System for force measurement upon orthodontic appliances

Information

  • Patent Grant
  • 11992383
  • Patent Number
    11,992,383
  • Date Filed
    Wednesday, April 6, 2022
    2 years ago
  • Date Issued
    Tuesday, May 28, 2024
    6 months ago
Abstract
Systems for force measurement upon orthodontic appliances are described. Generally, a system for measuring a force or moment imparted by an orthodontic appliance may comprise a dentition mold having one or more target teeth each formed upon a fixture and which is movable independently of the dentition mold, a measurement sensor coupled to the fixture, and a processor in communication with the measurement sensor. An orthodontic appliance may be configured for placement upon the dentition mold where the orthodontic appliance imparts a force or moment upon the one or more target teeth such that the force or moment is transmitted to the measurement sensor via the fixture for measurement of the force or moment.
Description
FIELD OF THE INVENTION

The present invention relates to methods and apparatus for orthodontics. More particularly, the present invention relates to methods and apparatus for measuring the shape and movement of orthodontic appliances to determine conformance with design intent.


BACKGROUND OF THE INVENTION

Orthodontics is a specialty of dentistry that is concerned with the study and treatment of malocclusions which can result from tooth irregularities, disproportionate facial skeleton relationships, or both. Orthodontics treats malocclusion through the displacement of teeth via bony remodeling and control and modification of facial growth.


This process has been traditionally accomplished by using static mechanical force to induce bone remodeling, thereby enabling teeth to move. In this approach, braces having an archwire interface with brackets are affixed to each tooth. As the teeth respond to the pressure applied via the archwire by shifting their positions, the wires are again tightened to apply additional pressure. This widely accepted approach to treating malocclusions takes about twenty-four months on average to complete, and is used to treat a number of different classifications of clinical malocclusion. Treatment with braces is complicated by the fact that it is uncomfortable and/or painful for patients, and the orthodontic appliances are perceived as unaesthetic, all of which creates considerable resistance to use. Further, the treatment time cannot be shortened by increasing the force, because too high a force results in root resorption, as well as being more painful. The average treatment time of twenty-four months is very long, and further reduces usage. In fact, some estimates provide that less than half of the patients who could benefit from such treatment elect to pursue orthodontics.


The use of plastic shell aligners is often utilized to perform orthodontic movements on the teeth while maintaining the aesthetics of the dentition. However, the plastic shell of the aligner may sometimes stretch so much that the shell applies an uncomfortable amount of force, which could be painful, to a patient. Alternatively, the plastic shell of the aligner may weaken or degrade over time such that the force applied by the aligner does not conform with the actual delivery of the force such that the movement of the teeth is inadequate.


However, due to the complex design and shape of the orthodontic aligners, measuring the expected forces applied upon the teeth by the aligners is difficult. This is further complicated by different formulations of polymers which can result in varying strength levels of the orthodontic aligners.


Accordingly, there exists a need for an effective way of measuring the actual forces imparted by the orthodontic aligners to determine whether the actual forces conform to the expected forces.


SUMMARY OF THE INVENTION

Orthodontic aligners are designed to impart a particular force or moment upon a specified portion of the dentition in order to effect a desired movement of one or more teeth as part of the treatment for correcting malocclusions. However, the aligner which is physically fabricated may impart forces upon the teeth which are not consistent with the level of force intended by design. While the discrepancy may be due to a number of different factors such as material selection, manufacturing errors, etc., the differences between the intended design and the fabricated design are difficult to measure due in part to the complex design of the orthodontic aligner.


Hence, a force measurement instrument may be used to measure a force and moment load imparted by an orthodontic appliance such as an aligner, brackets, arch wires, or other orthodontic devices upon the dentition in up to six dimensions in space such that the resulting reaction force and moment load of six dimensional output data from the orthodontic appliance may be measured. For example, the force and moment along or around three dimensional axes (X, Y, and Z axes) may be measured, e.g., Fx, Fy, Fz, Mx, My, Mz. This data may be obtained and used to determine whether the shape and movement of a removable or fixed orthodontic appliance such as an aligner conforms to the design intent of the treatment. The measurement of the force and moment can also be transformed to the tooth crown center and resistance center based coordinate systems, as further described herein.


The force measurement instrument may include a housing which supports a platform upon which the orthodontic aligner and arch model may be positioned and supported. A measurement sensor having a target tooth mounting plate positioned upon the measurement sensor may be located adjacent to the platform for providing a secondary platform upon which a force inducing feature may be secured.


