System for elastically averaging assembly of components

Information

  • Patent Grant
  • 9657807
  • Patent Number
    9,657,807
  • Date Filed
    Wednesday, April 23, 2014
    10 years ago
  • Date Issued
    Tuesday, May 23, 2017
    7 years ago
Abstract
An elastic averaging system for mated components comprises an inner panel and an outer panel disposed in a spaced configuration. An elastically deformable stand is fixed to and extends from the first panel towards the second panel. The elastically deformable stand comprises a side wall that forms a partial enclosure having a closure surface defining a top surface that faces the outer panel. A flexible wing extends outwardly from the sidewall. A receiver member extends outwardly from the outer panel towards the corresponding inner panel and comprises side walls extending forming a partial enclosure that is configured to receive the elastically deformable stand. The elastically deformable stand is configured to elastically deform as said stand enters the partial enclosure of the receiver member and moves toward a fully engaged position.
Description
FIELD OF THE INVENTION

The invention relates to matable components and, more particularly, to an assembly for elastically spacing mated components.


BACKGROUND

Components which are to be mated together in a manufacturing process may be subject to positional variation based on the mating arrangements between the components. One common arrangement includes components mutually located with respect to each other by 2-way and/or 4-way male alignment features; typically undersized structures which are received into corresponding oversized female alignment features such as apertures in the form of openings and/or slots. Alternatively, double-sided tape, adhesives or welding processes may be employed to mate parts. Regardless of the precise mating arrangement, there may be a clearance between at least a portion of the alignment features which is predetermined to match anticipated size and positional variation tolerances of the mating features that result from manufacturing (or fabrication) variances. The occurrence of significant positional variation between the mated components is possible, which may contribute to the presence of undesirably large and varying gaps and otherwise poor fit. The clearance between the aligning and attaching features may lead to relative motion between mated components.


Accordingly, the art of alignment systems can be enhanced by providing an alignment and retention system or mechanism that can ensure precise two-way, four-way or six-way alignment and fastening of two or more components, with at least one being flexible, via elastic averaging of a plurality elastically deformable alignment and retention elements disposed in mating engagement with a plurality of corresponding alignment features.


SUMMARY OF THE INVENTION

In an exemplary embodiment an elastic averaging system for mated components comprises a first, inner panel; a second, outer panel disposed in a mated, spaced configuration from said first, inner panel; and an elastically deformable stand, fixed to and extending outwardly from an inner surface of the first, inner panel towards a corresponding inner surface of the second, outer panel. The elastically deformable stand comprises a side wall extending from the inner surface of the first, inner panel outwardly to form a partial enclosure; a closure surface extending substantially parallel to the inner surface of the first, inner panel and closes said partial enclosure to thereby define a top surface that faces the inner surface of the second, outer panel; and a flexible retaining wing integral with and extending outwardly from the sidewall. A receiver member is fixed to and extends outwardly from an inner surface of the second, outer panel towards the corresponding inner surface of the first, inner panel, and comprises side walls extending from the inner surface of the second, outer panel outwardly to form a partial enclosure configured to receive the elastically deformable stand. The elastically deformable stand is configured to elastically deform as said stand enters the partial enclosure of the receiver member and moves toward a fully engaged position


In another exemplary embodiment an elastic averaging system for mated components comprises a first, inner panel; a second, outer panel disposed in a mated, spaced configuration from said first, inner panel; a third panel disposed between the first, inner panel and the second, outer panel and an elastically deformable stand, fixed to and extending outwardly from an inner surface of the first, inner panel towards a corresponding inner surface of the second, outer panel. The elastically deformable stand comprises a side wall extending from the inner surface of the first, inner panel outwardly to form a partial enclosure; a closure surface extending substantially parallel to the inner surface of the first, inner panel and closes said partial enclosure to thereby define a closure surface that faces the inner surface of the second, outer panel; a flexible retaining wing integral with, and extending outwardly from, the sidewall; an opening in said closure surface configured to receive a retaining member and a retaining member configured for assembly into said opening and extending into said partial enclosure. An opening in said third panel corresponds positionally to the elastically deformable stand and is configured to accommodate passage of a portion of the elastically deformable stand therethrough. An opening in said second, outer panel is configured to receive the retaining member when the first, inner panel and the second, outer panel are brought into operable engagement with one another wherein, in the fully engaged position, the third panel deforms the flexible retaining wings which operate to exert a retaining force between the elastically deformable stand and the third panel to maintain a spaced configuration between the three panels.


In yet another embodiment, an elastic averaging system for mated components comprises a first panel; a second panel disposed in spaced configuration from said first panel; and an elastically deformable stand fixed to and extending from the first panel towards the second panel; the elastically deformable stand comprising a flexible wing extending outwardly from the sidewall. A receiver member extends outwardly from the second panel towards the first panel and comprises side walls that form a partial enclosure configured to receive the elastically deformable stand and the elastically deformable stand is configured to elastically deform as said stand enters the partial enclosure of the receiver member and moves toward a fully engaged position.


The above features and advantages and other features and advantages of the invention are readily apparent from the following detailed description of the invention when taken in connection with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following detailed description of embodiments, the detailed description referring to the drawings in which:



FIG. 1 is a perspective view of portion of an elastic averaging system embodying features of the invention;



FIG. 2 is a perspective view of another portion of an elastic averaging system embodying features of the invention;



FIG. 3 is a front view of the components illustrated in FIGS. 1 and 2 prior to assembly;



FIG. 4 is a front view of the components illustrated in FIGS. 1 and 2 following assembly;



FIG. 5 is a another front view of the elastic averaging system embodying features of the invention; and



FIG. 6 is a front view of another embodiment of the elastic averaging system illustrated in FIGS. 1 through 4.





DESCRIPTION OF THE EMBODIMENTS

The following description is merely exemplary in nature and is not intended to limit the present disclosure, its application or uses. For example, the embodiments shown comprise vehicle components but the alignment system may be used with any suitable components to provide elastic averaging for precision location and alignment of all manner of mating components and component applications, including many industrial, consumer product (e.g., consumer electronics, various appliances and the like), transportation, energy and aerospace applications, and particularly including many other types of vehicular components and applications, such as various interior, exterior and under hood vehicular components and applications. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.


As used herein, the term “elastically deformable” refers to components, or portions of components, including component features, comprising materials having a generally elastic deformation characteristic, wherein the material is configured to undergo a resiliently reversible change in its shape, size, or both, in response to application of a force. The force causing the resiliently reversible or elastic deformation of the material may include a tensile, compressive, shear, bending or torsional force, or various combinations of these forces. The elastically deformable materials may exhibit linear elastic deformation, for example that described according to Hooke's law, or non-linear elastic deformation.


Elastic averaging provides elastic deformation of the interface(s) between mated components, wherein the average deformation provides a precise alignment, the manufacturing positional variance being minimized to Xmin, defined by Xmin=X/√N, wherein X is the manufacturing positional variance of the locating features of the mated components and N is the number of features inserted. To obtain elastic averaging, an elastically deformable component is configured to have at least one feature and its contact surface(s) that is over-constrained and provides an interference fit with a mating feature of another component and its contact surface(s). The over-constrained condition and interference fit resiliently reversibly (elastically) deforms at least one of the at least one feature or the mating feature, or both features. The resiliently reversible nature of these features of the components allows repeatable insertion and withdrawal of the components that facilitates their assembly and disassembly. In some embodiments, the elastically deformable component configured to have the at least one feature and associated mating feature disclosed herein may require more than one of such features, depending on the requirements of a particular embodiment. Positional variance of the components may result in varying forces being applied over regions of the contact surfaces that are over-constrained and engaged during insertion of the component in an interference condition. It is to be appreciated that a single inserted component may be elastically averaged with respect to a length of the perimeter of the component. The principles of elastic averaging are described in detail in commonly owned, co-pending U.S. patent application Ser. No. 13/187,675, now U.S. Publication No. U.S. 2013-0019455, the disclosure of which is incorporated by reference herein in its entirety. The embodiments disclosed above provide the ability to convert an existing component that is not compatible with the above-described elastic averaging principles, or that would be further aided with the inclusion of an elastically averaged alignment and retention system as herein disclosed, to an assembly that does facilitate elastic averaging and the benefits associated therewith.


