The invention relates to matable components and, more particularly, to an assembly for elastically spacing mated components.
Components which are to be mated together in a manufacturing process may be subject to positional variation based on the mating arrangements between the components. One common arrangement includes components mutually located with respect to each other by 2-way and/or 4-way male alignment features; typically undersized structures which are received into corresponding oversized female alignment features such as apertures in the form of openings and/or slots. Alternatively, double-sided tape, adhesives or welding processes may be employed to mate parts. Regardless of the precise mating arrangement, there may be a clearance between at least a portion of the alignment features which is predetermined to match anticipated size and positional variation tolerances of the mating features that result from manufacturing (or fabrication) variances. The occurrence of significant positional variation between the mated components is possible, which may contribute to the presence of undesirably large and varying gaps and otherwise poor fit. The clearance between the aligning and attaching features may lead to relative motion between mated components.
Accordingly, the art of alignment systems can be enhanced by providing an alignment and retention system or mechanism that can ensure precise two-way, four-way or six-way alignment and fastening of two or more components, with at least one being flexible, via elastic averaging of a plurality elastically deformable alignment and retention elements disposed in mating engagement with a plurality of corresponding alignment features.
In an exemplary embodiment an elastic averaging system for mated components comprises a first, inner panel; a second, outer panel disposed in a mated, spaced configuration from said first, inner panel; and an elastically deformable stand, fixed to and extending outwardly from an inner surface of the first, inner panel towards a corresponding inner surface of the second, outer panel. The elastically deformable stand comprises a side wall extending from the inner surface of the first, inner panel outwardly to form a partial enclosure; a closure surface extending substantially parallel to the inner surface of the first, inner panel and closes said partial enclosure to thereby define a top surface that faces the inner surface of the second, outer panel; and a flexible retaining wing integral with and extending outwardly from the sidewall. A receiver member is fixed to and extends outwardly from an inner surface of the second, outer panel towards the corresponding inner surface of the first, inner panel, and comprises side walls extending from the inner surface of the second, outer panel outwardly to form a partial enclosure configured to receive the elastically deformable stand. The elastically deformable stand is configured to elastically deform as said stand enters the partial enclosure of the receiver member and moves toward a fully engaged position
In another exemplary embodiment an elastic averaging system for mated components comprises a first, inner panel; a second, outer panel disposed in a mated, spaced configuration from said first, inner panel; a third panel disposed between the first, inner panel and the second, outer panel and an elastically deformable stand, fixed to and extending outwardly from an inner surface of the first, inner panel towards a corresponding inner surface of the second, outer panel. The elastically deformable stand comprises a side wall extending from the inner surface of the first, inner panel outwardly to form a partial enclosure; a closure surface extending substantially parallel to the inner surface of the first, inner panel and closes said partial enclosure to thereby define a closure surface that faces the inner surface of the second, outer panel; a flexible retaining wing integral with, and extending outwardly from, the sidewall; an opening in said closure surface configured to receive a retaining member and a retaining member configured for assembly into said opening and extending into said partial enclosure. An opening in said third panel corresponds positionally to the elastically deformable stand and is configured to accommodate passage of a portion of the elastically deformable stand therethrough. An opening in said second, outer panel is configured to receive the retaining member when the first, inner panel and the second, outer panel are brought into operable engagement with one another wherein, in the fully engaged position, the third panel deforms the flexible retaining wings which operate to exert a retaining force between the elastically deformable stand and the third panel to maintain a spaced configuration between the three panels.
In yet another embodiment, an elastic averaging system for mated components comprises a first panel; a second panel disposed in spaced configuration from said first panel; and an elastically deformable stand fixed to and extending from the first panel towards the second panel; the elastically deformable stand comprising a flexible wing extending outwardly from the sidewall. A receiver member extends outwardly from the second panel towards the first panel and comprises side walls that form a partial enclosure configured to receive the elastically deformable stand and the elastically deformable stand is configured to elastically deform as said stand enters the partial enclosure of the receiver member and moves toward a fully engaged position.
The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.
Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:
The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, the embodiments shown comprise vehicle components but the alignment system may be used with any suitable components to provide elastic averaging for precision location and alignment of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.
Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. In some embodiments, the elastically deformable component configured to have the at least one feature and associated mating feature disclosed herein may require more than one of such features, depending on the requirements of a particular embodiment. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, now U.S. Publication No. U.S. 2013-0019455, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of an elastically averaged alignment and retention system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.
Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.
As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled, towed, or movable conveyance suitable for transporting or supporting a burden.
In accordance with an exemplary embodiment of the invention, and referring to
In the exemplary embodiment, the first, inner panel 12 is operatively couple to, and spaced from the second, outer panel 14 using an elastically deformable stand 16 (which may be referred to as a “dog house”) that is fixed to and extends outwardly from an inner surface 18 of the first, inner panel 12 towards a corresponding inner surface 20 of the second, outer panel 14 when the two panels are brought into an assembly position relative to one another,
In an embodiment, the elastically deformable stand 16 is integrally formed with, or operatively coupled to, the inner surface 18 of the first, inner panel 12. The stand 16 may be constructed or formed of a material that is the same as that used in the construction of the first, inner panel 12 or it may be formed of a different material having properties that are selected for specific performance characteristics, to be described herein. The elastically deformable stand 16 may include one or more side walls 22 extending from the inner surface 18 outwardly to form a partial enclosure 24. In the embodiment shown, the enclosure 24 is defined by a single curving sidewall 22 but may also comprise several walls defining a “box” shaped enclosure or any other enclosure that suits the particular application. A closure surface 26 extends substantially parallel to the inner surface 18 and closes the partial enclosure 24 defined by the curving sidewall 22 thereby defining a surface that faces the inner surface 20 of the second, outer panel 14. As disclosed, the elastically deformable stand 16 having sidewall(s) 22 and closure surface 26 resembles the aptly named “dog house”.