In measuring the reaction forces of an orthodontic apparatus such as an aligner, a positive mold of the patient dentition may be fabricated based upon the scanned 3D model where one or more teeth of interest of the dentition may be designated as a target tooth (or teeth) where the resulting forces and moments of the corresponding aligner are to be measured. If the strength of the aligner which is designed to be positioned upon the patient's dentition for treatment is to be determined through measurement, at least one selected target tooth of the dentition mold in the region of the aligner to be measured may be designated as the target tooth and fabricated as a separate fixture from the rest of the dentition mold. The dentition mold may be representative of a patient's upper teeth or lower teeth and while the entire row may be fabricated, portions of the dentition representing a few number of teeth may instead be used depending upon the desired region for measurement.


The target tooth and fixture may form the complete dentition mold but may be movable independently of the dentition mold. The fixture may be slidably positioned along a slot defined within the mold to allow for the movement of the fixture separately from the mold. The dentition platform and dentition mold may be secured to the platform using, e.g., one or more fasteners, such that the dentition platform is stationary when attached to the platform. The fixture may be attached to the target tooth mounting plate upon the measurement sensor separately from the dentition platform such that the target tooth is aligned within the slot defined along the dentition mold. As the target tooth and fixture are intended to be moved relative to the dentition mold, a slight gap may remain between the target tooth and the adjacent teeth along the dentition mold so that the target tooth and fixture may move unhindered in all dimensions in order to measure the forces from the aligner.


The mold may be formed upon the dentition platform such that the target tooth and fixture may be attached to the target tooth mounting plate. Once the target tooth is adequately aligned with the rest of the teeth upon the mold, an orthodontic appliance such as an aligner may be placed upon the mold and target tooth to mimic a patient placing their aligner upon their teeth for treatment, as illustrated. With the aligner sufficiently placed upon the mold, the aligner may exert upon the target tooth forces and moments which are transmitted through the fixture, to the target tooth mounting plate, and ultimately to the measurement sensor which may then be used to measure the forces and moments imparted upon the target tooth by the aligner. Because of the gap formed between the target tooth and adjacent teeth on the mold, the target tooth may move and/or rotate unhindered to ensure a complete force and moment measurement. These measured forces and moments may be compared to the expected forces and moments generated by the digital model of the aligner to see how the actual values compare to the designed and expected values. If the actual values and the expected values are within an acceptable range, this may be an indication that the actual aligner is performing as expected. However, if the actual values and the expected values are outside of an acceptable range, this may be an indication that the fabricated aligner is not performing as expected where the discrepancy may be due to an error in the digital model, the fabrication process of the aligner, the materials used for aligner fabrication, or any number of other factors which may need to be addressed until the discrepancy is resolved.


The forces and moments applied to the target tooth may be transmitted via the fixture against the mounting plate for measurement by the sensor. The measurement sensor may be configured to detect various level of forces and moments.


Using a treatment planning software platform such as the uDesign treatment planning software (uLab Systems, Inc., San Mateo, CA) for treating orthodontic malocclusions, the digital 3D model of the patient's dentition obtained from scanned images may be exported from the software platform. Other commercially available treatment planning software systems may be used in the alternative as well. The target tooth may be identified in the software and the target tooth, dentition platform, and dentition mold may be fabricated from the digital model using, e.g., 3D printing, CNC machining, etc. and then assembled on the platform of the measurement instrument. Because of the presence of the gaps between the target tooth and adjacent teeth on the mold once the target tooth is positioned within the slot, a filler such as putty may be used to fill the gaps, if needed. The entire assembly of the target tooth and fixture secured on the mounting plate as well as the dentition platform and dentition mold secured upon the platform may then be scanned, for example, using an intra-oral scanner or other scanner to create a corresponding 3D digital model. The filler material may be removed from the gaps between the target tooth and mold.


The scanned digital model of the assembly may be opened in the software platform where the digital model of the target tooth may be digitally manipulated according to the real position of the target tooth and mold. The aligner to be placed upon the target tooth and mold may then be fabricated and any forces or moments imparted on the target tooth when aligned within the slot of the mold (without the aligner) may be measured initially and zeroed out to calibrate the sensor. The aligner may then be placed upon the mold and target tooth as a patient would wear their aligner and the resulting forces and moments imparted by the aligner upon the target tooth may be measured. After completing the collection of the force and moment data, the aligner may be remove from the mold and target tooth and the measurement may be repeated a number of times by replacing the aligner upon the assembly. After the measurement has been completed and the data collected, the measured output data may be applied upon the digital model of the scanned assembly where the forces and moments may be transformed into the crown and/or resistance center coordinate systems. In one variation, once the measurement data received from the measurement sensor 16 has been transformed, the transformed data may then be optionally displayed back upon the digital model of the dentition within the treatment planning software platform.