Any suitable elastically deformable material may be used for the mating components and alignment features disclosed herein and discussed further below, particularly those materials that are elastically deformable when formed into the features described herein. This includes various metals, polymers, ceramics, inorganic materials or glasses, or composites of any of the aforementioned materials, or any other combinations thereof suitable for a purpose disclosed herein. Many composite materials are envisioned, including various filled polymers, including glass, ceramic, metal and inorganic material filled polymers, particularly glass, metal, ceramic, inorganic or carbon fiber filled polymers. Any suitable filler morphology may be employed, including all shapes and sizes of particulates or fibers. More particularly any suitable type of fiber may be used, including continuous and discontinuous fibers, woven and unwoven cloths, felts or tows, or a combination thereof. Any suitable metal may be used, including various grades and alloys of steel, cast iron, aluminum, magnesium or titanium, or composites thereof, or any other combinations thereof. Polymers may include both thermoplastic polymers or thermoset polymers, or composites thereof, or any other combinations thereof, including a wide variety of co-polymers and polymer blends. In one embodiment, a preferred plastic material is one having elastic properties so as to deform elastically without fracture, as for example, a material comprising an acrylonitrile butadiene styrene (ABS) polymer, and more particularly a polycarbonate ABS polymer blend (PC/ABS). The material may be in any form and formed or manufactured by any suitable process, including stamped or formed metal, composite or other sheets, forgings, extruded parts, pressed parts, castings, or molded parts and the like, to include the deformable features described herein. The elastically deformable alignment features and associated component may be formed in any suitable manner. For example, the elastically deformable alignment features and the associated component may be integrally formed, or they may be formed entirely separately and subsequently attached together. When integrally formed, they may be formed as a single part from a plastic injection molding machine, for example. When formed separately, they may be formed from different materials to provide a predetermined elastic response characteristic, for example. The material, or materials, may be selected to provide a predetermined elastic response characteristic of any or all of the elastically deformable alignment features, the associated component, or the mating component. The predetermined elastic response characteristic may include, for example, a predetermined elastic modulus.


As used herein, the term vehicle is not limited to just an automobile, truck, van or sport utility vehicle, but includes any self-propelled, towed, or movable conveyance suitable for transporting or supporting a burden.


In accordance with an exemplary embodiment of the invention, and referring to FIGS. 1 and 2, an elastic averaging alignment system 10 for the assembly of components is illustrated. The elastic averaging system comprises matable components such as a first inner panel 12 and a second outer panel 14 that may be disposed in a mated, spaced configuration with respect to each other. In an exemplary embodiment, the elastic averaging system 10 may be employed in an automotive application and comprises vehicle interior trim such as wall or door inner and outer panels, for example.


In the exemplary embodiment, the first, inner panel 12 is operatively couple to, and spaced from the second, outer panel 14 using an elastically deformable stand 16 (which may be referred to as a “dog house”) that is fixed to and extends outwardly from an inner surface 18 of the first, inner panel 12 towards a corresponding inner surface 20 of the second, outer panel 14 when the two panels are brought into an assembly position relative to one another, FIG. 3. Following assembly of the first, inner panel 12 and the second, outer panel 14 the inner surfaces 18 and 20 will be positioned in a spaced, predetermined position relative to one another that is facilitated, in part, by the elastically deformable stand 16.


In an embodiment, the elastically deformable stand 16 is integrally formed with, or operatively coupled to, the inner surface 18 of the first, inner panel 12. The stand 16 may be constructed or formed of a material that is the same as that used in the construction of the first, inner panel 12 or it may be formed of a different material having properties that are selected for specific performance characteristics, to be described herein. The elastically deformable stand 16 may include one or more side walls 22 extending from the inner surface 18 outwardly to form a partial enclosure 24. In the embodiment shown, the enclosure 24 is defined by a single curving sidewall 22 but may also comprise several walls defining a “box” shaped enclosure or any other enclosure that suits the particular application. A closure surface 26 extends substantially parallel to the inner surface 18 and closes the partial enclosure 24 defined by the curving sidewall 22 thereby defining a surface that faces the inner surface 20 of the second, outer panel 14. As disclosed, the elastically deformable stand 16 having sidewall(s) 22 and closure surface 26 resembles the aptly named “dog house”.


In an embodiment, the closure surface 26 may include an opening 30 that is defined by wall 32. The opening is configured to receive a retaining member 28, to be described herein, that may be attached to the inner surface 20 of the second, outer panel 14 when the first and second panels 12, 14 are brought together. An insertion slot 34 extends from the opening 30 to a front edge 36 of the closure surface 26 to provide an easy, sliding insertion of retaining member 28 into place in the opening 30. Tapered shoulders 38 may be formed at the interface of the insertion slot 34 and the front edge 36 to allow for ease of insertion of the retaining member 28 into the slot during assembly therein.


In an embodiment, openings 42, FIG. 3, may be located in the sidewall(s) 22 of the elastically deformable stand 16. The openings 42 may comprise any number of configurations and, in the embodiment illustrated in the figures, are longitudinally extending slots that extend along the rearward wall portion 44 from a location near or adjacent to the inner surface 18 of the first, inner panel 12 to a location near or adjacent to the closure surface 26. The openings 42 may be of any suitable number and may be placed in any suitable location on the sidewall(s) 22. In addition, and in an embodiment, one or more flexible retaining wings 50 are integral with, and extend outwardly from, the sidewall(s) 22 of the elastically deformable stand 16. The flexible retaining wings 50 may comprise any number of suitable configurations and, in the format illustrated, extend from a location near or adjacent to the closure surface 26 downward and outwardly at an angle “α” to terminate at inner surface 18 of the first, inner panel 12. In an embodiment the angle “α” ranges from 10 degrees to 45 degrees. In an embodiment, a slotted opening 52 may extend into the retaining wing 50 from an outer edge 54 and is operable to increase the flexibility of the wing 50, as will be described herein.


Turning now to FIG. 2, with continuing reference to FIGS. 1 and 3, a receiver member 58 is fixed to, and extends outwardly from, inner surface 20 of the second, outer panel 14 towards the corresponding inner surface 18 of the first, inner panel 12 when the two panels are brought into an assembly position relative to one another. In an embodiment, the receiver member 58 is integrally formed with, or operatively coupled to, the inner surface 20 of the second, outer panel 14. The receiver member may be constructed or formed of a material that is the same as that used in the construction of the second, outer panel 14 or it may be formed of a different material with specific properties that will be described herein. The receiver member 58 may include one or more side walls 60 extending from the inner surface 20 outwardly to form a partial enclosure 62 that is configured to receive the elastically deformable stand 16 when the first, inner panel 12 and the second, outer panel 14 are brought into operable engagement with one another, as illustrated in FIG. 4. In the embodiment shown, the partial enclosure 62 is defined by a single curving sidewall 60 but may comprise several walls defining a “box” shaped enclosure or any other enclosure that suits a particular application. In an embodiment the inner surface 20 may include an opening 64 that is defined by wall 66 and is located within the partial enclosure 62. The opening is configured to receive the retaining member 28, attached to and extending from the elastically deformable stand 16, when the first, inner panel 12 and the second, outer panel 14 are fully engaged with one another.


