitude and/or changes of a physiological parameter together can provide more comprehensive information about a patient's physiological conditions in a limited and/or crowded display area than displaying the magnitude and the changes of the physiological parameter separately.


Although this disclosure has been described in the context of certain embodiments and examples, it will be understood by those skilled in the art that the disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations of the embodiments of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. For example, features described above in connection with one embodiment can be used with a different embodiment described herein and the combination still fall within the scope of the disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the embodiments of the disclosure. Thus, it is intended that the scope of the disclosure herein should not be limited by the particular embodiments described above. Accordingly, unless otherwise stated, or unless clearly incompatible, each embodiment of this invention may comprise, additional to its essential features described herein, one or more features as described herein from each other embodiment of the invention disclosed herein.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.


Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, 0.1 degree, or otherwise.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A noninvasive patient monitoring system for providing an indication of a physiological parameter, the system comprising: one or more sensors for outputting signals in response to a patient's physiological conditions;one or more signal processors configured to receive the signals and output: a first indicator indicating a magnitude of a physiological parameter, the first indicator comprising an object of a predetermined shape, anda second indicator indicating an instantaneous trend of the physiological parameter, the second indicator comprising an arrow; anda display responsive to output of the one or more signal processors to display the first and second indicators adjacent to each other, wherein an angle of the arrow corresponds to a rate of change of the physiological parameter, a portion of the first indicator forming a same angle as the arrow such that the portion of the first indicator is parallel to the arrow.
  • 2. The system of claim 1, wherein the first indicator comprises a plurality of the objects of the predetermined shape, a number of the plurality of objects displayed corresponding to the magnitude of the physiological parameter.
  • 3. The system of claim 2, wherein the predetermined shape comprises a rectangle, a circle, a triangle, or a diamond.
  • 4. The system of claim 1, wherein the object is a bar, the first indicator comprising a plurality of stacked bars with varying lengths so as to form a slope, wherein the slope is the portion of the first indicator that is parallel to the arrow.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/175,474, filed Oct. 30, 2018, entitled “SYSTEM FOR DISPLAYING OXYGEN STATE INDICATIONS,” which claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 62/579,575, filed Oct. 31, 2017, titled “SYSTEM FOR DISPLAYING OXYGEN STATE INDICATIONS,” incorporated herein by reference in its entirety. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (1175)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5355880 Thomas et al. Oct 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
5452717 Branigan et al. Sep 1995 A
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5561275 Savage et al. Oct 1996 A
5562002 Lalin Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6743172 Blike Jun 2004 B1
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin, IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al-Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7899518 Trepagnier et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
D667842 Ouilhet Sep 2012 S
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
D689091 Impas et al. Sep 2013 S
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
D693365 Gardner et al. Nov 2013 S
8577431 Lamego et al. Nov 2013 B2
8577433 McKenna Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
D745046 Shin et al. Dec 2015 S
9211072 Kiani Dec 2015 B2
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
D753716 Torres et al. Apr 2016 S
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
D763317 Kim et al. Aug 2016 S
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
D772931 Vulk et al. Nov 2016 S
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
D775663 Akana et al. Jan 2017 S
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D819660 Cabrera, Jr. et al. Jun 2018 S
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Kiani et al. Jan 2019 B1
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
D844642 Cabrera, Jr. et al. Apr 2019 S
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10402650 Suiter et al. Sep 2019 B1
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
D870773 Marrufo Dec 2019 S
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D989112 Muhsin et al. Jun 2023 S
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
D999244 Indorf et al. Sep 2023 S
D999245 Indorf et al. Sep 2023 S
D999246 Indorf et al. Sep 2023 S
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060074321 Kouchi et al. Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20100331639 O'Reilly Dec 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110230733 Al-Ali Sep 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130274571 Diab et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150165312 Kiani Jun 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160119210 Koehler et al. Apr 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
Foreign Referenced Citations (1)
Number Date Country
WO 2019089655 May 2019 WO
Non-Patent Literature Citations (2)
Entry
IconBros, https://www.iconbros.com/icons/ib-mi-f-map, retrieved Nov. 3, 2020, Medical Item Collection, Map Icon Image, pp. 1.
International Search Report and Written Opinion in corresponding International Patent Application No. PCT/US2018/058294, mailed Feb. 12, 2019, in 12 pages.
Related Publications (1)
Number Date Country
20210212640 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62579575 Oct 2017 US
Continuations (1)
Number Date Country
Parent 16175474 Oct 2018 US
Child 17218746 US