Pursuant to 35 U.S.C. § 119 and the Paris Convention Treaty, this application claims foreign priority to Chinese Patent Application No. 202010068981.9 filed Jan. 21, 2020, the contents of which, including any intervening amendments thereto, are incorporated herein by reference. Inquiries from the public to applicants or assignees concerning this document or the related applications should be directed to: Matthias Scholl P. C., Attn.: Dr. Matthias Scholl Esq., 245 First Street, 18th Floor, Cambridge, Mass. 02142.
The disclosure relates to a system for flattening steel plates.
Steel plates may deform during the cooling and transportation process and need to be flattened. In general, a straightening machine has a limited capacity in flattening materials with various sizes. For example, conventional straightening machine can thermally treat steel plates having a thickness of less than 100 mm and cold treat steel plates having a thickness of less than 40 mm.
In recent years, roller levelers have been used for flattening steel plates with thickness of more than 100 mm. For flattening, at least two backing plates are disposed on two sides of the steel plates, respectively. After the process is completed, the backing plates tend to adhere to the steel plates, and it is laborsome to remove the backing plates. The flatness of the steel plates is judged by experience, which is unreliable.
The disclosure provides a system for flattening steel plates.
Referring to
Referring to
Referring to
The third robot 9′ has the same structure as the fourth robot 9″. Referring to
Referring to
Referring to
Referring to
Referring to
The following advantages are associated with the system for flattening steel plates of the disclosure. The system for flattening steel plates offers advantages in continuous stability, higher degree of automation, lower labor intensity, higher flattening accuracy and production efficiency over related flattening systems.
In the drawings, the following reference numbers are used: 1. Crane; 2. First conveyor; 2′. Second conveyor; 3. First shape detector; 3′. Second shape detector; 4. First rangefinder; 4′. Second rangefinder; 5. First detection device; 5′. Second detection device; 6. First idler roller; 6′. Second idler roller; 7. Flattening machine; 8′. First robot; 8″. Second robot; 9′. Third robot; 9″. Fourth robot; 4.1. First roller; 4.1′. Second roller; 4.2. First encoder; 4.2′. Second encoder; 4.3. First lifting cylinder; 4.3′. Second lifting cylinder; 4.4. First guiding device; 4.4′. Second guiding device; 7.1. Flattening table; 7.2. Indenter; 7.3. Pneumatic cylinder; 7.4. Rack enclosure; 7.5. Trolley; 7.4.1. First column; 7.4.2. Second column; 7.4.1′. Third column; 7.4.2′. Fourth column; 7.5. Trolley; 9.1. Base assembly; 9.2. Traverse device; 9.3. Pushing device; 9.4. Swing device; 9.5. Electromagnet; 9.1.1. Base plate; 9.1.2. First guide rail; 9.1.2′. Second guide rail; 9.1.3. Gear rack; 9.1.4. Rail clip; 9.2.1. First base; 9.2.2. First sliding block; 9.2.2′. Second sliding block; 9.2.3. Mounting hole; 9.2.4. First gear motor; 9.2.5. Second base; 9.2.6. Gear shaft; 9.2.7. Bearing; 9.2.8. Spacer ring; 9.2.9. First shaft sleeve; 9.3.1. Second gear motor; 9.3.2. Second t shaft sleeve; 9.3.3. Shaft; 9.3.4. First bearing seat; 9.3.4′. Second bearing seat; 9.3.5. First pushing bearing; 9.3.5′. Second pushing bearing; 9.3.6. First through cover; 9.3.7. Second through cover; 9.3.7′. Third through cover; 9.3.8. End cover; 9.3.9. Baffle; 9.3.10. Pushing rack; 9.4.1. Third gear motor; 9.4.2. Bearing base; 9.4.3. Nut; 9.4.4. Third shaft sleeve; 9.4.5. First swing bearing; 9.4.5′. Second swing bearing; 9.4.6. Third base; 9.4.7. Rotating shaft; 9.4.8. Fourth shaft sleeve; 9.4.9. Fifth shaft sleeve; 9.4.10. Fourth through cover; 9.4.11. Bevel gear; 9.4.12. Bearing baffle; 9.4.13. Third base; 9.4.13′. Fourth base; 9.4.14. First spacer; 9.4.14′. Second spacer; 9.4.15. Swing arm; 9.5. Electromagnet; I′. First backing plate; I″. Second backing plate; and II. Steel plate.
To further illustrate the disclosure, embodiments detailing a system for flattening steel plates of the disclosure are described below. It should be noted that the following embodiments are intended to describe and not to limit the disclosure.
A process of flattening a steel plate:
A steel plate II is hoisted by a crane 1 from a raw material warehouse to a first conveyor 2. A first shape detector 3 is configured to detect the shape of the steel plate II when the steel plate II moves toward the flattening machine 7.
A first guiding device 4.4 helps a first roller 4.1 stay on track. When the steel plate II is located directly below the first detection device 5, the first roller 4.1 is lifted up by a first lifting cylinder 4.3 so as to contact with the steel plate II. The conveying distance of the steel plate II is monitored by a first rangefinder 4. A first encoder 4.2 is configured to record the number of revolutions m1. If the radius of the first roller 4.1 is R, then the perimeter of the first roller 4.1 is 2πR, and the conveying distance of the steel plate II is L=2m1ηR.
