This application is a national stage entry under 35 U.S.C. 371 of International Application No. PCT/SE2009/050112, filed 4 Feb. 2009 designating the United States. This application claims foreign priority under 35 U.S.C. 119 and 365 to Swedish Patent Application No. 0800280-0, filed 7 Feb. 2008. The complete disclosure of these applications is incorporated herein by reference.
The present invention relates to a system and also a method for generating energy/power in a CDI system, said system comprising at least one charge winding which by means of a fly wheel and via a first rectifier device charges a charge capacitor connected to a primary winding of an ignition voltage transformer in order to provide said primary winding with energy for generation of a spark via a secondary winding of said transformer.
Nowadays, various types of ignition systems are known and commonly used on the market, such as capacitive or inductive solutions. Most of those ignition systems have a solution including some kind of battery support, e.g. U.S. Pat. No. 6,557,537 and U.S. Pat. No. 6,082,344, which in some applications strongly can be affected, due to environmentally causes e.g. humidity and temperature, and then have drastic consequences regarding performance and/or reliability. There are also cost, environmental and life time aspects to be considered when using a battery supported solution.
Ignition systems are known, without the use of battery support, and are also available on the market. However, known such systems all do show one or more disadvantages, seemingly due to accepting compromises regarding functionality to be able to eliminate battery support. It is known to, instead of battery support, use a separate small generator which however presents some disadvantages such as additional cost. Also other solutions are known, for instance, EP0727578, which shows an inductive ignition-system, wherein power is (instead of battery) taken from a primary winding to control ignition timing, i.e. control of the spark advance, but without providing any other functionality that might be desired. Further, the control circuit as such is rather complex and rather inflexible.
The object of the present invention is to provide an improved system for generating energy/power in a CDI system, which is achieved by means of a system as defined in claim 1.
Thanks to the invention a very flexible and cost effective solution is achieved, which may bring along about the same kind of functionality as battery powered systems, but which at the same time eliminates the disadvantages related to battery supported systems. It is to be noted that the solution does not prevent usage of battery support, but as is evident provides the important technical advantage that battery support may be dispensed with.
Further advantages and aspects of the invention will be evident from the detailed description below.
The invention will be described in greater detail below with reference to the appended figures, in which:
A brief description of the typical CDI system used in this example follows. The CDI system comprises of an iron core T1 provided with four conventionally arranged windings, L, T, P and S, which are magnetised by means of one or several magnets integrated in the flywheel which at the rotation of the flywheel will sweep past the end portions of the iron core T1. The variant with several magnets could be used for providing (from a general point of view) a more powerful generator which in addition to the function as ignition voltage generator also could be used for other purposes, for example fuel injection systems or handle heating on chain saws. The relative magnet movement induces a voltage in the windings L, T, P and S according to the following.
In a so called charge winding L, there is induced a voltage which is used for the spark generation, as such. The charge winding L is via one of its end points 1 connected via rectifier devices D1 to a charge capacitor C1, in which the energy will be stored until the spark will be activated, and to a thyristor Q1. The other end point 2 of the winding L is connected to earth.
A so called trigger winding T is connected with a first end point 7 to earth and a second end point 8 to an input terminal In11 of an ignition control unit M1 and delivers to this input terminal information about the position and velocity of the flywheel and preferably also power supply to the control unit M1, e.g. to the processor thereof. It could be noted that the control unit M1 may comprise of an only slightly modified version of a known, conventional control unit.
The third winding P constitutes the primary winding and the fourth winding S the secondary winding of a transformer 30 for generating ignition voltage to a spark plug SP1. The end point 4 of the third winding P as well as the end point 5 of the fourth winding S is connected to earth.
In a conventional way an output terminal Out11 on the control unit M1 is activated when the ignition voltage should be delivered to the spark plug. The switching device (the thyristor) Q1 having a trigger electrode of which is connected to the output terminal Out11 creates a current path to earth which results in the connection of the voltage over the capacitor C1 to the primary winding P. Initially a voltage transient is then generated in the secondary winding S due to the very high voltage derivative in the connection point 12 at the anode of the thyristor Q1. Immediately thereafter the state in the transformer 30 changes into a damped self-oscillation in which the energy transits between the inductor P and the capacitor C1 through the switching device Q1.
The description above is simplified, and it is evident for the skilled person to foresee other both resonant and non-resonant circuits for spark generation without departing from the scope of the invention.
According to the invention there is a voltage control/switching unit 10, that controls output of power, at Out21, from the primary winding P which power may be used to drive a device (e.g. a sensor and/or a solenoid) externally of the ignition system. In the embodiment shown in
An optional connection 9, connecting the ignition control M1 and the voltage control/switching unit 10, enables a feedback and information about the charge/load level of a charge capacitor 14, described in
The operation and method of the switching unit 10 according to the invention, and described in
A second connector 18 of the switch element 15 is connected to the output terminal Out21 and to the charge capacitor 14.