In an embodiment, the closure surface 26 may include an opening 30 that is defined by wall 32. The opening is configured to receive a retaining member 28, to be described herein, that may be attached to the inner surface 20 of the second, outer panel 14 when the first and second panels 12, 14 are brought together. An insertion slot 34 extends from the opening 30 to a front edge 36 of the closure surface 26 to provide an easy, sliding insertion of retaining member 28 into place in the opening 30. Tapered shoulders 38 may be formed at the interface of the insertion slot 34 and the front edge 36 to allow for ease of insertion of the retaining member 28 into the slot during assembly therein.
In an embodiment, openings 42,
Turning now to
Assembly of the first inner panel 12 and the second, outer panel 14 is facilitated as illustrated in
In an embodiment, and also illustrated in
Referring now to
Referring to
In the exemplary embodiment, the first, inner panel 12 is operatively coupled to, and spaced from, the second, outer panel 14 using the elastically deformable stand 16 that is fixed to and extends outwardly from an inner surface 18 of the first, inner panel 12 towards a corresponding inner surface 20 of the second, outer panel 14 when the two panels are brought into an assembly position relative to one another. The elastically deformable stand 16 may include one or more side walls 22 extending from the inner surface 18 outwardly to form a partial enclosure 24. A closure surface 26 extends substantially parallel to the inner surface 18 and closes the partial enclosure 24 defining a closure or “stop” surface that faces the inner surface 20 of the second, outer panel 14. In an embodiment, the closure surface 26 may include an opening 30 that is defined by wall 32. The opening is configured to receive a retaining member 28 that may be attached to closure surface 26. In an embodiment, openings 42 may be located in the sidewall(s) 22 of the elastically deformable stand 16. The openings 42 may comprise any number of configurations and, in the embodiment illustrated, are longitudinally extending slots. In addition, and in an embodiment, flexible retaining wings 50 are integral with, and extend outwardly from, the sidewall(s) 22 of the elastically deformable stand 16. The flexible retaining wings 50 may comprise any number of suitable configurations and, in the format illustrated, extend from a location near or adjacent to the closure surface 26 to terminate at inner surface 18 of the first, inner panel 12. In an embodiment, a slotted opening 52 may extend into the retaining wing 50 from an outer edge 54 and is operable to increase the flexibility of the wing 50.
In an embodiment, third panel 80 comprises an opening 82 corresponding positionally to the elastically deformable stand 16. In the case of multiple stands 16, multiple openings 82 will be correspondingly located in the third panel 80 to accommodate passage of a portion of the stand therethrough.
In an embodiment the inner surface 20 of the second, outer panel 14 may include an opening 64 configured to receive the retaining member 28 attached to, and extending from, the elastically deformable stand 16 when the first, inner panel 12 and the second, outer panel 14 are brought into a fully engaged position with respect to one another. In the case of multiple stands 16, multiple openings 64 will be correspondingly located in the second panel 20 to accommodate passage of a portion of the retaining member therethrough.
Assembly of the first inner panel 12, the second, outer panel 14 with the third panel 80 therebetween is facilitated when the three panels are brought into face to face alignment such that inner face 18 of first, inner panel 12 is facing inner surface 20 of second outer panel 14 with the third panel 80 disposed therebetween. Elastically deformable stands 16 are disposed at locations about the inner surface of the first, inner panel 12. As the panels 12, 80 and 14 are brought together each elastically deformable stand 16 passes through a corresponding opening 82 of the third panel 80 and subsequently reaches a fully engaged position, as the retaining member 28 enters opening 64 and closure surface 26 engages inner surface 20 of second, outer panel 14.
As the stand 16 moves inwardly towards the inner surface 20 of the second outer panel, the ramped surface 54 of the flexible retaining wings 50 engage the third pane 180 to initiate a deformation of the flexible retaining wings. The deformation of the flexible retaining wings will continue to increase as the panels 12 and 14 are brought together and will exert a retaining force between the elastically deformable stand and the third panel to maintain the spaced configuration between the three panels.
While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.