Assembly of the first inner panel 12 and the second, outer panel 14 is facilitated as illustrated in FIGS. 3 and 4. In FIG. 3 the two panels are brought into face to face alignment such that the inner face 18 of first, inner panel 12 is facing inner surface 20 of second outer panel 14. One or typically more than one elastically deformable stands 16 are disposed at locations about the inner surface of the first, inner panel 12 opposite corresponding receiver members 58 that are similarly located on the inner surface of the second, outer panel 14. As the panels 12, 14 are brought together, as shown by the arrows in FIG. 3; each elastically deformable stand 16 enters the partial enclosure 62 of a corresponding receiver member 58. As the stand 16 moves inwardly towards the inner surface 20 of the second outer panel, FIG. 4, the ramped surfaces 54 of the flexible retaining wings 50 engage the inner surface 68 of the side walls 60 to initiate a deformation of the flexible retaining wings between the side walls of the receiver member and the sidewall 22 of the elastically deformable stand 16. The deformation of the flexible retaining wings 50 will continue to increase as the panels 12 and 14 are brought together until the closure surface 26 contacts the inner surface 20 of the second outer panel 14 in a fully engaged position. The deformation of the flexible retaining wings 50 exerts a retaining force between the components 16, 58 that is operable to resist separation once assembled.


In an embodiment, and also illustrated in FIG. 4, the side walls 22 of elastically deformable stand 16 may also be configured to deform during insertion of the stand into the receiver member 58. In such applications the materials chosen to construct the side walls 22, as well as the number and the placement of the openings 42, are such that a desired deformation and resulting retaining force between the components 16, 58, operates to resist separation of the components once assembled. As illustrated in FIGS. 1-4, retaining member 28 may be assembled into opening 30 in elastically deformable stand 16. As the first inner panel 12 is brought into engagement with the second, outer panel 14, the retaining member engages opening 64 in the inner surface 20. Such engagement removably secures the two components together. The retaining member 28 may comprise a series of axially spaced flexible friction members 29 extending outwardly therefrom. The flexible friction members 29 bend as the retaining member 28 is inserted into the opening 64 and subsequently exert a retaining force that resists removal therefrom.


Referring now to FIGS. 4 and 5, when one or more elastic averaging systems 10 are utilized to assemble components such as first, inner panel 12 and second, outer panel 14 the flexibility of the flexible retaining wings 50 as well as the compressibility of the sidewalls 22 of the elastically deformable stand 16 will operate to account for, or elastically average, tolerance differences that may occur as a result of normal part build. Such tolerance differences are adjusted for by the flexible components of the elastically deformable stand 16 and associated flexible retaining wings 50 without allowing for gaps between the mating component parts, such as the receiver member 58, thereby assuring a secure, noise-free assembly.


Referring to FIG. 6, an additional embodiment of the invention is illustrated. In the illustration, like numbers are used where they are useful to refer to like descriptions already provided herein. An elastic averaging system 10 for the assembly of components comprises matable components such as a first inner panel 12 and a second outer panel 14 that may be disposed in a mated, spaced configuration with respect to each other. Additionally, a third panel 80, such as a door inner liner used in automotive door applications to seal inner components (trim, electronics, etc.) against water and other elements, may be disposed between the two panels 12, 14, respectively.


In the exemplary embodiment, the first, inner panel 12 is operatively coupled to, and spaced from, the second, outer panel 14 using the elastically deformable stand 16 that is fixed to and extends outwardly from an inner surface 18 of the first, inner panel 12 towards a corresponding inner surface 20 of the second, outer panel 14 when the two panels are brought into an assembly position relative to one another. The elastically deformable stand 16 may include one or more side walls 22 extending from the inner surface 18 outwardly to form a partial enclosure 24. A closure surface 26 extends substantially parallel to the inner surface 18 and closes the partial enclosure 24 defining a closure or “stop” surface that faces the inner surface 20 of the second, outer panel 14. In an embodiment, the closure surface 26 may include an opening 30 that is defined by wall 32. The opening is configured to receive a retaining member 28 that may be attached to closure surface 26. In an embodiment, openings 42 may be located in the sidewall(s) 22 of the elastically deformable stand 16. The openings 42 may comprise any number of configurations and, in the embodiment illustrated, are longitudinally extending slots. In addition, and in an embodiment, flexible retaining wings 50 are integral with, and extend outwardly from, the sidewall(s) 22 of the elastically deformable stand 16. The flexible retaining wings 50 may comprise any number of suitable configurations and, in the format illustrated, extend from a location near or adjacent to the closure surface 26 to terminate at inner surface 18 of the first, inner panel 12. In an embodiment, a slotted opening 52 may extend into the retaining wing 50 from an outer edge 54 and is operable to increase the flexibility of the wing 50.


In an embodiment, third panel 80 comprises an opening 82 corresponding positionally to the elastically deformable stand 16. In the case of multiple stands 16, multiple openings 82 will be correspondingly located in the third panel 80 to accommodate passage of a portion of the stand therethrough.


In an embodiment the inner surface 20 of the second, outer panel 14 may include an opening 64 configured to receive the retaining member 28 attached to, and extending from, the elastically deformable stand 16 when the first, inner panel 12 and the second, outer panel 14 are brought into a fully engaged position with respect to one another. In the case of multiple stands 16, multiple openings 64 will be correspondingly located in the second panel 20 to accommodate passage of a portion of the retaining member therethrough.


Assembly of the first inner panel 12, the second, outer panel 14 with the third panel 80 therebetween is facilitated when the three panels are brought into face to face alignment such that inner face 18 of first, inner panel 12 is facing inner surface 20 of second outer panel 14 with the third panel 80 disposed therebetween. Elastically deformable stands 16 are disposed at locations about the inner surface of the first, inner panel 12. As the panels 12, 80 and 14 are brought together each elastically deformable stand 16 passes through a corresponding opening 82 of the third panel 80 and subsequently reaches a fully engaged position, as the retaining member 28 enters opening 64 and closure surface 26 engages inner surface 20 of second, outer panel 14.


As the stand 16 moves inwardly towards the inner surface 20 of the second outer panel, the ramped surface 54 of the flexible retaining wings 50 engage the third pane 180 to initiate a deformation of the flexible retaining wings. The deformation of the flexible retaining wings will continue to increase as the panels 12 and 14 are brought together and will exert a retaining force between the elastically deformable stand and the third panel to maintain the spaced configuration between the three panels.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed, but that the invention will include all embodiments falling within the scope of the application.

