The present invention relates generally to CMP pad conditioners used to remove material from (e.g., smooth, polish, dress, etc.) CMP pads. Accordingly, the present invention involves the fields of chemistry, physics, and materials science.
The semiconductor industry currently spends in excess of one billion U.S. Dollars each year manufacturing silicon wafers that must exhibit very flat and smooth surfaces. Known techniques to manufacture smooth and even-surfaced silicon wafers are plentiful. The most common of these involves the process known as Chemical Mechanical Polishing (CMP) which includes the use of a polishing pad in combination with an abrasive slurry. Of central importance in all CMP processes is the attainment of high performance levels in aspects such as uniformity of polished wafer, smoothness of the IC circuitry, removal rate for productivity, longevity of consumables for CMP economics, etc.
The present invention provides methods and systems for evaluating and increasing CMP pad dresser performance. In one aspect, for example, a method of identifying overly-aggressive superabrasive particles in a CMP pad dresser is provided. Such a method can include positioning a CMP pad dresser having a plurality of superabrasive particles on an indicator substrate such that at least a portion of the plurality of superabrasive particles of the CMP pad dresser contact the indicator substrate. The method can further include moving the CMP pad dresser across the indicator substrate in a first direction such that the portion of the plurality of superabrasive particles create a first marking pattern on the substrate, wherein the first marking pattern identifies a plurality of working superabrasive particles from among the plurality of superabrasive particles. In another aspect, the method can include moving the CMP pad dresser in a second direction across the indicator substrate such that the portion of the plurality of superabrasive particles create a second marking pattern, the second direction being substantially transverse to the first direction, wherein the second marking pattern compared with the first marking pattern provides orientation information of the plurality of working superabrasive particles. Additionally, in one aspect, the plurality of superabrasive particles have at least one alignment orientation direction with respect to the CMP pad dresser, and the first direction is not the at least one alignment orientation.
It can also be beneficial to physically mark the plurality of working superabrasive particles on the CMP pad dresser. In one aspect, therefore, the indicator substrate can include an indicator marker to marks the plurality of working superabrasive particles as the CMP pad dresser is moved across the indicator substrate. Various indicator markers are contemplated, and any indicator marker capable of marking an overly-aggressive superabrasive particle should be considered to be within the present scope. Non-limiting examples include pigment markers, fluorescent markers, chemical markers, radioactive markers, and the like.
In another aspect of the present invention, a method of increasing a proportion of working superabrasive particles in a CMP pad dresser is provided. Such a method can include positioning a CMP pad dresser having a plurality of superabrasive particles on an indicator substrate such that at least a portion of the plurality of superabrasive particles of the CMP pad dresser contact the indicator substrate, and moving the CMP pad dresser across the indicator substrate in a first direction such that the portion of the plurality of superabrasive particles create a first marking pattern on the substrate. The first marking pattern identifies a plurality of overly-aggressive superabrasive particles from among the plurality of superabrasive particles. The method can also include ablating at least a portion of the plurality of overly-aggressive superabrasive particles to increase the proportion of working superabrasive particles in the CMP pad dresser.
The method can further include identifying subsequent working superabrasive particles following the ablation procedure. Accordingly, in one aspect, the CMP pad dresser can be positioned on a subsequent indicator substrate such that at least a portion of the plurality of superabrasive particles of the CMP pad dresser contact the subsequent indicator substrate. The CMP pad dresser can then be moved across the subsequent indicator substrate in the first direction such that the portion of the plurality of superabrasive particles create a subsequent marking pattern on the substrate, where the subsequent marking pattern identifies a subsequent plurality of working superabrasive particles from among the plurality of superabrasive particles.
The present invention additionally provides a CMP pad dresser conditioning profile. Such a conditioning profile can include a dressing pattern identifying a plurality of working superabrasive particles from a plurality of superabrasive particles of the CMP pad dresser. A variety of formats of dressing patterns are contemplated, and any format of conveying relevant information would be considered to be within the present scope. Non-limiting examples can include an electronic representation, a marking pattern on an indicator substrate, a graphical representation of a marking pattern, a numerical representation of a marking pattern, a CMP pad dresser map showing locations of the plurality of working superabrasive particles, and the like. In one specific aspect, the dressing pattern is a marking pattern on an indicator substrate including a first marking pattern created by the plurality of working superabrasive particles moving across the indicator substrate in a first direction, and further including a second marking pattern created by the plurality of working superabrasive particles moving across the indicator substrate in a second direction. The second direction can be at least substantially transverse to the first direction.
The present invention additionally provides a method of leveling tips of a plurality of superabrasive particles in a CMP pad dresser. In one aspect, such a method can include temporarily coupling a plurality of superabrasive particles to a tool substrate and positioning the plurality of superabrasive particles against an indicator substrate such that at least a portion of the plurality of superabrasive particles contact the indicator substrate. The method can further include moving the plurality of superabrasive particles across the indicator substrate such that the portion of the plurality of superabrasive particles creates a marking pattern on the indicator substrate. The marking pattern identifies a plurality of overly-aggressive superabrasive particles from among the plurality of superabrasive particles. The method can also include adjusting tips of the plurality of overly-aggressive superabrasive particles relative to the tool substrate to vary a proportion of working superabrasive particles to non-working superabrasive particles, and permanently coupling the plurality of superabrasive particles to the tool substrate.
Although a variety of methods of permanently coupling superabrasive particles to a substrate are contemplated, in one aspect the plurality of superabrasive particles are permanently coupled to the tool substrate with an organic matrix. Non-limiting examples of organic matrix materials include amino resins, acrylate resins, alkyd resins, polyester resins, polyamide resins, polyimide resins, polyurethane resins, phenolic resins, phenolic/latex resins, epoxy resins, isocyanate resins, isocyanurate resins, polysiloxane resins, reactive vinyl resins, polyethylene resins, polypropylene resins, polystyrene resins, phenoxy resins, perylene resins, polysulfone resins, acrylonitrile-butadiene-styrene resins, acrylic resins, polycarbonate resins, polyimide resins, and combinations thereof.
The present invention additionally provides a system for identifying working superabrasive particles in a CMP pad dresser. Such a system can include an indicator substrate and a CMP pad dresser having a plurality of superabrasive particles, where a portion of the plurality of superabrasive particles is in contact with the indicator substrate. The system can further include a marking pattern cut into the indicator substrate by the portion of the plurality of superabrasive particles, where the marking pattern identifies a plurality of working superabrasive particles from among the plurality of superabrasive particles.
The present invention also provides a method for identifying working superabrasive particles in a CMP pad dresser. Such a method can include pressing a plastic sheet suspended within a frame onto a CMP pad dresser having a plurality of superabrasive particles such that the plastic sheet is deformed by at least a portion of the plurality of superabrasive particles. The deformed plastic sheet can then be observed to identify a plurality of working superabrasive particles from among the plurality of superabrasive particles. In some aspects, the plastic sheet can be at least semi-reflective to facilitate the identification of the plurality of working superabrasive particles.