Number | Name | Date | Kind |
---|---|---|---|
1219398 | Huntsman | Mar 1917 | A |
1261036 | Kerns | Apr 1918 | A |
1556233 | Maise | Oct 1925 | A |
1929848 | Neely | Oct 1933 | A |
1968168 | Place | Jul 1934 | A |
2058319 | Jones | Oct 1936 | A |
2164634 | Barrett | Jul 1939 | A |
2267558 | Birger et al. | Dec 1941 | A |
2275103 | Gooch et al. | Mar 1942 | A |
2275900 | Hall | Mar 1942 | A |
2385180 | Allen | Sep 1945 | A |
2560530 | Burdick | Jul 1951 | A |
2612139 | Collins | Sep 1952 | A |
2693014 | Monahan | Nov 1954 | A |
2707607 | O'Connor | May 1955 | A |
2788046 | Joseph | Apr 1957 | A |
2940149 | O'Connor | Jun 1960 | A |
2946612 | Ahlgren | Jul 1960 | A |
2958230 | Haroldson | Nov 1960 | A |
3005282 | Christiansen | Oct 1961 | A |
3014563 | Bratton | Dec 1961 | A |
3050160 | Chesser | Aug 1962 | A |
3089269 | McKiernan | May 1963 | A |
3152376 | Boser | Oct 1964 | A |
3169439 | Rapata | Feb 1965 | A |
3188731 | Sweeney | Jun 1965 | A |
3230592 | Hosea | Jan 1966 | A |
3233358 | Dehm | Feb 1966 | A |
3248995 | Meyer | May 1966 | A |
3291495 | Liebig | Dec 1966 | A |
3310929 | Garvey | Mar 1967 | A |
3413752 | Perry | Dec 1968 | A |
3473283 | Meyer | Oct 1969 | A |
3551963 | Long | Jan 1971 | A |
3580628 | Rantala | May 1971 | A |
3643968 | Horvath | Feb 1972 | A |
3669484 | Bernitz | Jun 1972 | A |
3733655 | Kolibar | May 1973 | A |
3800369 | Nikolits | Apr 1974 | A |
3841044 | Brown | Oct 1974 | A |
3841682 | Church | Oct 1974 | A |
3842565 | Brown et al. | Oct 1974 | A |
3845961 | Byrd, III | Nov 1974 | A |
3847492 | Kennicutt et al. | Nov 1974 | A |
3860209 | Strecker | Jan 1975 | A |
3868804 | Tantlinger | Mar 1975 | A |
3895408 | Leingang | Jul 1975 | A |
3897967 | Barenyl | Aug 1975 | A |
3967351 | Rosenberg et al. | Jul 1976 | A |
3972550 | Boughton | Aug 1976 | A |
3988808 | Poe et al. | Nov 1976 | A |
4035874 | Liljendahl | Jul 1977 | A |
4039215 | Minhinnick | Aug 1977 | A |
4042307 | Jarvis | Aug 1977 | A |
4043585 | Yamanaka | Aug 1977 | A |
4158511 | Herbenar | Jun 1979 | A |
4169297 | Weihrauch | Oct 1979 | A |
4193588 | Doneaux | Mar 1980 | A |
4212415 | Neely | Jul 1980 | A |
4237573 | Weihrauch | Dec 1980 | A |
4267680 | Delattre | May 1981 | A |
4300851 | Thelander | Nov 1981 | A |
4313609 | Clements | Feb 1982 | A |
4314417 | Cain | Feb 1982 | A |
4318208 | Borja | Mar 1982 | A |
4325574 | Umemoto et al. | Apr 1982 | A |
4358166 | Antoine | Nov 1982 | A |
4363839 | Watanabe et al. | Dec 1982 | A |
4364150 | Remington | Dec 1982 | A |
4384803 | Cachia | May 1983 | A |
4394853 | Lopez-Crevillen et al. | Jul 1983 | A |
4407413 | Jansson | Oct 1983 | A |
4477142 | Cooper | Oct 1984 | A |
4479737 | Bergh et al. | Oct 1984 | A |
4527760 | Salacuse | Jul 1985 | A |
4564232 | Fujimori et al. | Jan 1986 | A |
4591203 | Furman | May 1986 | A |
4599768 | Doyle | Jul 1986 | A |
4616951 | Maatela | Oct 1986 | A |
4648649 | Beal | Mar 1987 | A |
4654760 | Matheson et al. | Mar 1987 | A |
4672732 | Ramspacher | Jun 1987 | A |
4715095 | Takahashi | Dec 1987 | A |
4745656 | Revlett | May 1988 | A |
4746008 | Heverly et al. | May 1988 | A |
4778282 | Borchardt et al. | Oct 1988 | A |
4805272 | Yamaguchi | Feb 1989 | A |
4807335 | Candea | Feb 1989 | A |
4819309 | Behymer | Apr 1989 | A |
4843975 | Welsch | Jul 1989 | A |
4843976 | Pigott et al. | Jul 1989 | A |
4865502 | Maresch | Sep 1989 | A |
4881764 | Takahashi et al. | Nov 1989 | A |
4907582 | Meyerrose | Mar 1990 | A |
4909929 | Tabor | Mar 1990 | A |
4917426 | Copp | Apr 1990 | A |
4977648 | Eckerud | Dec 1990 | A |
5005265 | Muller | Apr 1991 | A |
5007759 | Scherer | Apr 1991 | A |
5039267 | Wollar | Aug 1991 | A |
5094580 | Abe | Mar 1992 | A |
5100015 | Vanderstuyf | Mar 1992 | A |
5111557 | Baum | May 1992 | A |
5165749 | Sheppard | Nov 1992 | A |
5170985 | Killworth et al. | Dec 1992 | A |
5178433 | Wagner | Jan 1993 | A |
5180219 | Geddie | Jan 1993 | A |
5186517 | Gilmore et al. | Feb 1993 | A |
5212853 | Kaneko | May 1993 | A |
5234122 | Cherng | Aug 1993 | A |
5250001 | Hansen | Oct 1993 | A |
5309663 | Shirley | May 1994 | A |
5333965 | Mailey | Aug 1994 | A |
5339491 | Sims | Aug 1994 | A |
5348356 | Moulton | Sep 1994 | A |
5368427 | Pfaffinger | Nov 1994 | A |