One variation of a system for measuring a force or moment imparted by an orthodontic appliance may generally comprise a dentition mold having one or more target teeth each formed upon a fixture and which is movable independently of the dentition mold, a measurement sensor coupled to the fixture, a processor in communication with the measurement sensor, and an orthodontic appliance configured for placement upon the dentition mold where the orthodontic appliance imparts a force or moment upon the one or more target teeth such that the force or moment is transmitted to the measurement sensor via the fixture for measurement of the force or moment.


One variation of a method of measuring a force or moment imparted by an orthodontic appliance may generally comprise receiving a force or moment imparted by an orthodontic appliance placed upon a dentition mold having one or more target teeth each formed upon a fixture and which is movable independently of the dentition mold, measuring the force or moment via a measurement sensor coupled to the fixture to compile force or moment data, receiving the force or moment data via a processor in communication with the measurement sensor, and transforming the force or moment data from a sensor coordinate system to a second coordinate system.


Another variation of a method of measuring a force or moment imparted by an orthodontic appliance may generally comprise fabricating an orthodontic appliance having one or more target teeth each formed upon a fixture and which is movable independently of the dentition mold, assembling the orthodontic appliance and the one or more target teeth upon a platform of a measurement instrument, scanning the orthodontic appliance and the one or more target teeth to form a digital model assembly, fabricating an orthodontic appliance based on the digital model assembly, positioning the orthodontic appliance upon the one or more target teeth so as to measure the force or moment imparted by the orthodontic appliance to compile force or moment data, and causing the force or moment data to transform from a first coordinate system to a second coordinate system.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B illustrate perspective views of one variation of a measurement instrument for measuring the force and moment loads imparted by an orthodontic aligner.



FIG. 1C illustrates an example showing the instrument in communication with another computer, processor, or network, etc. upon which a treatment planning software platform resides which may receive the transmitted output data from the instrument.



FIGS. 2A and 2B illustrate perspective assembly views of the variation of the measurement instrument and a dentition model formed of a dentition platform.



FIG. 2C illustrates yet another variation of the instrument which is configured to measure forces and moments imparted on any of the teeth.



FIGS. 3A and 3B illustrate perspective views of one variation of the measurement sensor and target tooth mounting plate that may be used to attach the target tooth and fixture.



FIG. 4 illustrates a flow diagram showing one variation of the workflow for forming and measuring the target tooth.



FIG. 5A illustrates an example of a 3D digital model which may be presented by the software platform for treatment planning.



FIG. 5B illustrates the digital model with target tooth as well as a digital representation of the platform and mounting plate from the scanned assembly.



FIG. 5C illustrates how the software platform may be programmed to prompt for input of the measured force and moment data as well as data representing the offset data after the sensor has been zeroed out.



FIG. 6 illustrates a perspective view of a target tooth digital model representation to show the different coordinate systems defined from each tooth or group of teeth which is targeted for measurement of the orthodontic appliance.



FIGS. 7A to 7D illustrate an example of each canine tooth in each quadrant to show how the crown and resistance coordinate systems may be defined for each tooth.



FIGS. 8A and 8B illustrate an example of the user interface for entering the measured sensor data without the oral appliance applied as well as the sensor data with the oral appliance applied to the teeth.



FIGS. 9A and 9B illustrate how the force and moment data feature on the software platform may be deactivated so that the treatment planning may be continued or completed.





DETAILED DESCRIPTION OF THE INVENTION

With treatment planning software, a treatment plan using aligners, brackets, etc. may be used to correct for any number of malocclusions with a patient's teeth. Particular treatment planning processes are described in further detail in U.S. Pat. Nos. 10,624,717; 10,335,250; 10,631,953; 10,357,336; 10,357,342; 10,588,723; 10,548,690, as well as U.S. Pat. Pubs. 2017/0100208; 2019/0321135; 2020/0205936; 2019/0343602; 2020/0170762; 2018/0078343; 2018/0078344; 2018/0078335; 2020/0146775. The details of these references are incorporated herein by reference in their entirety and for any purpose.


As part of the treatment planning, a three-dimensional (3D) digital scan of the patient's dental arch prior to treatment is typically obtained using any number of scanning methodologies and processes. This 3D scan of the dental arch may be used to generate an electronic 3D digital model corresponding to the scanned dentition of the patient. It is this 3D digital model which may be digitally manipulated via a processor or controller within a processing device such as a computer, tablet, etc. for developing a treatment plan upon which one or more orthodontic aligners may be configured for fabrication.