There has thus been outlined, rather broadly, various features of the invention so that the detailed description thereof that follows may be better understood, and so that the present contribution to the art may be better appreciated. Other features of the present invention will become clearer from the following detailed description of the invention, taken with any accompanying or following claims, or may be learned by the practice of the invention.
It will be understood that the above figures are merely for illustrative purposes in furthering an understanding of the invention. Further, the figures may not be drawn to scale, thus dimensions, particle sizes, and other aspects may, and generally are, exaggerated to make illustrations thereof clearer. Therefore, it will be appreciated that departure can and likely will be made from the specific dimensions and aspects shown in the figures.
Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the particular structures, process steps, or materials disclosed herein, but is extended to equivalents thereof as would be recognized by those ordinarily skilled in the relevant arts. It should also be understood that terminology employed herein is used for the purpose of describing particular embodiments only and is not intended to be limiting.
It must be noted that, as used in this specification and any appended or following claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a superabrasive particle” can include one or more of such particles.
Definitions
In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set forth below.
As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained.
The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result. For example, a composition that is “substantially free of” particles would either completely lack particles, or so nearly completely lack particles that the effect would be the same as if it completely lacked particles. In other words, a composition that is “substantially free” of an ingredient or element may still actually contain such item as long as there is no measurable effect thereof.
As used herein, “working superabrasive particles” are superabrasive particles that touch a CMP pad during a dressing or conditioning procedure. This touching can remove debris from the surface, it can deform the surface either elastically or plastically, or it can cut the surface to create a groove. In one specific aspect, a working superabrasive particle can cut deeper than about 10 microns into a CMP pad during a dressing procedure.
As used herein, “non-working superabrasive particles” are superabrasive particles in a CMP pad dresser that do not significantly touch the pad sufficient to remove debris from the surface, deform the surface, cut the surface to create a groove.
As used herein, “overly-aggressive superabrasive particles” are superabrasive particles in a CMP pad dresser that aggressively dress or condition a CMP pad. In one aspect, aggressive superabrasive particles are superabrasive particles that cut deeper than about 50 microns into a CMP pad during a dressing procedure. In another aspect, aggressive superabrasive particles are superabrasive particles that remove at least ⅕ of the material from the CMP pad. In yet another aspect, aggressive superabrasive particles are superabrasive particles that remove at least ½ of the material from the CMP pad.
As used herein, “indicator substrate” refers to a substrate material upon which a portion of the superabrasive particles of a CMP pad dresser can be positioned and moved to make markings indicative of working superabrasive particles.
As used herein, “marking pattern” refers to a pattern on an indicator substrate created by moving superabrasive particles thereacross. The markings can be any detectable marking known, including cuts, scratches, depressions, material deposition (e.g. pigment markers, chemical markers, fluorescent markers, radioactive markers, etc.).
As used herein, “transverse” refers to a directional orientation that is cross-wise to a reference axis. In one aspect, “transverse” can include a directional orientation that is at least at a substantial right angle to the reference axis.
As used herein, “alignment orientation direction” refers to the direction of an alignment axis of the plurality of superabrasive particles. For example, a plurality of superabrasive particles aligned in a grid formation would have at least two alignment axes; an alignment axis in the column direction and an alignment axis in the row direction oriented 90° to the column direction.
As used herein, “ablate” or “ablating” refer to a process of removing a superabrasive particle from a CMP pad dresser or reducing the projection of a superabrasive particle thus reducing the degree of contact between the superabrasive particle and the indicator substrate.
As used herein, “superabrasive segment” refers to a tool body having multiple superabrasive particles associated therewith. In some aspect, a superabrasive segment can include superabrasive polycrystalline materials as cutting elements.
As used herein, a “tool substrate” refers a portion of a pad conditioner that supports abrasive materials, and to which abrasive materials and/or superabrasive segments that carry abrasive materials may be affixed. Substrates useful in the present invention may of a variety of shapes, thicknesses, or materials that are capable of supporting abrasive materials in a manner that is sufficient to provide a pad conditioner useful for its intended purpose. Substrates may be of a solid material, a powdered material that becomes solid when processed, or a flexible material. Examples of typical substrate materials include without limitation, metals, metal alloys, ceramics, relatively hard polymers or other organic materials, glasses, and mixtures thereof. Further, the substrate may include a material that aids in attaching abrasive materials to the substrate, including, without limitation, brazing alloy material, sintering aids and the like.
As used herein, “superabrasive” may be used to refer to any crystalline, or polycrystalline material, or mixture of such materials which has a Mohr's hardness of about 8 or greater. In some aspects, the Mohr's hardness may be about 9.5 or greater. Such materials include but are not limited to diamond, polycrystalline diamond (PCD), cubic boron nitride (cBN), polycrystalline cubic boron nitride (PcBN), corundum and sapphire, as well as other superhard materials known to those skilled in the art. Superabrasive materials may be incorporated into the present invention in a variety of forms including particles, grits, films, layers, pieces, segments, etc. In some cases, superabrasive materials are in the form of polycrystalline superabrasive materials, such as PCD and PcBN materials.
As used herein, “organic matrix” or “organic material” refers to a semisolid or solid complex or mix of organic compounds. As such, “organic material layer” and “organic material matrix” may be used interchangeably, refer to a layer or mass of a semisolid or solid complex amorphous mix of organic compounds, including resins, polymers, gums, etc. Preferably the organic material will be a polymer or copolymer formed from the polymerization of one or more monomers. In some cases, such organic material may be adhesive.
As used herein, the term “about” is used to provide flexibility to a numerical range endpoint by providing that a given value may be “a little above” or “a little below” the endpoint.
As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually. This same principle applies to ranges reciting only one numerical value as a minimum or a maximum. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
The Invention
A CMP pad dresser is used to dress or condition a CMP pad, and by doing so reconditions the pad by removing dirt and debris, as well as opening up asperities in the pad surface to capture and hold chemical slurry during a polishing procedure. Due to difficulties associated with superabrasive particle leveling, only a small percentage of superabrasive particles in a CMP pad dresser are positioned so as to penetrate or cut into a CMP pad. As this small percentage of superabrasive particles become worn, plastic deformation of the CMP pad becomes large relative to the amount CMP of pad that is cut. Consequently, the pad becomes highly deformed and accumulated with dirt. As a result the polishing rate of the CMP pad declines, and the scratch rate of the wafer or workpiece increases.
The inventor has discovered novel techniques to identify a cutting profile for a CMP pad dresser that can include the number and location of non-working, working, and overly-aggressive superabrasive particles. From such a profile, the cutting effectiveness of a CMP pad dresser can be determined. The technique can be performed on both used and unused CMP pad dressers.
CMP pads are typically made of a relatively soft polymer, such as polyurethane. As the CMP pad is engaged by the CMP pad dresser, the polymer material is deformed first by elastic strain and then by plastic strain. Eventually, the strain energy in the deformed material exceeds the bond energy density (i.e. the hardness of the pad) and the polymer material ruptures. Thus, the function of superabrasive particles in the CMP pad dresser is to dress the CMP pad material by breaking polymeric bonds through this deformation process. It should be noted that sharp superabrasive particle tips can penetrate the CMP pad material without causing excessive deformation. As such, the sharpness of a superabrasive particle can be defined as being inverse to the deformed volume prior to rupture. In other words, the smaller the volume of deformation prior to cutting, the sharper the cutting tip. This deformation information can be used to determine the sharpness of superabrasive particles in the CMP pad dresser.