Claims
  • 1. An elastic averaging system for mated components comprising: a first inner panel having an inner surface;a second outer panel disposed in a mated, spaced configuration from said first, inner panel, the second outer panel having an inner surface;a stand, fixed to and extending outwardly from the inner surface of the first inner panel towards the inner surface of the second outer panel, the stand comprising:a side wall extending from the inner surface of the first inner panel outwardly to form a partial enclosure;a closure surface extending substantially parallel to the inner surface of the first inner panel and closing said partial enclosure to thereby define a closure surface that faces the inner surface of the second outer panel;a flexible retaining wing integral with and extending outwardly from the sidewall, a slotted opening extending into the retaining wing from an outer edge to increase the flexibility of the wing;a receiver member fixed to and extending outwardly from the inner surface of the second outer panel towards the corresponding inner surface of the first inner panel, comprising side walls extending from the inner surface of the second outer panel outwardly to form a partial enclosure and configured to receive the stand, wherein the retaining wing elastically deforms against, and applies a retaining force to the side wall of the receiver member as said stand enters the partial enclosure of the receiver member and moves toward a fully engaged position.
  • 2. The elastic averaging system of claim 1, wherein the flexible retaining wing extends from a location near or adjacent to the closure surface downward and outwardly at an angle α to terminate at the inner surface of the first inner panel.
  • 3. The elastic averaging system of claim 1, wherein said side wall of said stand elastically deforms as said stand enters the partial enclosure of the receiver member.
  • 4. The elastic averaging system of claim 3, further comprising openings in the side wall of said stand configured to establish a desired deformation.
  • 5. The elastic averaging system of claim 4, wherein the openings comprise longitudinally extending slots that extend along a rearward wall portion from a location adjacent to the inner surface of the first inner panel a to a location adjacent to the closure surface.
  • 6. The elastic averaging system of claim 1, wherein the fully engaged condition provides an amount of deformation that is averaged in aggregate.
  • 7. The elastic averaging system of claim 1, comprising more than one stand disposed at locations about the inner surface of the first inner panel opposite corresponding receiver members similarly located on the inner surface of the second outer panel.
  • 8. The elastic averaging system of claim 7, wherein the fully engaged condition provides an amount of deformation that is averaged in aggregate.
  • 9. The elastic averaging system of claim 1, further comprising: an opening extending through said closure surface of said elastically deformable stand;a retaining member configured for assembly into said opening and extending into said partial enclosure of said receiver, comprising axially spaced flexible friction members extending outwardly therefrom; andan opening located within the partial enclosure of said receiver member configured to receive the retaining member when the first inner panel and the second outer panel are brought into operable engagement with one another.
  • 10. An elastic averaging system for mated components comprising: a first inner panel;a second outer panel disposed in a mated, spaced configuration from said first inner panel;a third panel disposed between the first inner panel and the second outer panel;a stand, fixed to and extending outwardly from an inner surface of the first inner panel towards a corresponding inner surface of the second outer panel, comprising:a side wall extending from the inner surface of the first inner panel outwardly to form a partial enclosure;a closure surface extending substantially parallel to the inner surface of the first inner panel and closing said partial enclosure to thereby define a closure surface that faces the inner surface of the second, outer panel;a flexible retaining wing integral with, and extending outwardly from, the side wall, a slotted opening extending into the retaining wing from an outer edge to increase the flexibility of the wing;an opening in said closure surface configured to receive a retaining member; anda retaining member configured for assembly into said opening and extending into said partial enclosure, comprising axially spaced flexible friction members extending outwardly therefrom;an opening in said third panel corresponding positionally to the stand and configured to accommodate passage of a portion of the stand therethrough;an opening in said second outer panel configured to receive the retaining member when the first inner panel and the second outer panel are brought into operable engagement with one another wherein, in the fully engaged position, the third panel deforms the flexible retaining wing which operates to exert a retaining force between the stand and the third panel to maintain a spaced configuration between the three panels.
  • 11. The elastic averaging system of claim 10, wherein the first inner panel comprises a door inner panel, the second outer panel comprises a door outer panel and the third panel comprises a door inner liner.
  • 12. The elastic averaging system of claim 10, wherein the fully engaged condition provides an amount of deformation that is averaged in aggregate.
  • 13. The elastic averaging system of claim 10, comprising more than one stand disposed at locations about the inner surface of the first inner panel opposite corresponding second outer panel openings and third panel openings.
  • 14. The elastic averaging system of claim 13, wherein the fully engaged condition provides an amount of deformation that is averaged in aggregate.
  • 15. An elastic averaging system for mated components comprising: a first panel having an inner surface;a second panel disposed in spaced configuration from said first panel, the second panel having an inner surface;a stand fixed to and extending from the first panel towards the second panel, the stand comprising a side wall extending from the inner surface of the first panel, and a flexible retaining wing extending outwardly from the side wall, a slotted opening extending into the retaining wing from an outer edge to increase the flexibility of the wing;a receiver member extending outwardly from the inner surface of the second panel towards the first panel and comprising side walls that form a partial enclosure configured to receive the stand;wherein the flexible retaining wing elastically deforms as said stand enters the partial enclosure of the receiver member and applies a retaining force to the partial enclosure of the receiver member as the stand moves toward a fully engaged position.