5368797 | Quentin et al. | Nov 1994 | A |
5397206 | Sihon | Mar 1995 | A |
5407310 | Kassouni | Apr 1995 | A |
5446965 | Makridis | Sep 1995 | A |
5507610 | Benedetti et al. | Apr 1996 | A |
5513603 | Ang et al. | May 1996 | A |
5524786 | Skudlarek | Jun 1996 | A |
5538079 | Pawlick | Jul 1996 | A |
5566840 | Waldner | Oct 1996 | A |
5575601 | Skufca | Nov 1996 | A |
5577301 | Demaagd | Nov 1996 | A |
5577779 | Dangel | Nov 1996 | A |
5580204 | Hultman | Dec 1996 | A |
5586372 | Eguchi et al. | Dec 1996 | A |
5593265 | Kizer | Jan 1997 | A |
5629823 | Mizuta | May 1997 | A |
5634757 | Schanz | Jun 1997 | A |
5639140 | Labrash | Jun 1997 | A |
5657516 | Berg et al. | Aug 1997 | A |
5657893 | Hitchings | Aug 1997 | A |
5666749 | Waters | Sep 1997 | A |
5670013 | Huang et al. | Sep 1997 | A |
5671513 | Kawahara | Sep 1997 | A |
5702779 | Siebelink, Jr. et al. | Dec 1997 | A |
5704753 | Ueno | Jan 1998 | A |
5706559 | Oliver | Jan 1998 | A |
5736221 | Hardigg et al. | Apr 1998 | A |
5765942 | Shirai et al. | Jun 1998 | A |
5770320 | Hughes et al. | Jun 1998 | A |
5775860 | Meyer | Jul 1998 | A |
5797170 | Akeno | Aug 1998 | A |
5797714 | Oddenino | Aug 1998 | A |
5799930 | Willett | Sep 1998 | A |
5803646 | Weihrauch | Sep 1998 | A |
5806915 | Takabatake | Sep 1998 | A |
5820292 | Fremstad | Oct 1998 | A |
5846631 | Nowosiadly | Dec 1998 | A |
5865500 | Sanada | Feb 1999 | A |
5915678 | Slocum et al. | Jun 1999 | A |
5920200 | Pendse | Jul 1999 | A |
5929382 | Moore | Jul 1999 | A |
5931514 | Chung | Aug 1999 | A |
5934729 | Baack | Aug 1999 | A |
5941673 | Hayakawa et al. | Aug 1999 | A |
5988678 | Nakamura | Nov 1999 | A |
6006941 | Hitchings | Dec 1999 | A |
6010306 | Bucher | Jan 2000 | A |
6036198 | Kramer | Mar 2000 | A |
6062763 | Sirois et al. | May 2000 | A |
6079083 | Akashi | Jun 2000 | A |
6095594 | Riddle et al. | Aug 2000 | A |
6103987 | Nordquist | Aug 2000 | A |
6109882 | Popov | Aug 2000 | A |
6142509 | White, Jr. | Nov 2000 | A |
6152436 | Sonderegger et al. | Nov 2000 | A |
6164603 | Kawai | Dec 2000 | A |
6193430 | Culpepper et al. | Feb 2001 | B1 |
6199248 | Akashi | Mar 2001 | B1 |
6202962 | Snyder | Mar 2001 | B1 |
6254304 | Takizawa et al. | Jul 2001 | B1 |
6283540 | Siebelink, Jr. et al. | Sep 2001 | B1 |
6286214 | Bean | Sep 2001 | B1 |
6289560 | Guyot | Sep 2001 | B1 |
6299478 | Jones et al. | Oct 2001 | B1 |
6311960 | Pierman et al. | Nov 2001 | B1 |
6318585 | Asagiri | Nov 2001 | B1 |
6336767 | Nordquist et al. | Jan 2002 | B1 |
6345420 | Nabeshima | Feb 2002 | B1 |
6351380 | Curlee | Feb 2002 | B1 |
6354574 | Oliver et al. | Mar 2002 | B1 |
6354815 | Svihla et al. | Mar 2002 | B1 |
6378931 | Kolluri et al. | Apr 2002 | B1 |
6398449 | Loh | Jun 2002 | B1 |
6478102 | Puterbaugh | Nov 2002 | B1 |
6484370 | Kanie et al. | Nov 2002 | B2 |
6485241 | Oxford | Nov 2002 | B1 |
6498297 | Samhammer | Dec 2002 | B2 |
6523229 | Severson | Feb 2003 | B2 |
6523817 | Landry, Jr. | Feb 2003 | B1 |
6557260 | Morris | May 2003 | B1 |
6591801 | Fonville | Jul 2003 | B1 |
6594861 | Dimig et al. | Jul 2003 | B2 |
6609717 | Hinson | Aug 2003 | B2 |
6637095 | Stumpf et al. | Oct 2003 | B2 |
6658698 | Chen | Dec 2003 | B2 |
6662411 | Rubenstein | Dec 2003 | B2 |
6668424 | Allen | Dec 2003 | B1 |
6692016 | Yokota | Feb 2004 | B2 |
6746172 | Culpepper | Jun 2004 | B2 |
6757942 | Matsui | Jul 2004 | B2 |
6799758 | Fries | Oct 2004 | B2 |
6821091 | Lee | Nov 2004 | B2 |
6846125 | Smith et al. | Jan 2005 | B2 |
6857676 | Kawaguchi et al. | Feb 2005 | B2 |
6857809 | Granata | Feb 2005 | B2 |
6872053 | Bucher | Mar 2005 | B2 |
6895651 | Li | May 2005 | B2 |
6932416 | Clauson | Aug 2005 | B2 |
6948753 | Yoshida et al. | Sep 2005 | B2 |
6951349 | Yokota | Oct 2005 | B2 |
6957939 | Wilson | Oct 2005 | B2 |
6959954 | Brandt et al. | Nov 2005 | B2 |
6966601 | Matsumoto et al. | Nov 2005 | B2 |
6971831 | Fattori et al. | Dec 2005 | B2 |
7000941 | Yokota | Feb 2006 | B2 |
7008003 | Hirose et al. | Mar 2006 | B1 |
7055785 | Diggle, III | Jun 2006 | B1 |
7055849 | Yokota | Jun 2006 | B2 |
7059628 | Yokota | Jun 2006 | B2 |
7073260 | Jensen | Jul 2006 | B2 |
7089998 | Crook | Aug 2006 | B2 |
7097198 | Yokota | Aug 2006 | B2 |
7121611 | Hirotani et al. | Oct 2006 | B2 |