Additionally, a superabrasive particle having a tip with smaller tip radius, such as would be the case with a broken corner, can cut more cleanly through the CMP pad with less deformation as compared to a superabrasive particle having a larger tip radius. Consequently, an irregularly shaped superabrasive particle tip can be sharper than a euhedral superabrasive corner having an obtuse angle relative to the CMP pad. This also applies to the difference between a superabrasive particle corner as compared with a superabrasive particle face.
It is thus noted that sharp superabrasive particle tips can cut CMP pad materials with less deformation and material strain. Conversely, a dull superabrasive particle may deform but not cut the CMP pad material because the strain energy does not exceed the bond energy density of the polymeric material. As the tips of such particles are worn, the contact area between the polymeric material and the particles increase. This increase in contact area results in an increase in the deformation volume of the pad. Due to the increased strain energy required for the polymeric material to rupture with such an increased deformation volume, the number of superabrasive particles cutting the polymeric material will decrease in relation to the degree of dulling during a CMP process.
CMP pad dressing can also be affected by the proportion of superabrasive particles in the CMP pad dresser that are working and the proportion that are overly-aggressively cutting. As an example, a typical CMP pad dresser can have greater than 10,000 superabrasive particles. Of these 10,000 particles, in some cases there may only be about 100 working superabrasive particles that are actually able to cut the CMP pad. Additionally, out of the 100 working superabrasive particles, there may be approximately 10 overly-aggressive superabrasive particles that cut over 50% of the entire pad that is consumed during conditioning, and in some cases can remover more that 25% of the total pad material. This uneven work load distribution can cause erratic CMP performance, and can result in over consumption of the CMP pad, chipping of the overly-aggressive superabrasive particles that can scratch the wafer, unpredictable wafer removal rates, uneven wafer surface planarization, shortened CMP pad dresser life, compaction of the CMP pad with debris, and the like.
Accordingly, a method of identifying overly-aggressive superabrasive particles in a CMP pad dresser is provided. Such a method can include positioning a CMP pad dresser having a plurality of superabrasive particles on an indicator substrate such that at least a portion of the plurality of superabrasive particles of the CMP pad dresser contact the indicator substrate, and moving the CMP pad dresser across the indicator substrate in a first direction such that the portion of the plurality of superabrasive particles create a first marking pattern on the substrate. As such, the first marking pattern identifies a plurality of working superabrasive particles from among the plurality of superabrasive particles.
Traditional superabrasive particle tip leveling methods have typically measured the height of such tips from the backside of the CMP pad dresser. Such a measurement may not provide an accurate estimation of the degree of leveling of superabrasive particle tips in relation to the CMP pad due to variations in the thickness of the CMP pad dresser substrate and variation that arises during the manufacturing process. Additionally, the CMP pad dresser may not be precisely parallel to the surface of the CMP pad during dressing. Thus tip height variations measured at the tips of the superabrasive particles can provide a more accurate cutting profile.
Accordingly, a CMP pad dresser can be pressed against an indicator substrate with a fixed load, and moved across the substrate to create a cutting pattern. Thus the superabrasive particles that are in contact with the indicator substrate will deflect and then penetrate the substrate in proportion to their tip height, sharpness, etc. As is shown in
The CMP pad dresser can then be moved across the surface of the indicator substrate to create a scratch pattern as is shown in
In one aspect, the CMP pad dresser can be moved in a second direction across the indicator substrate such that the portion of the plurality of superabrasive particles creates a second marking pattern. The second should be substantially transverse to the first direction. It is intended that a direction that is transverse to a reference direction be defined as any direction that is crosswise to the reference. Thus crosswise can include any direction that crosses the reference direction. In one aspect, transverse can be perpendicular to. In another aspect, transverse can be any angle between 0° and 90° with respect to the reference. Non-limiting examples can include 10°, 30°, 45°, 60°, and the like. Among other informational content, the second marking pattern compared with the first marking pattern can provide orientation information of the plurality of working superabrasive particles. Thus as an example, a superabrasive particle that cuts a wider line in the first direction than the second direction may be cutting with an edge or a face in the first direction and with a tip in the second direction. As can be seen in
Various indicator substrate materials are contemplated, and it should be noted that any material capable of performing in accordance with aspects of the present should be considered to be within the present scope. Non-limiting examples can include materials such as plastics or other polymers, waxes, crystalline materials, ceramics, and the like. One specific example of a polymeric indicator substrate is a polyethylene terephthalate (PET) transparency. It is also contemplated that pressure sensitive electronic displays could also be utilized as an indicator substrate according to aspects of the present invention.
In one aspect, the indicator substrate can include an indicator marker to create markings on superabrasive particles that scratch the indicator substrate as the dresser is moved across the substrate. This can allow the working and/or overly-aggressive superabrasive particles to be more easily identified on the CMP pad dresser. Various indicator markers are contemplated, including, without limitation, pigment and ink markers, fluorescent markers, chemical markers, radioactive markers, and the like. As an example, a pigment can be printed on the surface of a PET transparency using a conventional printer. Superabrasive particles scratching the pigment-coated surface of the transparency are marked by the pigment and can thus be more readily identified on the surface of the CMP pad dresser.
In another aspect, the present invention additionally provides a method of increasing a proportion of working superabrasive particles in a CMP pad dresser. Such a method can include positioning a CMP pad dresser having a plurality of superabrasive particles on an indicator substrate such that at least a portion of the plurality of superabrasive particles of the CMP pad dresser contact the indicator substrate and moving the CMP pad dresser across the indicator substrate in a first direction such that the portion of the plurality of superabrasive particles create a first marking pattern on the substrate. As has been discussed, the first marking pattern identifies a plurality of working superabrasive particles from among the plurality of superabrasive particles. The method can also include identifying a plurality of overly-aggressive superabrasive particles from the plurality of working superabrasive particles. Such identification can be readily accomplished via the examination of the scratch pattern characteristics of the marking pattern. Subsequently, the method can include ablating at least a portion of the plurality of overly-aggressive superabrasive particles to increase the proportion of working superabrasive particles in the CMP pad dresser.
As is shown in
Ablating a superabrasive particle can occur by a variety of techniques, and any technique capable of selectively ablating such a particle should be considered to be within the present scope. For example, a vibrating needle or other structure can be used to ablate a specific superabrasive particle. Superabrasive particles, such as diamonds, tend to be brittle, and thus will break using such a technique. Superabrasive particles can similarly be ablated using a laser. Also, CMP pad dressers utilizing a thermoplastic resin as a support matrix can be heated locally around the superabrasive particle, and the particle can be pulled from the matrix.