A first idler roller 6 and a second idler roller 6′ are lifted to the highest position before flattening of the steel plate. The steel plate II is then lifted so as to create a gap between the lower surface of the steel plate II and the upper surface of the flattening table 7.1. A first robot 8′, a second robot 8″, a third robot 9′, and a fourth robot 9″ are disposed on the flattening machine. The first idler roller 6 and the second idler roller 6′ are lowered at the lowest position. A trolley 7.5 is configured to adjust the position of an indenter 7.2. A pneumatic cylinder 7.3 drives the indenter 7.2 to move downwards, flattening the steel plate II.
Then the pneumatic cylinder 7.3 drives the indenter 7.2 to move upwards, allowing the first robot 8′ and the second robot 8″ to retract a first backing plate I′. The first idler roller 6 and the second idler roller 6′ are lifted to the highest position so as to lift the steel plate II, allowing the third robot 9′ and the fourth robot 9″ to retract a second backing plate I″. The first idler roller 6 and the second idler roller 6′ are lowered at the lowest position and the steel plate II is transported forward for next flattening.
When the first detection device 5 cannot detect the steel plate II, the first roller 4.1 is lowered at the lowest position by a first lifting cylinder 4.3. When the first encoder 4.2 has gone k revolutions, the steel plate II has a total length of L=2kπR.
When the second detection device 5′ cannot detect the steel plate II, the second roller 4.1′ is lowered at the lowest position by a second lifting cylinder 4.3′.
The second shape detector 3′ is configured to detect the shape of the flattened steel plate II. When the shape of the steel plate II does not meet the requirements of the finished products, the first conveyor 2 and the second conveyor 2′ are configured to transport the steel plate II to the flattened machine in the opposite direction so as to flatten the steel plate II again.
A crane 1 is configured to load or unload the flattened steel plate II to a finished product warehouse.
A process of placing the second backing plate I″ using the third robot 9′ and the fourth robot 9″.
Referring to
The electromagnet 9.5 is magnetic in the energized state, and non-magnetic in the de-energized state.
A first gear motor 9.2.4 drives the gear shaft 9.2.6 to rotate, interlocking the teeth of the first gear motor 9.2.4 with that of the gear rack 9.1.3. The first base 9.2.1 and the second base 9.2.5 drive the first sliding block 9.2.2 and the second sliding block 9.2.2′ to move along the first guide rail 9.1.2 and the second guide rail 9.1.2′, thereby moving laterally the pushing device 9.3, the swing device 9.4, the electromagnet 9.5, and the second backing plate I″.
The pushing device 9.3 can be used to adjust the position of the second backing plate I″. The second gear motor 9.3.1 drives the shaft 9.3.3 to rotate, interlocking the teeth of the shaft 9.3.3 and the pushing rack 9.3.10. The swing device 9.4, excluding the third base 9.4.6 thereof, moves along the axis of the rotating shaft 9.4.7, thereby driving the second backing plate I″ to move.
The swing device 9.4 can be used to adjust the position of the second backing plate I″. The third gear motor 9.4.1 drives the rotating shaft 9.4.7 to rotate, thereby driving the bevel gear 9.4.11 to rotate. The bevel gear 9.4.11 interlocks with the teeth of the bevel gear of the swing arm 9.4.15 so that the swing arm 9.4.15 rotates around the axis of a first spacer 9.4.14 and a second spacer 9.4.14′, thereby adjusting the position of the second backing plate I″.
The angle and position of the second backing plate I″ are controlled by adjusting the traverse device 9.2, the pushing device 9.3, and the swing device 9.4. When the electromagnet 9.5 is powered off, the third robot 9′ and the fourth robot 9″ are retracted to the space among the four columns 7.4.1, 7.4.2, 7.4.1′, and 7.4.2′.
The electromagnet 9.5 can be moved to the position of the second backing plate I″ by adjusting the traverse device 9.2, the pushing device 9.3, and the swing device 9.4. The electromagnet 9.5 is energized, and then the second backing plate I″ is retracted to the space among the four columns 7.4.1, 7.4.2, 7.4.1′, and 7.4.2′.
It will be obvious to those skilled in the art that changes and modifications may be made, and therefore, the aim in the appended claims is to cover all such changes and modifications.
Number | Date | Country | Kind |
---|---|---|---|
202010068981.9 | Jan 2020 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3916742 | Biernot | Nov 1975 | A |
20080134740 | Xu | Jun 2008 | A1 |
20150146218 | Kerscher | May 2015 | A1 |
Number | Date | Country |
---|---|---|
103486995 | Jan 2014 | CN |
106955908 | Jul 2017 | CN |
107020310 | Aug 2017 | CN |
101421930 | Jul 2014 | KR |
20140108753 | Sep 2014 | KR |
Number | Date | Country | |
---|---|---|---|
20210220888 A1 | Jul 2021 | US |