7144183 | Lian et al. | Dec 2006 | B2 |
7165310 | Murakami et al. | Jan 2007 | B2 |
7172210 | Yokota | Feb 2007 | B2 |
7178855 | Catron et al. | Feb 2007 | B2 |
7207758 | Leon et al. | Apr 2007 | B2 |
7234852 | Nishizawa et al. | Jun 2007 | B2 |
7275296 | DiCesare | Oct 2007 | B2 |
7275772 | Lee | Oct 2007 | B2 |
7322500 | Maierholzner | Jan 2008 | B2 |
7344056 | Shelmon et al. | Mar 2008 | B2 |
7360964 | Tsuya | Apr 2008 | B2 |
7369408 | Chang | May 2008 | B2 |
7493716 | Brown | Feb 2009 | B2 |
7500440 | Chiu | Mar 2009 | B2 |
7547061 | Horimatsu | Jun 2009 | B2 |
7568316 | Choby et al. | Aug 2009 | B2 |
7591573 | Maliar et al. | Sep 2009 | B2 |
7614836 | Mohiuddin | Nov 2009 | B2 |
7672126 | Yeh | Mar 2010 | B2 |
7677650 | Huttenlocher | Mar 2010 | B2 |
7727667 | Sakurai | Jun 2010 | B2 |
7764853 | Yi et al. | Jul 2010 | B2 |
7793998 | Matsui et al. | Sep 2010 | B2 |
7802831 | Isayama et al. | Sep 2010 | B2 |
7803015 | Pham | Sep 2010 | B2 |
7828372 | Ellison | Nov 2010 | B2 |
7832693 | Moerke et al. | Nov 2010 | B2 |
7869003 | Van Doren et al. | Jan 2011 | B2 |
7883137 | Bar | Feb 2011 | B2 |
7891926 | Jackson, Jr. | Feb 2011 | B2 |
7922415 | Rudduck et al. | Apr 2011 | B2 |
7946684 | Drury et al. | May 2011 | B2 |
7959214 | Salhoff | Jun 2011 | B2 |
7971913 | Sunahara et al. | Jul 2011 | B2 |
8029222 | Nitsche | Oct 2011 | B2 |
8136819 | Yoshitsune et al. | Mar 2012 | B2 |
8162375 | Gurtatowski et al. | Apr 2012 | B2 |
8203843 | Chen | Jun 2012 | B2 |
8206029 | Vaucher et al. | Jun 2012 | B2 |
8228640 | Woodhead et al. | Jul 2012 | B2 |
8249679 | Cui | Aug 2012 | B2 |
8261581 | Cerruti et al. | Sep 2012 | B2 |
8263889 | Takahashi et al. | Sep 2012 | B2 |
8276961 | Kwolek | Oct 2012 | B2 |
8291553 | Moberg | Oct 2012 | B2 |
8297137 | Dole | Oct 2012 | B2 |
8312887 | Dunn et al. | Nov 2012 | B2 |
8328250 | Botten et al. | Dec 2012 | B2 |
8371788 | Lange | Feb 2013 | B2 |
8371789 | Takita | Feb 2013 | B2 |
8414048 | Kwolek | Apr 2013 | B1 |
8424173 | Shiba | Apr 2013 | B2 |
8444199 | Takeuchi et al. | May 2013 | B2 |
8474214 | Dawe | Jul 2013 | B2 |
8480186 | Wang | Jul 2013 | B2 |
8511707 | Amamori | Aug 2013 | B2 |
8520404 | Hamaguchi | Aug 2013 | B2 |
8572818 | Hofmann | Nov 2013 | B2 |
8579141 | Tejima | Nov 2013 | B2 |
8619504 | Wyssbrod | Dec 2013 | B2 |
8648264 | Masumoto | Feb 2014 | B2 |
8656563 | Hiramatsu | Feb 2014 | B2 |
8677573 | Lee | Mar 2014 | B2 |
8695201 | Morris | Apr 2014 | B2 |
8720016 | Beaulieu | May 2014 | B2 |
8726473 | Dole | May 2014 | B2 |
8746801 | Nakata | Jun 2014 | B2 |
8773846 | Wang | Jul 2014 | B2 |
8811004 | Liu | Aug 2014 | B2 |
8826499 | Tempesta | Sep 2014 | B2 |
8833771 | Lesnau | Sep 2014 | B2 |
8905812 | Pai-Chen | Dec 2014 | B2 |
8910350 | Poulakis | Dec 2014 | B2 |
9003891 | Frank | Apr 2015 | B2 |
9038335 | Eck | May 2015 | B1 |
9039318 | Mantei et al. | May 2015 | B2 |
9050690 | Hammer et al. | Jun 2015 | B2 |
9061403 | Colombo et al. | Jun 2015 | B2 |
9061715 | Morris | Jun 2015 | B2 |
9062991 | Kanagaraj | Jun 2015 | B2 |
9067625 | Morris | Jun 2015 | B2 |
9194413 | Christoph | Nov 2015 | B2 |
9302569 | Ogino et al. | Apr 2016 | B2 |
9303667 | Morris et al. | Apr 2016 | B2 |
20010016986 | Bean | Aug 2001 | A1 |
20010030414 | Yokota | Oct 2001 | A1 |
20010045757 | Kanie et al. | Nov 2001 | A1 |
20020092598 | Jones et al. | Jul 2002 | A1 |
20020130239 | Ishigami et al. | Sep 2002 | A1 |
20030007831 | Lian et al. | Jan 2003 | A1 |
20030059255 | Kirchen | Mar 2003 | A1 |
20030082986 | Wiens et al. | May 2003 | A1 |
20030085618 | Rhodes | May 2003 | A1 |
20030107202 | Tajima et al. | Jun 2003 | A1 |
20040016088 | Angellotti | Jan 2004 | A1 |
20040028503 | Charles | Feb 2004 | A1 |
20040037637 | Lian et al. | Feb 2004 | A1 |
20040051221 | Sunadome | Mar 2004 | A1 |
20040052574 | Grubb | Mar 2004 | A1 |
20040083583 | Bradley | May 2004 | A1 |
20040139678 | Pervan | Jul 2004 | A1 |
20040140651 | Yokota | Jul 2004 | A1 |
20040262873 | Wolf et al. | Dec 2004 | A1 |
20050016116 | Scherff | Jan 2005 | A1 |
20050031946 | Kruger et al. | Feb 2005 | A1 |
20050042057 | Konig et al. | Feb 2005 | A1 |
20050054229 | Tsuya | Mar 2005 | A1 |
20050082449 | Kawaguchi et al. | Apr 2005 | A1 |
20050109489 | Kobayashi | May 2005 | A1 |