Note, however, that non-working superabrasive particles 30 are present in the CMP pad dresser. In some aspects conditioning of a CMP pad can be improved by having a proportion of the overall plurality of superabrasive particles be non-working. This situation provides space between the working crystals for the movement of the slurry and for the expulsion of dirt and debris. Thus it can be beneficial to increase the number of working superabrasive particles in a CMP pad dresser while still leaving a proportion of non-working superabrasive particles to allow for slurry, dirt, and debris movement.
The ablation procedure can also be utilized to extend the life of a CMP pad dresser. Because the most overly-aggressive cutting superabrasive particles are a minority of the total number of superabrasive particles in a CMP pad dresser, and because aggressive and overly-aggressive cutting tends to dull particles more quickly, a dresser that has a decreased effectiveness can actually appear to be an unused or slightly used tool. This is because the wear on the superabrasive particles, including the non-overly aggressive particles, may not be apparent. By creating a marking pattern for such a CMP pad dresser on an indicator substrate, the now dulled overly-aggressive or overly-aggressive particles can be identified. Ablating these dulled superabrasive particles allows sharper working superabrasive particles to now interact more effectively with the CMP pad, thus extending the life or “reconditioning” the dresser.
Following ablation of all or some of the overly-aggressive superabrasive particles, a conditioning profile can again be generated by following the above procedures. For example, in one aspect, the CMP pad dresser can be positioned on a subsequent indicator substrate such that at least a portion of the plurality of superabrasive particles of the CMP pad dresser contact the subsequent indicator substrate, and the CMP pad dresser can be moved across the subsequent indicator substrate in the first direction such that the portion of the plurality of superabrasive particles create a subsequent marking pattern on the substrate. As with the previous aspects, the subsequent marking pattern identifies a subsequent plurality of working superabrasive particles from among the plurality of superabrasive particles. It should also be noted that, rather than using a subsequent indicator substrate, in some aspects the previous indicator substrate can be used to compare the cutting pattern of the previous superabrasive particle configuration with the subsequent superabrasive particle configuration. Additionally, such a comparison can be made using separate indicator substrates by comparing the scratch patterns. For example, two PET transparencies can be aligned parallel to one another such that the two marking patterns can be compared.
The techniques according to the various aspects of the present invention can be utilized with numerous types of CMP pad dressers. For example, in one aspect, the superabrasive particles can be single crystal superabrasive particles, such as natural or synthetic diamond, cubic boron nitride, and the like. In another aspect, the superabrasive particles can be polycrystalline particles, such as polycrystalline diamond, polycrystalline cubic boron nitride etc. In yet another aspect, the superabrasive particles can be superabrasive segments having an abrasive layer disposed thereon, wherein the abrasive layer can be include single crystal material, polycrystalline material, or a combination thereof. Additionally, CMP pad dressers can include matrix materials such as brazed metals, organic polymers, sintered metals, ceramics, and the like. Examples of various CMP pad dressers can be found in U.S. Pat. No. 6,039,641, filed on Apr. 4, 1997; U.S. Pat. No. 6,193,770, filed on Nov. 4, 1998; U.S. Pat. No. 6,286,498, filed on Sep. 20, 1999; U.S. Pat. No. 6,679,243, filed on Aug. 22, 2001; U.S. Pat. No. 7,124,753, filed on Apr. Sep. 27, 2002; U.S. Pat. No. 6,368,198, filed on Apr. 26, 2000; U.S. Pat. No. 6,884,155, filed on Mar. 27, 2002; U.S. Pat. No. 7,201,645, filed on Sep. 29, 2004; and U.S. Pat. No. 7,258,708, filed on Dec. 30, 2004, each of which are hereby incorporated herein by reference. Additionally, examples of various CMP pad dressers can be found in U.S. patent application Ser. No. 11/357,713, filed on Feb. 17, 2006; Ser. No. 11/560,817, filed on Nov. 16, 2006; Ser. No. 11/786,426, filed on Apr. 10, 2007; Ser. No. 11/223,786, filed on Sep. 9, 2005; Ser. No. 11/804,221, filed on May 16, 2007; Ser. No. 11/724,585, filed on Mar. 14, 2007; Ser. No. 12/267,172, filed on Nov. 7, 2008; Ser. No. 11/940,935, filed on Nov. 15, 2007; Ser. No. 12/168,110, filed on Jul. 5, 2008; and Ser. No. 12/255,823, filed on Oct. 22, 2008, each of which are hereby incorporated herein by reference.
In another aspect of the present invention, a CMP pad dresser conditioning profile is provided. Such a profile can include a dressing pattern identifying a plurality of working superabrasive particles and/or a plurality of overly-aggressive superabrasive particles from the total plurality of superabrasive particles of a CMP pad dresser. The dressing pattern can be provided in a number of formats, and it should be understood that the present scope includes all such formats. Non-limiting examples include an electronic representation, a marking pattern on an indicator substrate, a graphical representation of a marking pattern, a numerical representation of a marking pattern, a CMP pad dresser map showing locations of the plurality of working superabrasive particles, and combinations thereof. In one specific aspect, the dressing pattern is a marking pattern on an indicator substrate. Such a marking pattern can include a first marking pattern created by the plurality of working superabrasive particles moving across the indicator substrate in a first direction and a second marking pattern created by the plurality of working superabrasive particles moving across the indicator substrate in a second direction. Such a CMP pad dresser conditioning profile can be useful in correlating the superabrasive particles on a CMP pad dresser with the performance of the dresser during a CMP polishing procedure. Such a profile can be provided with a new dresser, it can be created using a new dresser, or it can be made during the service life of a dresser.
The present invention additionally provides a system for identifying working superabrasive particles in a CMP pad dresser. Such a system can include an indicator substrate and a CMP pad dresser having a plurality of superabrasive particles, where a portion of the plurality of superabrasive particles is in contact with the indicator substrate. The system can additionally include a marking pattern cut into the indicator substrate by the portion of the plurality of superabrasive particles, where the marking pattern identifies a plurality of working superabrasive particles from among the plurality of superabrasive particles. As has been described above, the indicator substrate can include an indicator marker to mark the plurality of working superabrasive particles.
The techniques of the present invention can also be used in the manufacture of CMP pad dressers. In one aspect, for example, a method of leveling tips of a plurality of superabrasive particles in a CMP pad dresser is provided. Such a method can include temporarily coupling a plurality of superabrasive particles to a tool substrate, positioning the plurality of superabrasive particles against an indicator substrate such that at least a portion of the plurality of superabrasive particles contact the indicator substrate, and moving the plurality of superabrasive particles across the indicator substrate such that the portion of the plurality of superabrasive particles creates a marking pattern on the indicator substrate. The marking pattern can thus identify overly-aggressive superabrasive particles from among the plurality of superabrasive particles. The projection of the overly-aggressive superabrasive particles can then be adjusted relative to the tool substrate to vary the proportion of working superabrasive particles to non-working superabrasive particles present in the tool. The leveling process can be repeated as necessary. Following leveling, the plurality of superabrasive particles can be permanently coupled to the tool substrate. By adjusting the proportion of working superabrasive particles prior to permanently fixing the particles into the CMP pad dresser, improved conditioning performance can be achieved.