These orthodontic aligners are designed to impart a particular force or moment upon a specified portion of the dentition in order to effect a desired movement of one or more teeth as part of the treatment for correcting malocclusions. However, the aligner which is physically fabricated may impart forces upon the teeth which are not consistent with the level of force intended by design. While the discrepancy may be due to a number of different factors such as material selection, manufacturing errors, etc., the differences between the intended design and the fabricated design are difficult to measure due in part to the complex design of the orthodontic aligner.


Hence, a force measurement instrument 10 as shown in the perspective views of FIGS. 1A and 1B may be used to measure a force and moment load imparted by an orthodontic appliance such as an aligner, a plurality of brackets and an archwire, or other orthodontic devices upon the dentition in up to six dimensions in space such that the resulting reaction force and moment load of six dimensional output data from the orthodontic appliance may be measured. For example, the force and moment along or around three dimensional axes (X, Y, and Z axes) may be measured, e.g., Fx, Fy, Fz, Mx, My, Mz. This data may be obtained and used to determine whether the shape and movement of a removable or fixed orthodontic appliance such as an aligner conforms to the design intent of the treatment. The measurement of the force and moment can also be transformed to the tooth crown center and resistance center based coordinate systems, as further described herein.


As shown, the force measurement instrument 10 may include a housing 12 which encloses a controller or processor and other electronic components such as a memory component within and which supports a platform 14 upon which the orthodontic aligner and arch model may be positioned and supported. A measurement sensor 16 having a target tooth mounting plate 18 positioned upon the measurement sensor 16 may be located adjacent to the platform 14 for providing a secondary platform upon which a force inducing feature may be secured, as described in further detail herein. The instrument 10 may further include an output interface 20 such as a data port (e.g., RS232 data port) which may be used to transmit output data (e.g., Fx, Fy, Fz, Mx, My, Mz six-dimensional data) to another computer, processor, or network, etc. 22 upon which the treatment planning software platform resides which may receive the transmitted output data from the instrument 10, as shown in FIG. 1C.


Generally, in measuring the reaction forces of an orthodontic apparatus such as an aligner, a positive mold of the patient dentition may be fabricated based upon the scanned 3D model where one or more teeth of interest of the dentition may be designated as a target tooth (or teeth) where the resulting forces and moments of the corresponding aligner are to be measured. FIG. 2A shows a perspective assembly view of the instrument 10 and a dentition model formed of a dentition platform 30 having the dentition mold 32 formed upon or otherwise attached and located upon the dentition platform 30. If the strength of the aligner which is designed to be positioned upon the patient's dentition for treatment is to be determined through measurement, at least one selected target tooth 34 of the dentition mold 32 in the region of the aligner to be measured may be designated as the target tooth 34 and fabricated as a separate fixture 36 from the rest of the dentition mold 32. The dentition mold 32 may be representative of a patient's upper teeth or lower teeth and while the entire row may be fabricated, portions of the dentition representing a few number of teeth may instead be used depending upon the desired region for measurement.


As shown in the perspective views of FIGS. 2A and 2B, the target tooth 34 and fixture 36 may form the complete dentition mold 32 but may be movable independently of the dentition mold 32. The fixture 36 may be slidably positioned along a slot 38 defined within the mold 32 to allow for the movement of the fixture 36 separately from the mold 32. As shown in FIG. 2A, the dentition platform 30 and dentition mold 32 may be secured to the platform 14 using, e.g., one or more fasteners, such that the dentition platform 30 is stationary when attached to the platform 14. The fixture 36 may be attached to the target tooth mounting plate 18 upon the measurement sensor 16 separately from the dentition platform 30 such that the target tooth 34 is aligned within slot 38 defined along the dentition mold 32, as illustrated in FIG. 2B. As the target tooth 34 and fixture 36 are intended to be moved relative to the dentition mold 32, a slight gap may remain between the target tooth 34 and the adjacent teeth along the dentition mold 32, e.g., a gap of about 0.8 mm or less may be defined along each side of the target tooth 34, so that the target tooth 34 and fixture 36 may move unhindered in all dimensions in order to measure the forces from the aligner.