20050156409 | Yokota | Jul 2005 | A1 |
20050156410 | Yokota | Jul 2005 | A1 |
20050156416 | Yokota | Jul 2005 | A1 |
20050217088 | Lin | Oct 2005 | A1 |
20060082187 | Hernandez et al. | Apr 2006 | A1 |
20060092653 | Tachiiwa et al. | May 2006 | A1 |
20060102214 | Clemons | May 2006 | A1 |
20060113755 | Yokota | Jun 2006 | A1 |
20060125286 | Horimatsu et al. | Jun 2006 | A1 |
20060163902 | Engel | Jul 2006 | A1 |
20060170242 | Forrester et al. | Aug 2006 | A1 |
20060202449 | Yokota | Sep 2006 | A1 |
20060237995 | Huttenlocher | Oct 2006 | A1 |
20060264076 | Chen | Nov 2006 | A1 |
20070034636 | Fukuo | Feb 2007 | A1 |
20070040411 | Dauvergne | Feb 2007 | A1 |
20070051572 | Beri | Mar 2007 | A1 |
20070113483 | Hernandez | May 2007 | A1 |
20070113485 | Hernandez | May 2007 | A1 |
20070137018 | Aigner et al. | Jun 2007 | A1 |
20070205627 | Ishiguro | Sep 2007 | A1 |
20070227942 | Hirano | Oct 2007 | A1 |
20070251055 | Gerner | Nov 2007 | A1 |
20070258756 | Olshausen | Nov 2007 | A1 |
20070274777 | Winkler | Nov 2007 | A1 |
20080011930 | Nagai | Jan 2008 | A1 |
20080014508 | Van Doren et al. | Jan 2008 | A1 |
20080018128 | Yamagiwa et al. | Jan 2008 | A1 |
20080128346 | Bowers | Jun 2008 | A1 |
20080196535 | Dole | Aug 2008 | A1 |
20080260454 | Girodo et al. | Oct 2008 | A1 |
20090028506 | Yi et al. | Jan 2009 | A1 |
20090093111 | Buchwalter et al. | Apr 2009 | A1 |
20090126168 | Kobe et al. | May 2009 | A1 |
20090134652 | Araki | May 2009 | A1 |
20090140112 | Carnevali | Jun 2009 | A1 |
20090141449 | Yeh | Jun 2009 | A1 |
20090154303 | Vaucher et al. | Jun 2009 | A1 |
20090174207 | Lota | Jul 2009 | A1 |
20090211804 | Zhou et al. | Aug 2009 | A1 |
20090243172 | Ting et al. | Oct 2009 | A1 |
20090309388 | Ellison | Dec 2009 | A1 |
20090318069 | Konet | Dec 2009 | A1 |
20100000156 | Salhoff | Jan 2010 | A1 |
20100061045 | Chen | Mar 2010 | A1 |
20100134128 | Hobbs | Jun 2010 | A1 |
20100147355 | Shimizu et al. | Jun 2010 | A1 |
20100162537 | Shiba | Jul 2010 | A1 |
20100232171 | Cannon | Sep 2010 | A1 |
20100247034 | Yi et al. | Sep 2010 | A1 |
20100263417 | Schoenow | Oct 2010 | A1 |
20100270745 | Hurlbert et al. | Oct 2010 | A1 |
20100307848 | Hashimoto | Dec 2010 | A1 |
20110012378 | Ueno et al. | Jan 2011 | A1 |
20110036542 | Woicke | Feb 2011 | A1 |
20110083392 | Timko | Apr 2011 | A1 |
20110103884 | Shiomoto et al. | May 2011 | A1 |
20110119875 | Iwasaki | May 2011 | A1 |
20110131918 | Glynn | Jun 2011 | A1 |
20110154645 | Morgan | Jun 2011 | A1 |
20110183152 | Lanham | Jul 2011 | A1 |
20110191990 | Beaulieu | Aug 2011 | A1 |
20110191993 | Forrest | Aug 2011 | A1 |
20110239418 | Huang | Oct 2011 | A1 |
20120000291 | Christoph | Jan 2012 | A1 |
20120000409 | Railey | Jan 2012 | A1 |
20120020726 | Jan | Jan 2012 | A1 |
20120073094 | Bishop | Mar 2012 | A1 |
20120112489 | Okimoto | May 2012 | A1 |
20120115010 | Smith et al. | May 2012 | A1 |
20120187812 | Gerst | Jul 2012 | A1 |
20120240363 | Lee | Sep 2012 | A1 |
20120301067 | Morgan | Nov 2012 | A1 |
20120311829 | Dickinson | Dec 2012 | A1 |
20120321379 | Wang et al. | Dec 2012 | A1 |
20120324795 | Krajenke et al. | Dec 2012 | A1 |
20130010413 | Kim | Jan 2013 | A1 |
20130017038 | Kestner et al. | Jan 2013 | A1 |
20130019454 | Colombo et al. | Jan 2013 | A1 |
20130019455 | Morris | Jan 2013 | A1 |
20130027852 | Wang | Jan 2013 | A1 |
20130055822 | Frank | Mar 2013 | A1 |
20130157015 | Morris | Jun 2013 | A1 |
20130212858 | Herzinger et al. | Aug 2013 | A1 |
20130269873 | Herzinger et al. | Oct 2013 | A1 |
20130287992 | Morris | Oct 2013 | A1 |
20140033493 | Morris et al. | Feb 2014 | A1 |
20140041176 | Morris | Feb 2014 | A1 |
20140041185 | Morris et al. | Feb 2014 | A1 |
20140041199 | Morris | Feb 2014 | A1 |
20140042704 | Polewarczyk | Feb 2014 | A1 |
20140047691 | Colombo et al. | Feb 2014 | A1 |
20140047697 | Morris | Feb 2014 | A1 |
20140080036 | Smith et al. | Mar 2014 | A1 |
20140157578 | Morris et al. | Jun 2014 | A1 |
20140159412 | Morris et al. | Jun 2014 | A1 |
20140175774 | Kansteiner | Jun 2014 | A1 |
20140199116 | Metten et al. | Jul 2014 | A1 |
20140202628 | Sreetharan et al. | Jul 2014 | A1 |
20140208561 | Colombo et al. | Jul 2014 | A1 |