  • 16. The elastic averaging system of claim 15, wherein the fully engaged condition provides an amount of deformation that is averaged in aggregate.
US Referenced Citations (482)
Number Name Date Kind
1219398 Huntsman Mar 1917 A
1261036 Kerns Apr 1918 A
1556233 Maise Oct 1925 A
1929848 Neely Oct 1933 A
1968168 Place Jul 1934 A
2058319 Jones Oct 1936 A
2164634 Barrett Jul 1939 A
2267558 Birger et al. Dec 1941 A
2275103 Gooch et al. Mar 1942 A
2275900 Hall Mar 1942 A
2385180 Allen Sep 1945 A
2560530 Burdick Jul 1951 A
2612139 Collins Sep 1952 A
2693014 Monahan Nov 1954 A
2707607 O'Connor May 1955 A
2788046 Joseph Apr 1957 A
2940149 O'Connor Jun 1960 A
2946612 Ahlgren Jul 1960 A
2958230 Haroldson Nov 1960 A
3005282 Christiansen Oct 1961 A
3014563 Bratton Dec 1961 A
3050160 Chesser Aug 1962 A
3089269 McKiernan May 1963 A
3152376 Boser Oct 1964 A
3169439 Rapata Feb 1965 A
3188731 Sweeney Jun 1965 A
3230592 Hosea Jan 1966 A
3233358 Dehm Feb 1966 A
3248995 Meyer May 1966 A
3291495 Liebig Dec 1966 A
3310929 Garvey Mar 1967 A
3413752 Perry Dec 1968 A
3473283 Meyer Oct 1969 A
3551963 Long Jan 1971 A
3580628 Rantala May 1971 A
3643968 Horvath Feb 1972 A
3669484 Bernitz Jun 1972 A
3733655 Kolibar May 1973 A
3800369 Nikolits Apr 1974 A
3841044 Brown Oct 1974 A
3841682 Church Oct 1974 A
3842565 Brown et al. Oct 1974 A
3845961 Byrd, III Nov 1974 A
3847492 Kennicutt et al. Nov 1974 A
3860209 Strecker Jan 1975 A
3868804 Tantlinger Mar 1975 A
3895408 Leingang Jul 1975 A
3897967 Barenyl Aug 1975 A
3967351 Rosenberg et al. Jul 1976 A
3972550 Boughton Aug 1976 A
3988808 Poe et al. Nov 1976 A
4035874 Liljendahl Jul 1977 A
4039215 Minhinnick Aug 1977 A
4042307 Jarvis Aug 1977 A
4043585 Yamanaka Aug 1977 A
4158511 Herbenar Jun 1979 A
4169297 Weihrauch Oct 1979 A
4193588 Doneaux Mar 1980 A
4212415 Neely Jul 1980 A
4237573 Weihrauch Dec 1980 A
4267680 Delattre May 1981 A
4300851 Thelander Nov 1981 A
4313609 Clements Feb 1982 A
4314417 Cain Feb 1982 A
4318208 Borja Mar 1982 A
4325574 Umemoto et al. Apr 1982 A
4358166 Antoine Nov 1982 A
4363839 Watanabe et al. Dec 1982 A
4364150 Remington Dec 1982 A
4384803 Cachia May 1983 A
4394853 Lopez-Crevillen et al. Jul 1983 A
4407413 Jansson Oct 1983 A
4477142 Cooper Oct 1984 A
4479737 Bergh et al. Oct 1984 A
4527760 Salacuse Jul 1985 A
4564232 Fujimori et al. Jan 1986 A
4591203 Furman May 1986 A
4599768 Doyle Jul 1986 A
4616951 Maatela Oct 1986 A
4648649 Beal Mar 1987 A
4654760 Matheson et al. Mar 1987 A
4672732 Ramspacher Jun 1987 A
4715095 Takahashi Dec 1987 A
4745656 Revlett May 1988 A
4746008 Heverly et al. May 1988 A
4778282 Borchardt et al. Oct 1988 A
4805272 Yamaguchi Feb 1989 A
4807335 Candea Feb 1989 A
4819309 Behymer Apr 1989 A
4843975 Welsch Jul 1989 A
4843976 Pigott et al. Jul 1989 A
4865502 Maresch Sep 1989 A
4881764 Takahashi et al. Nov 1989 A
4907582 Meyerrose Mar 1990 A
4909929 Tabor Mar 1990 A
4917426 Copp Apr 1990 A
4977648 Eckerud Dec 1990 A
5005265 Muller Apr 1991 A
5007759 Scherer Apr 1991 A
5039267 Wollar Aug 1991 A
5094580 Abe Mar 1992 A
5100015 Vanderstuyf Mar 1992 A
5111557 Baum May 1992 A
5165749 Sheppard Nov 1992 A
5170985 Killworth et al. Dec 1992 A
5178433 Wagner Jan 1993 A
5180219 Geddie Jan 1993 A
5186517 Gilmore et al. Feb 1993 A
5212853 Kaneko May 1993 A
5234122 Cherng Aug 1993 A
5250001 Hansen Oct 1993 A
5309663 Shirley May 1994 A
5333965 Mailey Aug 1994 A
5339491 Sims Aug 1994 A
5348356 Moulton Sep 1994 A
5368427 Pfaffinger Nov 1994 A
5368797 Quentin et al. Nov 1994 A
5397206 Sihon Mar 1995 A
5407310 Kassouni Apr 1995 A
5446965 Makridis Sep 1995 A
5507610 Benedetti et al. Apr 1996 A
5513603 Ang et al. May 1996 A
5524786 Skudlarek Jun 1996 A
5538079 Pawlick Jul 1996 A
5566840 Waldner Oct 1996 A
5575601 Skufca Nov 1996 A
5577301 Demaagd Nov 1996 A
5577779 Dangel Nov 1996 A
5580204 Hultman Dec 1996 A
5586372 Eguchi et al. Dec 1996 A
5593265 Kizer Jan 1997 A
5629823 Mizuta May 1997 A
5634757 Schanz Jun 1997 A
5639140 Labrash Jun 1997 A
5657516 Berg et al. Aug 1997 A
5657893 Hitchings Aug 1997 A
5666749 Waters Sep 1997 A
5670013 Huang et al. Sep 1997 A
5671513 Kawahara Sep 1997 A
5702779 Siebelink, Jr. et al. Dec 1997 A
5704753 Ueno Jan 1998 A
5706559 Oliver Jan 1998 A
5736221 Hardigg et al. Apr 1998 A
5765942 Shirai et al. Jun 1998 A
5770320 Hughes et al. Jun 1998 A
5775860 Meyer Jul 1998 A
5797170 Akeno Aug 1998 A
5797714 Oddenino Aug 1998 A
5799930 Willett Sep 1998 A
5803646 Weihrauch Sep 1998 A
5806915 Takabatake Sep 1998 A
5820292 Fremstad Oct 1998 A
5846631 Nowosiadly Dec 1998 A
5865500 Sanada Feb 1999 A
5915678 Slocum et al. Jun 1999 A
5920200 Pendse Jul 1999 A
5929382 Moore Jul 1999 A
5931514 Chung Aug 1999 A
5934729 Baack Aug 1999 A
5941673 Hayakawa et al. Aug 1999 A
5988678 Nakamura Nov 1999 A
6006941 Hitchings Dec 1999 A
6010306 Bucher Jan 2000 A
6036198 Kramer Mar 2000 A
6062763 Sirois et al. May 2000 A
6079083 Akashi Jun 2000 A
6095594 Riddle et al. Aug 2000 A
6103987 Nordquist Aug 2000 A
6109882 Popov Aug 2000 A
6142509 White, Jr. Nov 2000 A
6152436 Sonderegger et al. Nov 2000 A
6164603 Kawai Dec 2000 A
6193430 Culpepper et al. Feb 2001 B1
6199248 Akashi Mar 2001 B1
6202962 Snyder Mar 2001 B1
6254304 Takizawa et al. Jul 2001 B1
6283540 Siebelink, Jr. et al. Sep 2001 B1
6286214 Bean Sep 2001 B1
6289560 Guyot Sep 2001 B1
6299478 Jones et al. Oct 2001 B1
6311960 Pierman et al. Nov 2001 B1
6318585 Asagiri Nov 2001 B1
6336767 Nordquist et al. Jan 2002 B1
6345420 Nabeshima Feb 2002 B1
6351380 Curlee Feb 2002 B1
6354574 Oliver et al. Mar 2002 B1
6354815 Svihla et al. Mar 2002 B1
6378931 Kolluri et al. Apr 2002 B1
6398449 Loh Jun 2002 B1
6478102 Puterbaugh Nov 2002 B1
6484370 Kanie et al. Nov 2002 B2
6485241 Oxford Nov 2002 B1
6498297 Samhammer Dec 2002 B2
6523229 Severson Feb 2003 B2
6523817 Landry, Jr. Feb 2003 B1
6557260 Morris May 2003 B1
6591801 Fonville Jul 2003 B1
6594861 Dimig et al. Jul 2003 B2
6609717 Hinson Aug 2003 B2
6637095 Stumpf et al. Oct 2003 B2
6658698 Chen Dec 2003 B2
6662411 Rubenstein Dec 2003 B2
6668424 Allen Dec 2003 B1
6692016 Yokota Feb 2004 B2
6746172 Culpepper Jun 2004 B2
6757942 Matsui Jul 2004 B2
6799758 Fries Oct 2004 B2
6821091 Lee Nov 2004 B2
6846125 Smith et al. Jan 2005 B2
6857676 Kawaguchi et al. Feb 2005 B2
6857809 Granata Feb 2005 B2
6872053 Bucher Mar 2005 B2
6895651 Li May 2005 B2
6932416 Clauson Aug 2005 B2
6948753 Yoshida et al. Sep 2005 B2
6951349 Yokota Oct 2005 B2
6957939 Wilson Oct 2005 B2
6959954 Brandt et al. Nov 2005 B2
6966601 Matsumoto et al. Nov 2005 B2
6971831 Fattori et al. Dec 2005 B2
7000941 Yokota Feb 2006 B2
7008003 Hirose et al. Mar 2006 B1
7055785 Diggle, III Jun 2006 B1
7055849 Yokota Jun 2006 B2