The present invention additionally provides a method for identifying working superabrasive particles in a CMP pad dresser whereby the identifying of the particles occurs on the dresser. In one aspect, for example, such a method can include pressing a plastic sheet suspended within a frame onto a CMP pad dresser having a plurality of superabrasive particles, such that the plastic wrap is deformed by at least a portion of the plurality of superabrasive particles. Subsequently, the deformed plastic sheet can be observed to identify a plurality of working superabrasive particles from among the plurality of superabrasive particles. In other words, because the plastic sheet is stretched across the frame, deformations in the plastic sheet once it has been pressed onto a CMP pad dresser will have a deformation size that corresponds to the protrusion of the superabrasive particles. Thus particles that are more overly-aggressive and thus protrude further from the CMP pad dresser will create bigger deformations in the plastic sheet. The plastic sheet can then be marked to indicate the location of the overly-aggressive particles. Additionally, in one aspect, the plastic sheet can be at least semi-reflective to facilitate the identification of the working and overly-aggressive superabrasive particles.
It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and any appended or following claims are intended to cover such modifications and arrangements. Thus, while the present invention has been described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiments of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.
This application is a continuation of United States patent application Ser. No. 12/850,747, filed Aug. 5, 2010, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/246,816, filed on Sep. 29, 2009, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
187593 | Brown et al. | Feb 1877 | A |
238946 | McKitrick | Mar 1881 | A |
296756 | Kirkpatrick | Apr 1884 | A |
1854071 | Schacht | Apr 1932 | A |
1988065 | Wooddell | Jan 1935 | A |
2027087 | Buckner | Jan 1936 | A |
2027307 | Schacht | Jan 1936 | A |
2033991 | Melton | Mar 1936 | A |
2035521 | Benner | Mar 1936 | A |
2075354 | Monier | Mar 1937 | A |
2078354 | Webster | Apr 1937 | A |
RE20660 | Schacht | Feb 1938 | E |
2184348 | Kirchner | Dec 1939 | A |
2187624 | Melton | Jan 1940 | A |
2194253 | Benner | Mar 1940 | A |
2268663 | Kuzmick | Jan 1942 | A |
2281558 | Cross | May 1942 | A |
2307461 | Ogden | Jan 1943 | A |
2318570 | Paul | May 1943 | A |
2334572 | Melton | Nov 1943 | A |
2612348 | Catallo | Sep 1952 | A |
2652951 | Augustus | Sep 1953 | A |
2725693 | Leigh | Dec 1955 | A |
2811960 | Fessel | Nov 1957 | A |
2867086 | Haley | Jan 1959 | A |
2876086 | Raymond | Mar 1959 | A |
2947608 | Hall | Aug 1960 | A |
2952951 | Simpson | Sep 1960 | A |
3067551 | Maginnis | Dec 1962 | A |
3121981 | Hurst | Feb 1964 | A |
3127715 | Christensen | Apr 1964 | A |
3146560 | Hurst | Sep 1964 | A |
3276852 | Lemelson | Oct 1966 | A |
3293012 | Smiley | Dec 1966 | A |
3372010 | Parsons | Mar 1968 | A |
3377411 | Charvat | Apr 1968 | A |
3416560 | Bruno | Dec 1968 | A |
3440774 | Curn | Apr 1969 | A |
3593382 | Miller | Jul 1971 | A |
3608134 | Cook | Sep 1971 | A |
3625666 | James | Dec 1971 | A |
3630699 | Caitlin | Dec 1971 | A |
3631638 | Yoshikawa et al. | Jan 1972 | A |
3664662 | Linz | May 1972 | A |
3706650 | Eisner | Dec 1972 | A |
3743489 | Wentorf, Jr. et al. | Jul 1973 | A |
3767371 | Wentorf, Jr. et al. | Oct 1973 | A |
3802130 | Lindenbeck | Apr 1974 | A |
3819814 | Pope | Jun 1974 | A |
3852078 | Wakatsuki et al. | Dec 1974 | A |
3894673 | Lowder et al. | Jul 1975 | A |
3905571 | Lombardo | Sep 1975 | A |
3982358 | Fukuda | Sep 1976 | A |
4018576 | Lowder et al. | Apr 1977 | A |
4028576 | Wofsey | Jun 1977 | A |
4078906 | Green | Mar 1978 | A |
4149881 | D'Silva | Apr 1979 | A |
4151154 | Berger | Apr 1979 | A |
4155721 | Fletcher | May 1979 | A |
4182628 | D'Silva | Jan 1980 | A |
4188194 | Corrigan | Feb 1980 | A |
4201601 | D'Silva | May 1980 | A |
4211294 | Multakh | Jul 1980 | A |
4211924 | Müller et al. | Jul 1980 | A |
4224380 | Bovenkerek et al. | Sep 1980 | A |
4228214 | Steigleman et al. | Oct 1980 | A |
4229186 | Wilson | Oct 1980 | A |
4273561 | Fernandez-Moran Villalobos | Jun 1981 | A |
4287168 | Wentorf et al. | Sep 1981 | A |
4289503 | Corrigan | Sep 1981 | A |
4341532 | Oide | Jul 1982 | A |
4355489 | Heyer et al. | Oct 1982 | A |
4405411 | Inoue et al. | Sep 1983 | A |
4481016 | Campbell et al. | Nov 1984 | A |
4525179 | Gigl | Jun 1985 | A |
4547257 | Iizuka et al. | Oct 1985 | A |
4551195 | Iizuka et al. | Nov 1985 | A |
4565034 | Sekiya | Jan 1986 | A |
4610699 | Yazu et al. | Sep 1986 | A |
4617181 | Yazu et al. | Oct 1986 | A |
4629373 | Hall | Dec 1986 | A |
4632817 | Yazu et al. | Dec 1986 | A |
4662896 | Dennis | May 1987 | A |
4669522 | Griffin | Jun 1987 | A |
4680199 | Vontell et al. | Jul 1987 | A |
4712552 | Pangburn | Dec 1987 | A |