20140208572 | Colombo et al. | Jul 2014 | A1 |
20140220267 | Morris et al. | Aug 2014 | A1 |
20140260041 | Peck | Sep 2014 | A1 |
20140264206 | Morris | Sep 2014 | A1 |
20140292013 | Colombo et al. | Oct 2014 | A1 |
20140298638 | Colombo et al. | Oct 2014 | A1 |
20140298640 | Morris et al. | Oct 2014 | A1 |
20140298962 | Morris et al. | Oct 2014 | A1 |
20140300130 | Morris et al. | Oct 2014 | A1 |
20140301103 | Colombo et al. | Oct 2014 | A1 |
20140301777 | Morris et al. | Oct 2014 | A1 |
20140301778 | Morris et al. | Oct 2014 | A1 |
20150043959 | Morris | Feb 2015 | A1 |
20150056009 | Morris | Feb 2015 | A1 |
20150069779 | Morris et al. | Mar 2015 | A1 |
20150086265 | Morris | Mar 2015 | A1 |
20150093177 | Morris | Apr 2015 | A1 |
20150093178 | Morris | Apr 2015 | A1 |
20150093179 | Morris et al. | Apr 2015 | A1 |
20150098748 | Morris et al. | Apr 2015 | A1 |
20150115656 | Lungershausen | Apr 2015 | A1 |
20150135509 | Morris et al. | May 2015 | A1 |
20150164184 | Morris et al. | Jun 2015 | A1 |
20150165609 | Morris et al. | Jun 2015 | A1 |
20150165985 | Morris | Jun 2015 | A1 |
20150165986 | Morris | Jun 2015 | A1 |
20150166124 | Morris | Jun 2015 | A1 |
20150167717 | Morris | Jun 2015 | A1 |
20150167718 | Morris et al. | Jun 2015 | A1 |
20150174740 | Morris et al. | Jun 2015 | A1 |
20150175091 | Morris et al. | Jun 2015 | A1 |
20150175217 | Morris et al. | Jun 2015 | A1 |
20150175219 | Kiester | Jun 2015 | A1 |
20150176759 | Morris et al. | Jun 2015 | A1 |
20150192160 | Gong | Jul 2015 | A1 |
20150194650 | Morris et al. | Jul 2015 | A1 |
20150197970 | Morris et al. | Jul 2015 | A1 |
20150232130 | Colombo | Aug 2015 | A1 |
20150232131 | Morris et al. | Aug 2015 | A1 |
20150274217 | Colombo | Oct 2015 | A1 |
20150291222 | Colombo et al. | Oct 2015 | A1 |
20150308534 | Smith et al. | Oct 2015 | A1 |
20150353028 | Courtin et al. | Dec 2015 | A1 |
20150375798 | Morris et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
842302 | Sep 1976 | BE |
1032581 | Apr 1989 | CN |
1036250 | Oct 1989 | CN |
1062629 | Jul 1992 | CN |
2285844 | Jul 1998 | CN |
1205285 | Jan 1999 | CN |
1204744 | Jul 1999 | CN |
1426872 | Jul 2003 | CN |
1496451 | May 2004 | CN |
2661972 | Dec 2004 | CN |
2679409 | Feb 2005 | CN |
1693721 | Nov 2005 | CN |
1774580 | May 2006 | CN |
2872795 | Feb 2007 | CN |
2874103 | Feb 2007 | CN |
1933747 | Mar 2007 | CN |
2888807 | Apr 2007 | CN |
1961157 | May 2007 | CN |
2915389 | Jun 2007 | CN |
101002030 | Jul 2007 | CN |
101005741 | Jul 2007 | CN |
200941716 | Aug 2007 | CN |
200957794 | Oct 2007 | CN |
101250964 | Apr 2008 | CN |
101390022 | Mar 2009 | CN |
201259846 | Jun 2009 | CN |
201310827 | Sep 2009 | CN |
101701595 | May 2010 | CN |
201540513 | Aug 2010 | CN |
101821534 | Sep 2010 | CN |
101821534 | Sep 2010 | CN |
101930253 | Dec 2010 | CN |
201818606 | May 2011 | CN |
201890285 | Jul 2011 | CN |
102144102 | Aug 2011 | CN |
102235402 | Nov 2011 | CN |
202024057 | Nov 2011 | CN |
102313952 | Jan 2012 | CN |
202132326 | Feb 2012 | CN |
102463882 | May 2012 | CN |
102540855 | Jul 2012 | CN |
102756633 | Oct 2012 | CN |
102803753 | Nov 2012 | CN |
202561269 | Nov 2012 | CN |
102817892 | Dec 2012 | CN |
102869891 | Jan 2013 | CN |
102904128 | Jan 2013 | CN |
202686206 | Jan 2013 | CN |
102918315 | Feb 2013 | CN |
202764872 | Mar 2013 | CN |
202987018 | Jun 2013 | CN |
103201525 | Jul 2013 | CN |
103206595 | Jul 2013 | CN |
103206596 | Jul 2013 | CN |
203189459 | Sep 2013 | CN |
203344856 | Dec 2013 | CN |
103591102 | Feb 2014 | CN |
104100609 | Oct 2014 | CN |
203991175 | Dec 2014 | CN |
1220673 | Jul 1966 | DE |
2527023 | Dec 1976 | DE |
2736012 | Feb 1978 | DE |
2703897 | Aug 1978 | DE |
2809746 | Sep 1979 | DE |
3008990 | Sep 1980 | DE |
3711696 | Oct 1988 | DE |
3815927 | Nov 1989 | DE |
3815927 | Nov 1989 | DE |
9109276 | Jul 1991 | DE |
4002443 | Aug 1991 | DE |
4111245 | Oct 1991 | DE |
9201258 | Mar 1992 | DE |
29714892 | Oct 1997 | DE |
29800379 | May 1998 | DE |
69600357 | Dec 1998 | DE |
10003852 | Aug 2001 | DE |
10202644 | Jun 2003 | DE |
10234253 | Apr 2004 | DE |
10333540 | Feb 2005 | DE |
60105817 | Feb 2006 | DE |
202007006175 | Aug 2007 | DE |
102008063920 | Sep 2009 | DE |
102008047464 | Apr 2010 | DE |
102010028323 | Nov 2011 | DE |