The switch control 19, which controls the switching of the voltage control/switching unit 10, is connected to a connector 17 of the switch element 15 and to the input terminal In22. For a skilled person it is evident that the switch element 15 may comprise various components available on the market e.g. a thyristor, a Triac etc. The purpose of the switch control 19 is to control that the switch element 15 is switched off during a desired (e.g. preset in the CPU of the control unit M1) period of time, e.g. 100 μS, starting at or immediately before the generation of spark. In this embodiment the switching signals In22 are controlled by software and/or hardware and a CPU in the ignition control M1, which normally implies conventional TTL-signals, e.g. a pulse signal at In21 some μS before the initiating of the spark to put the switch element 15 in the off mode and a duration of about 100 μS to switch back to the power generating mode. A purpose of the charge capacitor 14, connected between the output terminal Out21 and earth, is to stabilize the output from terminal Out21, to provide energy to the external device when the switch element 15 is off.
The operation and method of the switching unit 10 shown in
It is evident that in conformity with other known spark generating CDI systems the switching may preferably be controlled by the amplitude or pulse-form of the primary winding P, wherein the signals and current flow is caused by the magnetism of the passing flywheel. Accordingly, e.g. the detection of a negative pulse on the primary winding P may be used to cause an immediate interrupt i.e. an immediate switch off of the voltage control/switching unit 10 or possibly, if desired, with a preset delayed or premature triggering. Hence, a very flexible means of controlling due to the fact that the control unit 10 may be flexibly set with a great variety of (desired) triggering parameters.
In preferred embodiments intended to be used primarily in connection with small engines (e.g. chain saws) the components of a system according to the invention may be chosen within a wide range to provide the functionality as intended by the invention. However, there are some basic requirements, e.g. that there is a charge winding L that is sufficiently powerful to generate needed energy, i.e. within the range of 1-15 mWs.
Summarized, one advantage of the switching unit 10 according to the invention is the ability to utilize the primary winding for generation of an electrical power, and this in alignment with a very low impact on the performance of the CDI system, i.e. the sparking generation, and regarding burn-time, ignition voltage, energy and the peak power. The generated energy/power can be used for supplying of internal or external units e.g. sensors, solenoids.
The invention is not limited by the embodiments described above but may be varied within the scope of the appended claims. For instance the skilled person realizes that several external units may be connected to Out21 and that for instance at a higher rpm, which produces a higher output then could be arranged for connecting a further external device, e.g. fuel mixture meter, battery charging, sensors or other small power demanding devices. Further, the skilled person realizes that many other evident modifications, may be made within the scope of protection, e.g. using a further winding (or several), in series with the primary winding, to achieve the desired voltage.
Regardless of form of embodiment, the switch unit 10 can also be used for limiting output power. This can be implemented as a voltage control device which then will regulate output voltage by switching unit 10 on/or off as a reaction to variations in both output load and engine rpm.
Number | Date | Country | Kind |
---|---|---|---|
0800280 | Feb 2008 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2009/050112 | 2/4/2009 | WO | 00 | 8/12/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/099388 | 8/13/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3889651 | Hudson | Jun 1975 | A |
4084567 | Hachiga | Apr 1978 | A |
4114582 | Rabus et al. | Sep 1978 | A |
4176644 | Hellberg et al. | Dec 1979 | A |
4213436 | Burson | Jul 1980 | A |
4216756 | Mura | Aug 1980 | A |
4385617 | Nakata et al. | May 1983 | A |
4406273 | Yoshinaga et al. | Sep 1983 | A |
4478200 | Nagashima et al. | Oct 1984 | A |
4515118 | Haubner et al. | May 1985 | A |
4722311 | Erhard | Feb 1988 | A |
4901704 | Safranek | Feb 1990 | A |
4958608 | Saito et al. | Sep 1990 | A |
5161496 | Matsushima et al. | Nov 1992 | A |
5215066 | Narishige et al. | Jun 1993 | A |
5404859 | Okuda et al. | Apr 1995 | A |
5513618 | Rich et al. | May 1996 | A |
5630404 | Regazzi et al. | May 1997 | A |
5816221 | Krueger | Oct 1998 | A |
6082344 | Ito | Jul 2000 | A |
6414468 | Weber et al. | Jul 2002 | B1 |
6557537 | Ikeda | May 2003 | B2 |
6735512 | Yamazaki et al. | May 2004 | B2 |
6763815 | Gerhardt et al. | Jul 2004 | B2 |
6779517 | Sakakura | Aug 2004 | B2 |
6848437 | Naruse et al. | Feb 2005 | B2 |
6935323 | Waters et al. | Aug 2005 | B2 |
7341051 | Batchvarov | Mar 2008 | B2 |
7404396 | Toriyama et al. | Jul 2008 | B2 |
7546836 | Andersson et al. | Jun 2009 | B2 |
7712458 | Olsson | May 2010 | B2 |
20020078926 | Kolossow et al. | Jun 2002 | A1 |
20040084035 | Newton | May 2004 | A1 |
Number | Date | Country |
---|---|---|
0597352 | May 1994 | EP |
0646723 | Apr 1995 | EP |
0727578 | Aug 1996 | EP |
2000-120517 | Apr 2000 | JP |
Entry |
---|
Office Action issued in corresponding Japanese Patent Application No. 2010-545829 (Jan. 29, 2013). |
International Search Report issued May 19, 2009 and Written Opinion issued May 19, 2009 in parent PCT application. |
Number | Date | Country | |
---|---|---|---|
20110006693 A1 | Jan 2011 | US |