4737162 | Grazen | Apr 1988 | A |
4749514 | Murakami et al. | Jun 1988 | A |
4770907 | Kimura | Sep 1988 | A |
4776861 | Frushour | Oct 1988 | A |
4780274 | Barr | Oct 1988 | A |
4797241 | Peterson et al. | Jan 1989 | A |
4828582 | Frushour | May 1989 | A |
4849602 | Gardner | Jul 1989 | A |
4863573 | Moore et al. | Sep 1989 | A |
4866888 | Murai et al. | Sep 1989 | A |
4883500 | Deakins et al. | Nov 1989 | A |
4908046 | Wiand | Mar 1990 | A |
4916869 | Oliver | Apr 1990 | A |
4923490 | Johnson et al. | May 1990 | A |
4925457 | deKok et al. | May 1990 | A |
4927619 | Tsuji | May 1990 | A |
4943488 | Sung et al. | Jul 1990 | A |
4945686 | Wiand | Aug 1990 | A |
4949511 | Endo et al. | Aug 1990 | A |
4954139 | Cerutti | Sep 1990 | A |
4968326 | Wiand | Nov 1990 | A |
5000273 | Horton et al. | Mar 1991 | A |
5011513 | Zador et al. | Apr 1991 | A |
5022895 | Wiand | Jun 1991 | A |
5024680 | Chen et al. | Jun 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5037451 | Burnand et al. | Aug 1991 | A |
5043120 | Corrigan | Aug 1991 | A |
5049165 | Tselesin | Sep 1991 | A |
5092082 | Padberg | Mar 1992 | A |
5092910 | deKok et al. | Mar 1992 | A |
5116568 | Sung | May 1992 | A |
5131924 | Wiand | Jul 1992 | A |
5133782 | Wiand | Jul 1992 | A |
5137543 | Heath et al. | Aug 1992 | A |
5151107 | Cho et al. | Sep 1992 | A |
5164247 | Solanki et al. | Nov 1992 | A |
5176155 | Rudolph, Jr. | Jan 1993 | A |
5190568 | Tselesin | Mar 1993 | A |
5194070 | Sumiya et al. | Mar 1993 | A |
5194071 | Corrigan et al. | Mar 1993 | A |
5195403 | Sani et al. | Mar 1993 | A |
5195404 | Notter et al. | Mar 1993 | A |
5197249 | Wiand | Mar 1993 | A |
5203881 | Wiand | Apr 1993 | A |
5232320 | Tank et al. | Aug 1993 | A |
5243790 | Gagne | Sep 1993 | A |
5246884 | Jaso | Sep 1993 | A |
5247765 | Quintana | Sep 1993 | A |
5248317 | Tank | Sep 1993 | A |
5264011 | Brown et al. | Nov 1993 | A |
5266236 | Bovenkerk | Nov 1993 | A |
5271547 | Carlson | Dec 1993 | A |
5273730 | Yoshida et al. | Dec 1993 | A |
5295402 | Bovenkerk | Mar 1994 | A |
5314513 | Miller | May 1994 | A |
5328548 | Tsuji et al. | Jul 1994 | A |
5364423 | Bigelow et al. | Nov 1994 | A |
5374293 | Takashita et al. | Dec 1994 | A |
5380390 | Tselesin | Jan 1995 | A |
5443032 | Vichr et al. | Aug 1995 | A |
5453106 | Roberts | Sep 1995 | A |
5454343 | Eun et al. | Oct 1995 | A |
5458754 | Sathrum et al. | Oct 1995 | A |
5486131 | Cesna et al. | Jan 1996 | A |
5492771 | Lowder et al. | Feb 1996 | A |
5492774 | Tateno | Feb 1996 | A |
5496386 | Broberg et al. | Mar 1996 | A |
5500248 | Iacovangelo et al. | Mar 1996 | A |
5505272 | Clark | Apr 1996 | A |
5518443 | Fisher | May 1996 | A |
5527424 | Mullins | Jun 1996 | A |
5536202 | Appel et al. | Jul 1996 | A |
5547417 | Breivogel et al. | Aug 1996 | A |
5551959 | Martin et al. | Sep 1996 | A |
5560745 | Roberts | Oct 1996 | A |
5560754 | Johnson et al. | Oct 1996 | A |
5609286 | Anthon | Mar 1997 | A |
5620489 | Tselesin | Apr 1997 | A |
5660894 | Chen et al. | Aug 1997 | A |
5669943 | Horton et al. | Sep 1997 | A |
5674572 | Sarin et al. | Oct 1997 | A |
5725421 | Goers et al. | Mar 1998 | A |
5746931 | Graebner | May 1998 | A |
RE35812 | Oliver | Jun 1998 | E |
5772756 | Davies et al. | Jun 1998 | A |
5776214 | Wood | Jul 1998 | A |
5779743 | Wood | Jul 1998 | A |
5791975 | Cesna et al. | Aug 1998 | A |
5801073 | Robbins et al. | Sep 1998 | A |
5816891 | Woo | Oct 1998 | A |
5820450 | Calhoun | Oct 1998 | A |
5833519 | Moore | Nov 1998 | A |
5840090 | Ho et al. | Nov 1998 | A |
5851138 | Hempel, Jr. | Dec 1998 | A |
5855314 | Shiue et al. | Jan 1999 | A |
5868806 | Nishio et al. | Feb 1999 | A |
5885137 | Ploessl | Mar 1999 | A |
5902173 | Tanaka | May 1999 | A |
5916011 | Kim et al. | Jun 1999 | A |
5919084 | Powell et al. | Jul 1999 | A |
5921856 | Zimmer | Jul 1999 | A |
5924917 | Benedict et al. | Jul 1999 | A |
5961373 | Lai | Oct 1999 | A |
5975988 | Christianson | Nov 1999 | A |
5976001 | Powell et al. | Nov 1999 | A |
5976205 | Andrews et al. | Nov 1999 | A |
5980852 | Gurns et al. | Nov 1999 | A |
5980982 | Degawa et al. | Nov 1999 | A |
5985228 | Corrigan et al. | Nov 1999 | A |
6001008 | Fujimori et al. | Dec 1999 | A |
6001174 | Fang | Dec 1999 | A |
6024824 | Krech | Feb 2000 | A |
6027659 | Billett | Feb 2000 | A |
6030595 | Sumiya et al. | Feb 2000 | A |
6039641 | Sung | Mar 2000 | A |
6054183 | Zimmer et al. | Apr 2000 | A |
6093280 | Kirchner et al. | Jul 2000 | A |
6106382 | Sakaguchi | Aug 2000 | A |
6123612 | Goers | Sep 2000 | A |
6125612 | Main | Oct 2000 | A |
6159087 | Briang et al. | Dec 2000 | A |
6159286 | Sung | Dec 2000 | A |
6179886 | Gordeev et al. | Jan 2001 | B1 |
6190240 | Kinoshita et al. | Feb 2001 | B1 |
6193770 | Sung | Feb 2001 | B1 |
6196911 | Preston et al. | Mar 2001 | B1 |
6200360 | Imai et al. | Mar 2001 | B1 |
6206942 | Wood et al. | Mar 2001 | B1 |
6213856 | Cho et al. | Apr 2001 | B1 |
6217413 | Christianson | Apr 2001 | B1 |
6224469 | Ohmori et al. | May 2001 | B1 |
6258138 | DeVoe et al. | Jul 2001 | B1 |