As shown in FIG. 2B, the mold 32 may be formed upon the dentition platform 30 such that the target tooth 34 and fixture 36 may be attached to the target tooth mounting plate 18. Once the target tooth 34 is adequately aligned with the rest of the teeth upon the mold 32, an orthodontic appliance such as an aligner 40 may be placed upon the mold 32 and target tooth 34 to mimic a patient placing their aligner 40 upon their teeth for treatment, as illustrated. With the aligner 40 sufficiently placed upon the mold 32, the aligner 40 may exert upon the target tooth 34 forces and moments which are transmitted through the fixture 36, to the target tooth mounting plate 18, and ultimately to the measurement sensor 16 which may then be used to measure the forces and moments imparted upon the target tooth 34 by the aligner 40. Because of the gap formed between the target tooth 34 and adjacent teeth on the mold 32, the target tooth 34 may move and/or rotate unhindered to ensure a complete force and moment measurement. These measured forces and moments may be compared to the expected forces and moments generated by the digital model of the aligner to see how the actual values compare to the designed and expected values. If the actual values and the expected values are within an acceptable range, this may be an indication that the actual aligner 40 is performing as expected. However, if the actual values and the expected values are outside of an acceptable range, this may be an indication that the fabricated aligner 40 is not performing as expected where the discrepancy may be due to an error in the digital model, the fabrication process of the aligner, the materials used for aligner fabrication, or any number of other factors which may need to be addressed until the discrepancy is resolved.



FIG. 2C shows yet another variation of the instrument 10 which is configured to measure forces and moments imparted on any of the teeth. Rather than a singular measurement sensor, multiple measurement sensors 42 may be positioned in a curved pattern to follow the curvature of the dentition mold 46 which may be formed of two or more individual target teeth arranged to be adjacent to one another to follow the curvature and positioning of the patient dentition. In the example shown, each of the individual teeth may be formed to be separated from one another upon the platform 14 while having a respective fixture 44 which may be attached to the mounting plate of a corresponding measurement sensor 42. When each of the individual target teeth are arranged to correspond to the dentition, each target tooth may be connected to the corresponding fixture 44 which is attached to the corresponding measurement sensor 42 which are arranged in the curved or arched configuration. The aligner 40 may be positioned upon the arranged target teeth such that each individual target tooth may measure the forces imparted by the aligner 40.



FIGS. 3A and 3B show perspective views of one variation of the measurement sensor 16 and target tooth mounting plate 18 that may be used to attach the target tooth 34 and fixture 36. As shown, the fixture 36 may be attached securely to the mounting plate 18 of the measurement sensor 16 such that the target tooth 34 may extend a distance from the mounting plate 18 for application of the aligner 40. As described, forces and moments applied to the target tooth 34 may be transmitted via the fixture 36 against the mounting plate 18 for measurement by the sensor 16. While the forces and moments may be measured relative to any coordinate system, FIG. 3A shows one example of a reference coordinate system for measuring the forces and moments imparted by the target tooth 34. The measurement sensor 16 may be configured to detect various level of forces and moments while the example shown of the sensor 16 may be configured to detect a maximum of the following values, e.g., 80 N/Nm for forces (Fx, Fy, Fz) along the axes and 1.2 N/Nm for moments (Mx, My, Mz) about the axes.



FIG. 4 illustrates a flow diagram showing one variation of the workflow for forming and measuring the target tooth 34. Using a treatment planning software platform such as the uDesign treatment planning software (uLab Systems, Inc., San Mateo, CA) for treating orthodontic malocclusions, the digital 3D model of the patient's dentition obtained from scanned images may be exported 50 from the software platform. Other commercially available treatment planning software systems may be used in the alternative as well.


The target tooth 34 may be identified in the software and the target tooth 34, dentition platform 30, and dentition mold 32 may be fabricated 52 from the digital model using, e.g., 3D printing, CNC machining, etc. and then assembled 54 on the platform 14 of the measurement instrument 10. Because of the presence of the gaps between the target tooth 34 and adjacent teeth on the mold 32 once the target tooth 34 is positioned within the slot 38, a filler such as putty may be used to fill the gaps, if needed. The entire assembly of the target tooth 34 and fixture 36 secured on the mounting plate 18 as well as the dentition platform 30 and dentition mold 32 secured upon the platform 14 may then be scanned 56, for example, using an intra-oral scanner or other scanner to create a corresponding 3D digital model. The filler material may be removed from the gaps between the target tooth 34 and mold 32.


The scanned digital model of the assembly may be opened in the software platform 58 where the digital model of the target tooth 34 may be digitally manipulated according to the real position of the target tooth 34 and mold 32. The aligner to be placed upon the target tooth 34 and mold 32 may then be fabricated 60 and any forces or moments imparted on the target tooth 34 when aligned within the slot 38 of the mold 32 (without the aligner 40) may be measured initially and zeroed out to calibrate the sensor 16. The aligner 40 may then be placed upon the mold 32 and target tooth 34 as a patient would wear their aligner and the resulting forces and moments imparted by the aligner 40 upon the target tooth 34 may be measured 62, as described herein. After completing the collection of the force and moment data, the aligner 40 may be remove from the mold 32 and target tooth 34 and the measurement may be repeated a number of times by replacing the aligner 40 upon the assembly. After the measurement has been completed and the data collected, the measured output data may be applied upon the digital model of the scanned assembly where the forces and moments may be transformed into the crown and/or resistance center coordinate systems 64, as described in further detail below.