102010026218 | Jan 2012 | DE |
102012212101 | Jul 2013 | DE |
102013003028 | Mar 2014 | DE |
0616140 | Sep 1994 | EP |
1243471 | Sep 2002 | EP |
1384536 | Jan 2004 | EP |
1388449 | Feb 2004 | EP |
1452745 | Sep 2004 | EP |
1550818 | Jul 2005 | EP |
2166235 | Mar 2010 | EP |
1369198 | Aug 1964 | FR |
2009941 | Feb 1970 | FR |
2750177 | Dec 1997 | FR |
2942749 | Sep 2010 | FR |
2958696 | Oct 2011 | FR |
155838 | Mar 1922 | GB |
994891 | Jun 1965 | GB |
2175626 | Dec 1986 | GB |
2281950 | Mar 1995 | GB |
2348924 | Oct 2000 | GB |
2496613 | Jun 2013 | GB |
S6054264 | Mar 1985 | JP |
H0861318 | Mar 1996 | JP |
H08200420 | Aug 1996 | JP |
H0942233 | Feb 1997 | JP |
2000010514 | Jan 2000 | JP |
2000192924 | Jul 2000 | JP |
2000287717 | Oct 2000 | JP |
2001141154 | May 2001 | JP |
2003158387 | May 2003 | JP |
2003314515 | Nov 2003 | JP |
2005268004 | Sep 2005 | JP |
2008307938 | Dec 2008 | JP |
2009187789 | Aug 2009 | JP |
2010266519 | Nov 2010 | JP |
2011085174 | Apr 2011 | JP |
2012060791 | Mar 2012 | JP |
2012112533 | Jun 2012 | JP |
2012126421 | Jul 2012 | JP |
20030000251 | Jan 2003 | KR |
100931019 | Dec 2009 | KR |
9602963 | Feb 1996 | WO |
9822739 | May 1998 | WO |
0055517 | Mar 2000 | WO |
0132454 | Nov 2001 | WO |
2004010011 | Jan 2004 | WO |
2007126201 | Nov 2007 | WO |
2008140659 | Nov 2008 | WO |
2010105354 | Sep 2010 | WO |
2011025606 | Mar 2011 | WO |
2011089650 | Jul 2011 | WO |
2013088447 | Jun 2013 | WO |
2013191622 | Dec 2013 | WO |
2014119366 | Aug 2014 | WO |
Entry |
---|
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002. |
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>. |
“Elastic Averaging in Flexture Mechnisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechnical Engineers (ASME), Sep. 2006. |
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechnical Engineering, Dec. 2007. |
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004. |
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. DeVita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Contress (France), Jun. 2007. |
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010. |
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall. |
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson. |
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Stev. |
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo. |
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E. Morris, Edward D. Groninger, and Raymond J. Chess. |
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall. |
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs. |
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo. |
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace. |
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee. |
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment,” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Law. |
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris, Jennifer P. Lawall and Paul B. Stambaugh. |
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips. |
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall. |
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan. |
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris. |
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli. |
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im. |
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli. |
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander. |
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall. |
Chine Office Action for Application No. 201510195884.5 dated Oct. 28, 2016; 6 pages. |
Rojas, F.E., et al., “Kinematic Coupling for Precision Fixturing & Assembly” MIT Precision Engineering Research Group, Apr. 2013; 24 pgs. |
Slocum, A.H., et al., “Kinematic and Elastically Averaged Joints: Connecting the Past, Present and Future” International Symposium on Ultraprecision Engineering and Nanotechnology, Tokyo, Japan, Mar. 13, 2013; 4 pgs. |
Willoughby, P., “Elastically Averaged Precision Alignment”, Degree of Doctor of Philosophy in Mechanical Engineering Dissertation, Massachusetts Institute of Technology, 2005; 158 pgs. |
Number | Date | Country | |
---|---|---|---|
20150308538 A1 | Oct 2015 | US |