6258201 | Krech | Jul 2001 | B1 |
6258237 | Gal-Or et al. | Jul 2001 | B1 |
6281129 | Easter et al. | Aug 2001 | B1 |
6284556 | Wang et al. | Sep 2001 | B1 |
6286498 | Sung | Sep 2001 | B1 |
6293854 | Kimura et al. | Sep 2001 | B1 |
6299508 | Gagliardi et al. | Oct 2001 | B1 |
6299521 | Morimura et al. | Oct 2001 | B1 |
6312324 | Mitsui et al. | Nov 2001 | B1 |
6319108 | Adefris et al. | Nov 2001 | B1 |
6325709 | Nanda et al. | Dec 2001 | B1 |
6346202 | Molnar | Feb 2002 | B1 |
6354918 | Togawa et al. | Mar 2002 | B1 |
6354929 | Adefris et al. | Mar 2002 | B1 |
6368198 | Sung et al. | Apr 2002 | B1 |
6371838 | Holzapfel | Apr 2002 | B1 |
6371842 | Romero | Apr 2002 | B1 |
6372001 | Omar et al. | Apr 2002 | B1 |
6394886 | Chen et al. | May 2002 | B1 |
6409580 | Lougher et al. | Jun 2002 | B1 |
6416878 | An | Jul 2002 | B2 |
6439986 | Myoung et al. | Aug 2002 | B1 |
6446740 | Eyre | Sep 2002 | B2 |
6458018 | Goers et al. | Oct 2002 | B1 |
6478831 | Tselesin | Nov 2002 | B2 |
6497853 | Davies et al. | Dec 2002 | B1 |
6524523 | Jeng et al. | Feb 2003 | B1 |
6544599 | Brown et al. | Apr 2003 | B1 |
6551176 | Garretson | Apr 2003 | B1 |
6605798 | Cullen | Aug 2003 | B1 |
6607423 | Areayan et al. | Aug 2003 | B1 |
6616725 | Cho et al. | Sep 2003 | B2 |
6616752 | Basura | Sep 2003 | B1 |
6626167 | Kim et al. | Sep 2003 | B2 |
6627168 | Ohtsubo et al. | Sep 2003 | B1 |
6629884 | Goers | Oct 2003 | B1 |
6646725 | Eichinger | Nov 2003 | B1 |
6672943 | Vogtmann | Jan 2004 | B2 |
6679243 | Sung | Jan 2004 | B2 |
6692547 | Kim | Feb 2004 | B2 |
6694847 | Hiroyasu et al. | Feb 2004 | B2 |
6722952 | Goers et al. | Apr 2004 | B2 |
6749485 | James et al. | Jun 2004 | B1 |
6755720 | Ishizaki et al. | Jun 2004 | B1 |
6769969 | Duescher | Aug 2004 | B1 |
6790126 | Wood et al. | Sep 2004 | B2 |
6818029 | Myoung et al. | Nov 2004 | B2 |
6824455 | Osterheld et al. | Nov 2004 | B2 |
6835365 | Davies et al. | Dec 2004 | B1 |
6837979 | Uzho et al. | Jan 2005 | B2 |
6884155 | Sung et al. | Apr 2005 | B2 |
6899592 | Kojima et al. | May 2005 | B1 |
6905571 | Sakuma et al. | Jun 2005 | B2 |
6935365 | Schuster | Aug 2005 | B2 |
6945857 | Doan et al. | Sep 2005 | B1 |
6979357 | Fries et al. | Dec 2005 | B2 |
7021995 | Toge et al. | Apr 2006 | B2 |
7033408 | Fries et al. | Apr 2006 | B2 |
7044990 | Ishizaki et al. | May 2006 | B2 |
7066795 | Balagani et al. | Jun 2006 | B2 |
7067903 | Tachibana et al. | Jun 2006 | B2 |
7124753 | Sung | Oct 2006 | B2 |
7150677 | Yamashita et al. | Dec 2006 | B2 |
7198553 | Goers | Apr 2007 | B2 |
7201645 | Sung | Apr 2007 | B2 |
7247577 | Palmgren et al. | Jul 2007 | B2 |
7258708 | Sung | Aug 2007 | B2 |
7261621 | Moon et al. | Aug 2007 | B2 |
7323049 | Sung | Jan 2008 | B2 |
7368013 | Sung | May 2008 | B2 |
7384436 | Sung | Jun 2008 | B2 |
7393264 | Sung | Jul 2008 | B1 |
7404857 | Sung | Jul 2008 | B2 |
7465217 | Kinoshita et al. | Dec 2008 | B2 |
7473162 | Sung et al. | Jan 2009 | B1 |
7494404 | Sung | Feb 2009 | B2 |
7507267 | Hall et al. | Mar 2009 | B2 |
7585366 | Sung | Sep 2009 | B2 |
7641538 | Goers | Jan 2010 | B2 |
7651368 | Kendall et al. | Jan 2010 | B2 |
7651386 | Sung | Jan 2010 | B2 |
7658666 | Sung | Feb 2010 | B2 |
7690971 | Sung | Apr 2010 | B2 |
7762872 | Sung | Jul 2010 | B2 |
7791188 | Sung | Sep 2010 | B2 |
7840305 | Behr et al. | Nov 2010 | B2 |
7954483 | Kim et al. | Jun 2011 | B2 |
8104464 | Sung | Jan 2012 | B2 |
8377158 | Palmgren et al. | Feb 2013 | B2 |
8393934 | Sung | Mar 2013 | B2 |
8398466 | Sung et al. | Mar 2013 | B2 |
8545583 | Duescher | Oct 2013 | B2 |
8678878 | Sung | Mar 2014 | B2 |
8777699 | Sung | Jul 2014 | B2 |
20010003884 | Wei et al. | Jun 2001 | A1 |
20010009844 | Cho et al. | Jul 2001 | A1 |
20010046835 | Wielonski et al. | Nov 2001 | A1 |
20020014041 | Baldonai et al. | Feb 2002 | A1 |
20020042200 | Fawcett | Apr 2002 | A1 |
20020127962 | Cho et al. | Sep 2002 | A1 |
20020139680 | George | Oct 2002 | A1 |
20020164928 | Tolles | Nov 2002 | A1 |
20020173234 | Sung et al. | Nov 2002 | A1 |
20020182401 | Lawing | Dec 2002 | A1 |
20030054746 | Nussbaumer et al. | Mar 2003 | A1 |
20030084894 | Sung | May 2003 | A1 |
20030092357 | Yoon et al. | May 2003 | A1 |
20030114094 | Myoung et al. | Jun 2003 | A1 |
20030207659 | Annen et al. | Nov 2003 | A1 |
20040009742 | Lin et al. | Jan 2004 | A1 |
20040023610 | Hu et al. | Feb 2004 | A1 |
20040060243 | Fries et al. | Apr 2004 | A1 |
20040079033 | Long | Apr 2004 | A1 |
20040091627 | Ohara et al. | May 2004 | A1 |
20040107648 | Sung | Jun 2004 | A1 |
20040112359 | Sung | Jun 2004 | A1 |
20040180617 | Goers | Sep 2004 | A1 |
20040185763 | Ishizaki et al. | Sep 2004 | A1 |
20040203325 | Donohue | Oct 2004 | A1 |
20040235406 | Duescher | Nov 2004 | A1 |
20040238946 | Tachibana et al. | Dec 2004 | A1 |
20050032462 | Gagliardi et al. | Feb 2005 | A1 |
20050032469 | Duescher | Feb 2005 | A1 |
20050060941 | Provow | Mar 2005 | A1 |
20050095959 | Sung | May 2005 | A1 |
20050118939 | Duescher | Jun 2005 | A1 |
20050215188 | Toge et al. | Sep 2005 | A1 |