FIG. 5A illustrates an example of a 3D digital model 70 which may be presented by the software platform for treatment planning. The software platform may be used for treatment planning of malocclusions but may also incorporate a feature 78, shown represented by an onscreen menu function, which may incorporate a programmed function for modeling and measuring the forces of a targeted tooth 72, illustrated as a highlighted tooth although any number of teeth may be selected for force measurement. As shown in FIG. 5B, the digital model 70 with target tooth 72 may be displayed, as noted above in step 58, as well as a digital representation of the platform 74 and mounting plate 76 from the scanned assembly, as noted above in step 56.


Once the fabricated orthodontic appliance (such as an aligner) has been fabricated and the resulting forces measured, as noted above in step 60, the digital assembly shown in FIG. 5B in the software platform may be programmed to prompt for an output of an STL file to output the conjoined STL and the target STL files. FIG. 5C illustrates how the software platform may be programmed to prompt for input of the measured force and moment data as well as data representing the offset data after the sensor 16 has been zeroed out, as represented by dialog window 79.


The target tooth 72 digital model representation is illustrated in the perspective view of FIG. 6 to show how the force and moment data may be measured relative to different coordinate systems defined from each tooth or group of teeth which is targeted for measurement of the orthodontic appliance. The target tooth 72 is illustrated as a canine tooth as one example showing how the different coordinate systems may be located such as the sensor coordinate system 84 which positions the center of the coordinate system at the location of where the force or moment is imparted. A crown coordinate system 80 may be additionally located at the center of mass of the crown 72 where the x-axis may be defined along a mesial-distal direction such that the x-axis may be tangent, e.g., to a virtual arch wire in the case of a bracket-wire system being modeled. The positive +x direction may extend from a relatively smaller tooth ID to a relatively larger tooth ID. The y-axis may extend along the buccal-lingual direction where the +y axis may extend towards the buccal direction, as shown, and the z-axis may extend along the long axis and is determined by the facial axis of the clinical crown (FACC) direction where the +z axis extends towards the occlusal surface of the crown 72.


Similarly, a resistance coordinate system 82 may be additionally located along a center of resistance of movement at a virtual point along the long axis in the root of the crown 72. As the resistance coordinate system 82 and crown coordinate system 80 may be parallel to one another, the +x axis may extend from a relatively smaller tooth ID to a relatively larger tooth ID, the +y axis may extend towards the buccal direction, and the +z axis may extend towards the occlusal surface of the crown 72. With the coordinate systems defined, the movement of the target tooth may be programmable along any of one or more axes.


Each target tooth may have its own coordinate axes defined and the direction of each crown and resistance coordinate system for each target tooth may be determined. FIGS. 7A to 7D illustrate an example of each canine tooth in each quadrant to show how the crown and resistance coordinate systems may be defined for each tooth. While this example illustrates the canine teeth, this is intended to be illustrative and any of the one or more teeth may have its own coordinate systems so defined. FIG. 7A shows a first crown 90 along the upper maxillary dentition and FIG. 7B shows a second crown 92 also along the upper maxillary dentition where the x-axes are each defined along the mesial-distal direction, the y-axis are each defined along the buccal-lingual direction towards the buccal surfaces, and the z-axes are defined along the long axis of each crown towards the occlusal surfaces. Likewise, FIG. 7C shows a third crown 94 along the lower mandibular dentition and FIG. 7D shows a fourth crown 96 also along the upper mandibular dentition. Similarly for these crowns, the x-axes are each defined along the mesial-distal direction, the y-axis are each defined along the buccal-lingual direction towards the buccal surfaces, and the z-axes are defined along the long axis of each crown towards the occlusal surfaces.



FIGS. 8A and 8B further illustrate an example of the user interface for entering the measured sensor data without the oral appliance applied 100 as well as the sensor data with the oral appliance applied 102 to the teeth. With the measured data entered, the software may be programmed to then transform the data either to the resistance coordinate system 82 using a first function 104 to account for the offset between the resistance coordinate system 82 and sensor coordinate system 84 or to the crown coordinate system 80 using a second function 106 to account for the offset between the crown coordinate system 80 and sensor coordinate system 84. Once the measurement data has been received from the measurement sensor and it has been transformed into either the crown coordinate system 80 or resistance coordinate system 82, the transformed data may be optionally displayed back upon the digital model such as the digital model 70 of the dentition, as shown within the treatment planning software platform, and/or upon a digital representation of the orthodontic appliance.