7059628 Yokota Jun 2006 B2
7073260 Jensen Jul 2006 B2
7089998 Crook Aug 2006 B2
7097198 Yokota Aug 2006 B2
7121611 Hirotani et al. Oct 2006 B2
7144183 Lian et al. Dec 2006 B2
7165310 Murakami et al. Jan 2007 B2
7172210 Yokota Feb 2007 B2
7178855 Catron et al. Feb 2007 B2
7207758 Leon et al. Apr 2007 B2
7234852 Nishizawa et al. Jun 2007 B2
7275296 DiCesare Oct 2007 B2
7275772 Lee Oct 2007 B2
7322500 Maierholzner Jan 2008 B2
7344056 Shelmon et al. Mar 2008 B2
7360964 Tsuya Apr 2008 B2
7369408 Chang May 2008 B2
7493716 Brown Feb 2009 B2
7500440 Chiu Mar 2009 B2
7547061 Horimatsu Jun 2009 B2
7568316 Choby et al. Aug 2009 B2
7591573 Maliar et al. Sep 2009 B2
7614836 Mohiuddin Nov 2009 B2
7672126 Yeh Mar 2010 B2
7677650 Huttenlocher Mar 2010 B2
7727667 Sakurai Jun 2010 B2
7764853 Yi et al. Jul 2010 B2
7793998 Matsui et al. Sep 2010 B2
7802831 Isayama et al. Sep 2010 B2
7803015 Pham Sep 2010 B2
7828372 Ellison Nov 2010 B2
7832693 Moerke et al. Nov 2010 B2
7869003 Van Doren et al. Jan 2011 B2
7883137 Bar Feb 2011 B2
7891926 Jackson, Jr. Feb 2011 B2
7922415 Rudduck et al. Apr 2011 B2
7946684 Drury et al. May 2011 B2
7959214 Salhoff Jun 2011 B2
7971913 Sunahara et al. Jul 2011 B2
8029222 Nitsche Oct 2011 B2
8136819 Yoshitsune et al. Mar 2012 B2
8162375 Gurtatowski et al. Apr 2012 B2
8203843 Chen Jun 2012 B2
8206029 Vaucher et al. Jun 2012 B2
8228640 Woodhead et al. Jul 2012 B2
8249679 Cui Aug 2012 B2
8261581 Cerruti et al. Sep 2012 B2
8263889 Takahashi et al. Sep 2012 B2
8276961 Kwolek Oct 2012 B2
8291553 Moberg Oct 2012 B2
8297137 Dole Oct 2012 B2
8312887 Dunn et al. Nov 2012 B2
8328250 Botten et al. Dec 2012 B2
8371788 Lange Feb 2013 B2
8371789 Takita Feb 2013 B2
8414048 Kwolek Apr 2013 B1
8424173 Shiba Apr 2013 B2
8444199 Takeuchi et al. May 2013 B2
8474214 Dawe Jul 2013 B2
8480186 Wang Jul 2013 B2
8511707 Amamori Aug 2013 B2
8520404 Hamaguchi Aug 2013 B2
8572818 Hofmann Nov 2013 B2
8579141 Tejima Nov 2013 B2
8619504 Wyssbrod Dec 2013 B2
8648264 Masumoto Feb 2014 B2
8656563 Hiramatsu Feb 2014 B2
8677573 Lee Mar 2014 B2
8695201 Morris Apr 2014 B2
8720016 Beaulieu May 2014 B2
8726473 Dole May 2014 B2
8746801 Nakata Jun 2014 B2
8773846 Wang Jul 2014 B2
8811004 Liu Aug 2014 B2
8826499 Tempesta Sep 2014 B2
8833771 Lesnau Sep 2014 B2
8905812 Pai-Chen Dec 2014 B2
8910350 Poulakis Dec 2014 B2
9003891 Frank Apr 2015 B2
9038335 Eck May 2015 B1
9039318 Mantei et al. May 2015 B2
9050690 Hammer et al. Jun 2015 B2
9061403 Colombo et al. Jun 2015 B2
9061715 Morris Jun 2015 B2
9062991 Kanagaraj Jun 2015 B2
9067625 Morris Jun 2015 B2
9194413 Christoph Nov 2015 B2
9302569 Ogino et al. Apr 2016 B2
9303667 Morris et al. Apr 2016 B2
20010016986 Bean Aug 2001 A1
20010030414 Yokota Oct 2001 A1
20010045757 Kanie et al. Nov 2001 A1
20020092598 Jones et al. Jul 2002 A1
20020130239 Ishigami et al. Sep 2002 A1
20030007831 Lian et al. Jan 2003 A1
20030059255 Kirchen Mar 2003 A1
20030082986 Wiens et al. May 2003 A1
20030085618 Rhodes May 2003 A1
20030107202 Tajima et al. Jun 2003 A1
20040016088 Angellotti Jan 2004 A1
20040028503 Charles Feb 2004 A1
20040037637 Lian et al. Feb 2004 A1
20040051221 Sunadome Mar 2004 A1
20040052574 Grubb Mar 2004 A1
20040083583 Bradley May 2004 A1
20040139678 Pervan Jul 2004 A1
20040140651 Yokota Jul 2004 A1
20040262873 Wolf et al. Dec 2004 A1
20050016116 Scherff Jan 2005 A1
20050031946 Kruger et al. Feb 2005 A1
20050042057 Konig et al. Feb 2005 A1
20050054229 Tsuya Mar 2005 A1
20050082449 Kawaguchi et al. Apr 2005 A1
20050109489 Kobayashi May 2005 A1
20050156409 Yokota Jul 2005 A1
20050156410 Yokota Jul 2005 A1
20050156416 Yokota Jul 2005 A1
20050217088 Lin Oct 2005 A1
20060082187 Hernandez et al. Apr 2006 A1
20060092653 Tachiiwa et al. May 2006 A1
20060102214 Clemons May 2006 A1
20060113755 Yokota Jun 2006 A1
20060125286 Horimatsu et al. Jun 2006 A1
20060163902 Engel Jul 2006 A1
20060170242 Forrester et al. Aug 2006 A1
20060202449 Yokota Sep 2006 A1
20060237995 Huttenlocher Oct 2006 A1
20060264076 Chen Nov 2006 A1
20070034636 Fukuo Feb 2007 A1
20070040411 Dauvergne Feb 2007 A1
20070051572 Beri Mar 2007 A1
20070113483 Hernandez May 2007 A1
20070113485 Hernandez May 2007 A1
20070137018 Aigner et al. Jun 2007 A1
20070205627 Ishiguro Sep 2007 A1
20070227942 Hirano Oct 2007 A1
20070251055 Gerner Nov 2007 A1
20070258756 Olshausen Nov 2007 A1
20070274777 Winkler Nov 2007 A1
20080011930 Nagai Jan 2008 A1
20080014508 Van Doren et al. Jan 2008 A1
20080018128 Yamagiwa et al. Jan 2008 A1
20080128346 Bowers Jun 2008 A1
20080196535 Dole Aug 2008 A1
20080260454 Girodo et al. Oct 2008 A1
20090028506 Yi et al. Jan 2009 A1
20090093111 Buchwalter et al. Apr 2009 A1
20090126168 Kobe et al. May 2009 A1
20090134652 Araki May 2009 A1
20090140112 Carnevali Jun 2009 A1
20090141449 Yeh Jun 2009 A1
20090154303 Vaucher et al. Jun 2009 A1
20090174207 Lota Jul 2009 A1
20090211804 Zhou et al. Aug 2009 A1
20090243172 Ting et al. Oct 2009 A1
20090309388 Ellison Dec 2009 A1
20090318069 Konet Dec 2009 A1
20100000156 Salhoff Jan 2010 A1
20100061045 Chen Mar 2010 A1
20100134128 Hobbs Jun 2010 A1
20100147355 Shimizu et al. Jun 2010 A1
20100162537 Shiba Jul 2010 A1
20100232171 Cannon Sep 2010 A1
20100247034 Yi et al. Sep 2010 A1
20100263417 Schoenow Oct 2010 A1
20100270745 Hurlbert et al. Oct 2010 A1
20100307848 Hashimoto Dec 2010 A1
20110012378 Ueno et al. Jan 2011 A1
20110036542 Woicke Feb 2011 A1
20110083392 Timko Apr 2011 A1
20110103884 Shiomoto et al. May 2011 A1
20110119875 Iwasaki May 2011 A1
20110131918 Glynn Jun 2011 A1
20110154645 Morgan Jun 2011 A1
20110183152 Lanham Jul 2011 A1
20110191990 Beaulieu Aug 2011 A1
20110191993 Forrest Aug 2011 A1
20110239418 Huang Oct 2011 A1
20120000291 Christoph Jan 2012 A1
20120000409 Railey Jan 2012 A1
20120020726 Jan Jan 2012 A1
20120073094 Bishop Mar 2012 A1
20120112489 Okimoto May 2012 A1
20120115010 Smith et al. May 2012 A1
20120187812 Gerst Jul 2012 A1
20120240363 Lee Sep 2012 A1
20120301067 Morgan Nov 2012 A1
20120311829 Dickinson Dec 2012 A1
20120321379 Wang et al. Dec 2012 A1
20120324795 Krajenke et al. Dec 2012 A1
20130010413 Kim Jan 2013 A1
20130017038 Kestner et al. Jan 2013 A1
20130019454 Colombo et al. Jan 2013 A1
20130019455 Morris Jan 2013 A1
20130027852 Wang Jan 2013 A1
20130055822 Frank Mar 2013 A1
20130157015 Morris Jun 2013 A1
20130212858 Herzinger et al. Aug 2013 A1
20130269873 Herzinger et al. Oct 2013 A1
20130287992 Morris Oct 2013 A1
20140033493 Morris et al. Feb 2014 A1
20140041176 Morris Feb 2014 A1
20140041185 Morris et al. Feb 2014 A1
20140041199 Morris Feb 2014 A1
20140042704 Polewarczyk Feb 2014 A1
20140047691 Colombo et al. Feb 2014 A1
20140047697 Morris Feb 2014 A1
20140080036 Smith et al. Mar 2014 A1
20140157578 Morris et al. Jun 2014 A1
20140159412 Morris et al. Jun 2014 A1
20140175774 Kansteiner Jun 2014 A1
20140199116 Metten et al. Jul 2014 A1