20050227590 | Sung | Oct 2005 | A1 |
20050260939 | Andrews et al. | Nov 2005 | A1 |
20060073774 | Sung | Apr 2006 | A1 |
20060079160 | Balagani et al. | Apr 2006 | A1 |
20060079162 | Yamashita et al. | Apr 2006 | A1 |
20060128288 | An et al. | Jun 2006 | A1 |
20060135050 | Petersen et al. | Jun 2006 | A1 |
20060143991 | Sung | Jul 2006 | A1 |
20060213128 | Sung | Sep 2006 | A1 |
20060254154 | Huang et al. | Nov 2006 | A1 |
20060258276 | Sung | Nov 2006 | A1 |
20070051354 | Sung | Mar 2007 | A1 |
20070051355 | Sung | Mar 2007 | A1 |
20070060026 | Sung | Mar 2007 | A1 |
20070066194 | Wielonski et al. | Mar 2007 | A1 |
20070093181 | Lugg et al. | Apr 2007 | A1 |
20070128994 | Sung | Jun 2007 | A1 |
20070155298 | Sung | Jul 2007 | A1 |
20070232074 | Ravi et al. | Oct 2007 | A1 |
20070249270 | Sung | Oct 2007 | A1 |
20070254566 | Sung | Nov 2007 | A1 |
20070264918 | Sung | Nov 2007 | A1 |
20070266639 | Sung | Nov 2007 | A1 |
20070295267 | Sung | Dec 2007 | A1 |
20080014845 | Yimaz et al. | Jan 2008 | A1 |
20080076338 | Andrews et al. | Mar 2008 | A1 |
20080096479 | Sung | Apr 2008 | A1 |
20080153398 | Sung | Jun 2008 | A1 |
20080171503 | Sung | Jul 2008 | A1 |
20080271384 | Puthanangady et al. | Nov 2008 | A1 |
20080292869 | Sung | Nov 2008 | A1 |
20080296756 | Koch et al. | Dec 2008 | A1 |
20090068937 | Sung | Mar 2009 | A1 |
20090073774 | Horesh | Mar 2009 | A1 |
20090093195 | Sung | Apr 2009 | A1 |
20090094902 | Hou | Apr 2009 | A1 |
20090123705 | Sung | May 2009 | A1 |
20090145045 | Sung | Jun 2009 | A1 |
20090215363 | Sung | Aug 2009 | A1 |
20090283089 | Sung | Nov 2009 | A1 |
20100015898 | An et al. | Jan 2010 | A1 |
20100022174 | Chou et al. | Jan 2010 | A1 |
20100139174 | Sung | Jun 2010 | A1 |
20100186479 | Borucki et al. | Jul 2010 | A1 |
20100203811 | Philipossian et al. | Aug 2010 | A1 |
20100221990 | Sung | Sep 2010 | A1 |
20100248595 | Dinh-Ngoc et al. | Sep 2010 | A1 |
20100248596 | Sung | Sep 2010 | A1 |
20100261419 | Sung | Oct 2010 | A1 |
20100273402 | Shimizu | Oct 2010 | A1 |
20110076925 | Sung | Mar 2011 | A1 |
20110104989 | Boutaghou et al. | May 2011 | A1 |
20110192652 | Shen et al. | Aug 2011 | A1 |
20110212670 | Sung | Sep 2011 | A1 |
20110252710 | Hall et al. | Oct 2011 | A1 |
20110275288 | Sung | Nov 2011 | A1 |
20110293905 | Sung | Dec 2011 | A1 |
20110296766 | Sung | Dec 2011 | A1 |
20120192499 | Sung | Aug 2012 | A1 |
20120241943 | Sung | Sep 2012 | A1 |
20120244790 | Sung | Sep 2012 | A1 |
20120260582 | Sung | Oct 2012 | A1 |
20120302146 | Sung | Nov 2012 | A1 |
20130225052 | Song et al. | Aug 2013 | A1 |
20130244552 | Lee et al. | Sep 2013 | A1 |
20140099868 | Sung | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
1351922 | Jun 2002 | CN |
1494984 | May 2004 | CN |
0712941 | May 1966 | EP |
0238434 | Mar 1987 | EP |
0280657 | Aug 1988 | EP |
0331344 | Feb 1989 | EP |
0264674 | Sep 1995 | EP |
1075898 | Feb 2001 | EP |
2239011 | Jun 1991 | GB |
2366804 | Mar 2002 | GB |
06182184 | Apr 1994 | JP |
10128654 | May 1998 | JP |
10180618 | Jul 1998 | JP |
11048122 | Feb 1999 | JP |
11077536 | Mar 1999 | JP |
2000167774 | Jun 2000 | JP |
2000343436 | Dec 2000 | JP |
2003071718 | Mar 2003 | JP |
2004025401 | Jan 2004 | JP |
2007044823 | Feb 2007 | JP |
1020020036138 | May 2002 | KR |
200339181 | Jan 2004 | KR |
1020070063569 | Jun 2007 | KR |
WO 9427883 | Dec 1994 | WO |
WO 9527596 | Oct 1995 | WO |
WO 9531006 | Nov 1995 | WO |
WO 9606732 | Mar 1996 | WO |
WO 9810897 | Mar 1998 | WO |
WO 9845091 | Mar 1998 | WO |
WO 9851448 | Mar 1998 | WO |
WO 9845092 | Oct 1998 | WO |
WO 0231078 | Apr 2002 | WO |
WO 2004094106 | Nov 2004 | WO |
WO 2006039413 | Apr 2006 | WO |
WO 2006124792 | Nov 2006 | WO |
WO 2007032946 | Mar 2007 | WO |
WO 2008063599 | May 2008 | WO |
WO 2009043058 | Apr 2009 | WO |
WO 2009064677 | May 2009 | WO |
WO 2012040374 | Mar 2012 | WO |
Entry |
---|
Colmonoy Technical Data Sheet; No. DSP-A; 1993. |
Endecott's Specifications; 2004. |
Kennametal Specification for DMHPM002 Hot Press Matrix N-50 Dec. 6, 2001. |
Material Safety Data Sheet (MSDS), Wall Colmonoy Corporation; prepared Jul. 20, 1989. |
Material Safety Data Sheet MSDS); Kennametal; issued Jun. 11, 2004. |
Sung et al.; The Eastern Wind of Diamond Symthesis; New Diamond and Frontier Carpon Technology; 2003; pp. 47-61; vol. 13, No. 1. |
Sung et al; Mechanism of the Solvent-Assisted Graphite to Diamond Transition Under High Pressure: Implications for the Selection of Catalysts, High Temperatures-High Pressure; 1995/1996; pp. 523-546; vol. 27/28. |
Syndite, CTM302; Announcement, Elementsix Advancing Diamond; Jan. 14, 2003; http://www.e6.com/en/resourches/announcementsheets/CTM302.pdf; as accessed on Dec. 16, 2008. |
Yasunaga et al; Advances in Abrasive Technology, III; Soc. of Grinding Engineers (SGE) in Japan; 2000. (Abstract Only). |
Number | Date | Country | |
---|---|---|---|
20150072595 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61246816 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12850747 | Aug 2010 | US |
Child | 14223726 | US |