In either case, once the force and moment data has been transformed to the desired coordinate system, the feature 78 on the software platform may be deactivated, as shown in the user interface of FIG. 9A, so that the force measurement feature is removed, as shown in FIG. 9B so that the treatment planning may be continued or completed.


While different features are discussed, the system may incorporate any number of different features into a single system in any number of combinations. A single system provided may, for example, include or incorporate every feature described herein or it may include a select number of features depending upon the desired system.


The applications of the devices and methods discussed above are not limited to the one described but may include any number of further treatment applications. Modification of the above-described assemblies and methods for carrying out the invention, combinations between different variations as practicable, and variations of aspects of the invention that are obvious to those of skill in the art are intended to be within the scope of the claims.

Claims
  • 1. A system for measuring a force or moment imparted by an orthodontic appliance, comprising: a dentition mold having one or more target teeth each formed upon a fixture and which is movable independently of the dentition mold, wherein the dentition mold is formed based upon a scanned dentition of a patient;a measurement sensor coupled to the fixture;a processor in communication with the measurement sensor; andan orthodontic appliance configured for placement upon the dentition mold where the orthodontic appliance imparts a force or moment upon the one or more target teeth such that the force or moment is transmitted to the measurement sensor via the fixture for measurement of the force or moment, wherein the processor is configured to transform the force or moment data from a sensor coordinate system to a second coordinate system and display the force or moment data which has been transformed upon a digital model of the one or more target teeth of the scanned dentition.
  • 2. The system of claim 1 wherein the dentition mold comprises a plurality of target teeth each formed upon the fixture and which are each movable independently.
  • 3. The system of claim 1 wherein the measurement sensor is configured to measure a force along one or more axes and a moment about the one or more axes.
  • 4. The system of claim 1 wherein the orthodontic appliance comprises an aligner configured for placement upon the one or more target teeth.
  • 5. The system of claim 1 wherein the orthodontic appliance comprises a plurality of brackets and an archwire.
  • 6. The system of claim 1 further comprising a computer having a resident orthodontic treatment planning software in communication with the processor for receiving force or moment data detected via the measurement sensor.
  • 7. The system of claim 1 wherein the second coordinate system comprises a crown coordinate system or resistance coordinate system.
  • 8. A method of measuring a force or moment imparted by an orthodontic appliance, comprising: scanning a dentition mold having one or more target teeth and a fixture;receiving a force or moment imparted by an orthodontic appliance placed upon the dentition mold having the one or more target teeth each formed upon the fixture and which is movable independently of the dentition mold;measuring the force or moment via a measurement sensor coupled to the fixture to compile force or moment data;receiving the force or moment data via a processor in communication with the measurement sensor;transforming the force or moment data from a sensor coordinate system to a second coordinate system; anddisplaying the force or moment data which has been transformed upon a digital model of the one or more target teeth of the scanned dentition mold.
  • 9. The method of claim 8 wherein measuring the force or moment comprises measuring the force along one or more axes and the moment about the one or more axes.
  • 10. The method of claim 8 wherein the orthodontic appliance comprises an aligner configured for placement upon the one or more target teeth.
  • 11. The method of claim 8 wherein the orthodontic appliance comprises a plurality of brackets and an archwire.
  • 12. The method of claim 8 wherein receiving the force or moment data comprises receiving the force or moment data via a computer having a resident orthodontic treatment planning software in communication with the processor.
  • 13. The method of claim 8 wherein the second coordinate system comprises a crown coordinate system or resistance coordinate system.
  • 14. A method of measuring a force or moment imparted by an orthodontic appliance, comprising: fabricating a dentition mold having one or more target teeth each formed upon a fixture and which is movable independently of the dentition mold;assembling an orthodontic appliance and the dentition mold having the one or more target teeth upon a platform of a measurement instrument;scanning the dentition mold having and the one or more target teeth to form a digital model assembly;fabricating an orthodontic appliance based on the digital model assembly;positioning the orthodontic appliance upon the one or more target teeth so as to measure the force or moment imparted by the orthodontic appliance to compile force or moment data;causing the force or moment data to transform from a first coordinate system to a second coordinate system; anddisplaying the force or moment data which has been transformed upon a digital model of the one or more target teeth of the scanned dentition mold.
  • 15. The method of claim 14 wherein transforming the force or moment data comprises transforming the force or moment data from a sensor coordinate system to the second coordinate system.
  • 16. The method of claim 15 wherein the second coordinate system comprises a crown coordinate system or resistance coordinate system.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Patent Application No. 63/214,187 filed Jun. 23, 2021, the content of which is incorporated herein by reference in its entirety.