20140202628 Sreetharan et al. Jul 2014 A1
20140208561 Colombo et al. Jul 2014 A1
20140208572 Colombo et al. Jul 2014 A1
20140220267 Morris et al. Aug 2014 A1
20140260041 Peck Sep 2014 A1
20140264206 Morris Sep 2014 A1
20140292013 Colombo et al. Oct 2014 A1
20140298638 Colombo et al. Oct 2014 A1
20140298640 Morris et al. Oct 2014 A1
20140298962 Morris et al. Oct 2014 A1
20140300130 Morris et al. Oct 2014 A1
20140301103 Colombo et al. Oct 2014 A1
20140301777 Morris et al. Oct 2014 A1
20140301778 Morris et al. Oct 2014 A1
20150043959 Morris Feb 2015 A1
20150056009 Morris Feb 2015 A1
20150069779 Morris et al. Mar 2015 A1
20150086265 Morris Mar 2015 A1
20150093177 Morris Apr 2015 A1
20150093178 Morris Apr 2015 A1
20150093179 Morris et al. Apr 2015 A1
20150098748 Morris et al. Apr 2015 A1
20150115656 Lungershausen Apr 2015 A1
20150135509 Morris et al. May 2015 A1
20150164184 Morris et al. Jun 2015 A1
20150165609 Morris et al. Jun 2015 A1
20150165985 Morris Jun 2015 A1
20150165986 Morris Jun 2015 A1
20150166124 Morris Jun 2015 A1
20150167717 Morris Jun 2015 A1
20150167718 Morris et al. Jun 2015 A1
20150174740 Morris et al. Jun 2015 A1
20150175091 Morris et al. Jun 2015 A1
20150175217 Morris et al. Jun 2015 A1
20150175219 Kiester Jun 2015 A1
20150176759 Morris et al. Jun 2015 A1
20150192160 Gong Jul 2015 A1
20150194650 Morris et al. Jul 2015 A1
20150197970 Morris et al. Jul 2015 A1
20150232130 Colombo Aug 2015 A1
20150232131 Morris et al. Aug 2015 A1
20150274217 Colombo Oct 2015 A1
20150291222 Colombo et al. Oct 2015 A1
20150308534 Smith et al. Oct 2015 A1
20150353028 Courtin et al. Dec 2015 A1
20150375798 Morris et al. Dec 2015 A1
Foreign Referenced Citations (138)
Number Date Country
842302 Sep 1976 BE
1032581 Apr 1989 CN
1036250 Oct 1989 CN
1062629 Jul 1992 CN
2285844 Jul 1998 CN
1205285 Jan 1999 CN
1204744 Jul 1999 CN
1426872 Jul 2003 CN
1496451 May 2004 CN
2661972 Dec 2004 CN
2679409 Feb 2005 CN
1693721 Nov 2005 CN
1774580 May 2006 CN
2872795 Feb 2007 CN
2874103 Feb 2007 CN
1933747 Mar 2007 CN
2888807 Apr 2007 CN
1961157 May 2007 CN
2915389 Jun 2007 CN
101002030 Jul 2007 CN
101005741 Jul 2007 CN
200941716 Aug 2007 CN
200957794 Oct 2007 CN
101250964 Apr 2008 CN
101390022 Mar 2009 CN
201259846 Jun 2009 CN
201310827 Sep 2009 CN
101701595 May 2010 CN
201540513 Aug 2010 CN
101821534 Sep 2010 CN
101821534 Sep 2010 CN
101930253 Dec 2010 CN
201818606 May 2011 CN
201890285 Jul 2011 CN
102144102 Aug 2011 CN
102235402 Nov 2011 CN
202024057 Nov 2011 CN
102313952 Jan 2012 CN
202132326 Feb 2012 CN
102463882 May 2012 CN
102540855 Jul 2012 CN
102756633 Oct 2012 CN
102803753 Nov 2012 CN
202561269 Nov 2012 CN
102817892 Dec 2012 CN
102869891 Jan 2013 CN
102904128 Jan 2013 CN
202686206 Jan 2013 CN
102918315 Feb 2013 CN
202764872 Mar 2013 CN
202987018 Jun 2013 CN
103201525 Jul 2013 CN
103206595 Jul 2013 CN
103206596 Jul 2013 CN
203189459 Sep 2013 CN
203344856 Dec 2013 CN
103591102 Feb 2014 CN
104100609 Oct 2014 CN
203991175 Dec 2014 CN
1220673 Jul 1966 DE
2527023 Dec 1976 DE
2736012 Feb 1978 DE
2703897 Aug 1978 DE
2809746 Sep 1979 DE
3008990 Sep 1980 DE
3711696 Oct 1988 DE
3815927 Nov 1989 DE
3815927 Nov 1989 DE
9109276 Jul 1991 DE
4002443 Aug 1991 DE
4111245 Oct 1991 DE
9201258 Mar 1992 DE
29714892 Oct 1997 DE
29800379 May 1998 DE
69600357 Dec 1998 DE
10003852 Aug 2001 DE
10202644 Jun 2003 DE
10234253 Apr 2004 DE
10333540 Feb 2005 DE
60105817 Feb 2006 DE
202007006175 Aug 2007 DE
102008063920 Sep 2009 DE
102008047464 Apr 2010 DE
102010028323 Nov 2011 DE
102010026218 Jan 2012 DE
102012212101 Jul 2013 DE
102013003028 Mar 2014 DE
0616140 Sep 1994 EP
1243471 Sep 2002 EP
1384536 Jan 2004 EP
1388449 Feb 2004 EP
1452745 Sep 2004 EP
1550818 Jul 2005 EP
2166235 Mar 2010 EP
1369198 Aug 1964 FR
2009941 Feb 1970 FR
2750177 Dec 1997 FR
2942749 Sep 2010 FR
2958696 Oct 2011 FR
155838 Mar 1922 GB
994891 Jun 1965 GB
2175626 Dec 1986 GB
2281950 Mar 1995 GB
2348924 Oct 2000 GB
2496613 Jun 2013 GB
S6054264 Mar 1985 JP
H0861318 Mar 1996 JP
H08200420 Aug 1996 JP
H0942233 Feb 1997 JP
2000010514 Jan 2000 JP
2000192924 Jul 2000 JP
2000287717 Oct 2000 JP
2001141154 May 2001 JP
2003158387 May 2003 JP
2003314515 Nov 2003 JP
2005268004 Sep 2005 JP
2008307938 Dec 2008 JP
2009187789 Aug 2009 JP
2010266519 Nov 2010 JP
2011085174 Apr 2011 JP
2012060791 Mar 2012 JP
2012112533 Jun 2012 JP
2012126421 Jul 2012 JP
20030000251 Jan 2003 KR
100931019 Dec 2009 KR
9602963 Feb 1996 WO
9822739 May 1998 WO
0055517 Mar 2000 WO
0132454 Nov 2001 WO
2004010011 Jan 2004 WO
2007126201 Nov 2007 WO
2008140659 Nov 2008 WO
2010105354 Sep 2010 WO
2011025606 Mar 2011 WO
2011089650 Jul 2011 WO
2013088447 Jun 2013 WO
2013191622 Dec 2013 WO
2014119366 Aug 2014 WO
Non-Patent Literature Citations (54)
Entry
“An Anti Backlash Two-Part Shaft Coupling With Interlocking Elastically Averaged Teeth” by Mahadevan Balasubramaniam, Edmund Golaski, Seung-Kil Son, Krishnan Sriram, and Alexander Slocum, Precision Engineering, V. 26, No. 3, Elsevier Publishing, Jul. 2002.
“Coupling Types—Elastic Averaging.” MIT. Aug. 3, 2012, [online], [retrieved on Nov. 12, 2014]. Retrieved from the Internet <URL:https://web.archive.org/web/20120308055935/http://pergatory.mit.edu/kinematiccouplings/html/about/elastic—averaging.html>.
“Elastic Averaging in Flexture Mechnisms: A Multi-Beam Paralleaogram Flexture Case-Study” by Shorya Awtar and Edip Sevincer, Proceedings of IDETC/CIE 2006, Paper DETC2006-99752, American Society of Mechnical Engineers (ASME), Sep. 2006.
“Passive Alignment of Micro-Fluidic Chips Using the Principle of Elastic Averaging” by Sitanshu Gurung, Thesis, Louisiana State University, Dept. of Mechnical Engineering, Dec. 2007.
“Precision Connector Assembly Using Elastic Averaging” by Patrick J. Willoughby and Alexander H. Slocum, Massachusetts Institute of technology (MIT), Cambridge, MA, American Society for Precision Engineering, 2004.
“The Design of High Precision Parallel Mechnisms Using Binary Actuation and Elastic Averaging: With Application to MRI Cancer Treatment” by L.M. DeVita, J.S. Plante, and S. Dubowsky, 12th IFToMM World Contress (France), Jun. 2007.
Cross-sectional view of a prior art infrared welded assembly of BMW, Munich, Germany. Believed on the market since about Jan. 1, 2010.
U.S. Appl. No. 13/915,132, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Arrangement and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Randy A. Johnson and Jennifer P. Lawall.
U.S. Appl. No. 13/915,177, filed Jun. 11, 2013, entitled “Elastically Deformable Energy Management Assembly and Method of Managing Energy Absorption,” inventors: Steven E. Morris, Jennifer P. Lawall, and Randy Johnson.
U.S. Appl. No. 13/917,005, filed Jun. 13, 2013, entitled “Elastic Attachment Assembly and Method of Reducing Positional Variation and Increasing Stiffness,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/917,074, filed Jun. 13, 2013, entitled “Elastically Deformable Retaining Hook for Components to be Mated Together and Method of Assembling”, inventors: Joel Colombo, Jeffrey L. Konchan, Steven E. Morris, and Stev.
U.S. Appl. No. 13/918,183, filed Jun. 14, 2013, entitled “Elastic Retaining Assembly for Matable Components and Method of Assembling,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/939,503, filed Jul. 11, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Joel Colombo.
U.S. Appl. No. 13/940,912, filed Jul. 12, 2013, entitled “Alignment Arrangement for Mated Components and Method”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/945,231, filed Jul. 18, 2013, entitled “Lobular Elastic Tube Alignment System for Providing Precise Four-Way Alignment of Components”, Inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/954,198, filed Jul. 30, 2013, entitled “Elastic Alignment and Retention System and Method,” inventors: Steven E. Morris, Edward D. Groninger, and Raymond J. Chess.
U.S. Appl. No. 13/966,523, filed Aug. 14, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 13/973,587, filed Aug. 22, 2013, entitled “Elastic Averaging Alignment System and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 13/974,729, filed Aug. 23, 2013, entitled “Elastic Averaging Snap Member Aligning and Fastening System”, inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/012,205, filed Aug. 28, 2013, entitled “Elastically Deformable Alignment Fastener and System,” inventors: Steven E. Morris, Marc J. Tahnoose, Michael E. McGuire and Jennifer P. Lawall.
U.S. Appl. No. 14/021,282, filed Sep. 9, 2013, entitled “Elastic Tube Alignment and Fastening System for Providing Precise Alignment and Fastening of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/031,647, filed Sep. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris, Joel Colombo, Jennifer P. Lawall, Jeffrey L. Konchan, and Steve J. Briggs.
U.S. Appl. No. 14/038,241, filed Sep. 26, 2013, entitled “Serviceable Aligning and Self-Retaining Elastic Arrangement for Mated Components and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Joel Colombo.
U.S. Appl. No. 14/039,614, filed Sep. 27, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventor: Steven E. Morris.
U.S. Appl. No. 14/044,199, filed Oct. 2, 2013, entitled “Lobular Elastic Tube Alignment and Retention System for Providing Precise Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/044,207, filed Oct. 2, 2013, entitled “Elastic Aperture Alignment System for Providing Precise Four-Way Alignment of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/045,463, filed Oct. 3, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/081,361, filed Nov. 15, 2013, entitled “Elastically Deformable Clip and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Jeffrey M. Gace.
U.S. Appl. No. 14/104,321, filed Dec. 12, 2013, entitled “Alignment and Retention System for a Flexible Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/104,327, filed Dec. 12, 2013, entitled “Self-Retaining Alignment System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris, Jennifer P. Lawall and Toure D. Lee.
U.S. Appl. No. 14/104,333, filed Dec. 12, 2013, entitled “Alignment System for Providing Precise Alignment and Retention of Components of a Sealable Compartment,” inventors: Steven E. Morris, Christopher J. Georgi, Jennifer P. Law.
U.S. Appl. No. 14/104,541, filed Dec. 12, 2013, entitled “Alignment and Retention System for Providing Precise Alignment and Retention of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/104,549, filed Dec. 12, 2013, entitled “Alignment System for Providing Alignment of Components Having Contoured Features,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/108,921, filed Dec. 17, 2013, entitled “Elastically Averaged Alignment Systems and Methods Thereof,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/108,931, filed Dec. 17, 2013, entitled “Elastically Averaged Strap Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/109,296, filed Dec. 17, 2013, entitled “Fastener for Operatively Coupling Matable Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,622, filed Dec. 19, 2013, entitled “Elastic Averaging Alignment Member,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,801, filed Dec. 19, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/134,844, filed Dec. 19, 2013, entitled “Elastically Deformable Module Installation Assembly,” inventors: Steven E. Morris, Jennifer P. Lawall and Paul B. Stambaugh.
U.S. Appl. No. 14/134,888, filed Dec. 19, 2013, entitled “Elastic Retaining Assembly and Method,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/136,502, filed Dec. 20, 2013, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Timothy A. Kiester, Steven E. Morris, Kenton L. West, Scott J. Fast, and Evan Phillips.
U.S. Appl. No. 14/151,279, filed Jan. 9, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Steven E. Morris and Jennifer P. Lawall.
U.S. Appl. No. 14/153,741, filed Jan. 13, 2014, entitled “Elastically Averaged Assembly for Closure Applications,” inventors: Steven E. Morris, Jeffrey A. Abell, Jennifer P. Lawall, and Jeffrey L. Konchan.
U.S. Appl. No. 14/180,882, filed Feb. 14, 2014, entitled “Elastic Tube Alignment System for Precisely Locating Components,” inventor: Steven E. Morris.
U.S. Appl. No. 14/185,422, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall and Ashish M. Gollapalli.
U.S. Appl. No. 14/185,472, filed Feb. 20, 2014, entitled “Elastically Averaged Alignment Systems and Method,” inventors: Steven E. Morris, Jennifer P. Lawall and Kee Hyuk Im.
U.S. Appl. No. 14/231,395, filed Mar. 31, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo, Steven E. Morris, Jennifer P. Lawall, and Ashish M. Gollapalli.
U.S. Appl. No. 14/249,746, filed Apr. 10, 2014, entitled “Elastically Averaged Alignment Systems and Methods,” inventors: Joel Colombo and Catherine A. Ostrander.
U.S. Appl. No. 14/259,747, filed Apr. 23, 2014, entitled “System for Elastically Averaging Assembly of Components,” inventors: Steven E. Morris and Jennifer P. Lawall.
Chine Office Action for Application No. 201510195884.5 dated Oct. 28, 2016; 6 pages.
Rojas, F.E., et al., “Kinematic Coupling for Precision Fixturing & Assembly” MIT Precision Engineering Research Group, Apr. 2013; 24 pgs.
Slocum, A.H., et al., “Kinematic and Elastically Averaged Joints: Connecting the Past, Present and Future” International Symposium on Ultraprecision Engineering and Nanotechnology, Tokyo, Japan, Mar. 13, 2013; 4 pgs.
Willoughby, P., “Elastically Averaged Precision Alignment”, Degree of Doctor of Philosophy in Mechanical Engineering Dissertation, Massachusetts Institute of Technology, 2005; 158 pgs.
Related Publications (1)
Number Date Country
20150308538 A1 Oct 2015 US