US Referenced Citations (541)
Number Name Date Kind
3521355 Pearlman Jul 1970 A
4068379 Miller et al. Jan 1978 A
4597739 Rosenberg Jul 1986 A
4889485 Iida Dec 1989 A
4983334 Adell Jan 1991 A
5055039 Abbatte et al. Oct 1991 A
5186623 Breads et al. Feb 1993 A
5259762 Farrell Nov 1993 A
5506607 Sanders et al. Apr 1996 A
5691905 Dehoff et al. Nov 1997 A
5863198 Doyle Jan 1999 A
5975893 Chishti et al. Nov 1999 A
6120287 Chen Sep 2000 A
6183248 Chishti et al. Feb 2001 B1
6210162 Chishti et al. Apr 2001 B1
6217325 Chishti et al. Apr 2001 B1
6227850 Chishti et al. May 2001 B1
6227851 Chishti et al. May 2001 B1
6250918 Sachdeva et al. Jun 2001 B1
6293790 Hilliard Sep 2001 B1
6299440 Phan et al. Oct 2001 B1
6309215 Phan et al. Oct 2001 B1
6315553 Sachdeva et al. Nov 2001 B1
6386878 Pavlovskaia et al. May 2002 B1
6390812 Chishti et al. May 2002 B1
6394801 Chishti et al. May 2002 B2
6398548 Chishti et al. Jun 2002 B1
6454565 Phan et al. Sep 2002 B2
6463344 Pavloskaia Oct 2002 B1
6471511 Chishti et al. Oct 2002 B1
6485298 Chishti et al. Nov 2002 B2
6488499 Miller Dec 2002 B1
6524101 Phan et al. Feb 2003 B1
6554611 Chishti et al. Apr 2003 B2
6572372 Phan et al. Jun 2003 B1
6582227 Phan et al. Jun 2003 B2
6602070 Miller et al. Aug 2003 B2
6607382 Kuo et al. Aug 2003 B1
6626666 Chishti et al. Sep 2003 B2
6629840 Chishti et al. Oct 2003 B2
6682346 Chishti et al. Jan 2004 B2
6688885 Sachdeva Feb 2004 B1
6699037 Chishti et al. Mar 2004 B2
6702575 Hilliard Mar 2004 B2
6705861 Chishti et al. Mar 2004 B2
6705863 Phan et al. Mar 2004 B2
6722880 Chishti et al. Apr 2004 B2
6729876 Chishti et al. May 2004 B2
6761560 Miller Jul 2004 B2
6783360 Chishti Aug 2004 B2
6786721 Chishti et al. Sep 2004 B2
6802713 Chishti et al. Oct 2004 B1
6830450 Knopp et al. Dec 2004 B2
6846179 Chapouland et al. Jan 2005 B2
6857429 Eubank Feb 2005 B2
6886566 Eubank May 2005 B2
6964564 Phan et al. Nov 2005 B2
7011517 Nicozisis Mar 2006 B2
7029275 Rubbert et al. Apr 2006 B2
7037108 Chishti et al. May 2006 B2
7040896 Pavlovskaia et al. May 2006 B2
7056115 Phan et al. Jun 2006 B2
7059850 Phan et al. Jun 2006 B1
7063533 Phan et al. Jun 2006 B2
7074038 Miller Jul 2006 B1
7077647 Choi et al. Jul 2006 B2
7092784 Simkins Aug 2006 B1
7104790 Cronauer Sep 2006 B2
7121825 Chishti et al. Oct 2006 B2
7125248 Phan et al. Oct 2006 B2
7134874 Chishti et al. Nov 2006 B2
7156661 Choi et al. Jan 2007 B2
7160110 Imgrund et al. Jan 2007 B2
7172417 Sporbert et al. Feb 2007 B2
7192275 Miller Mar 2007 B2
7220122 Chishti May 2007 B2
7320592 Chishti et al. Jan 2008 B2
7326051 Miller Feb 2008 B2
7331783 Chishti et al. Feb 2008 B2
7347688 Kopelman et al. Mar 2008 B2
7416407 Cronauer Aug 2008 B2
7434582 Eubank Oct 2008 B2
7435083 Chishti et al. Oct 2008 B2
7442041 Imgrund et al. Oct 2008 B2
7458812 Sporbert et al. Dec 2008 B2
7476100 Kuo Jan 2009 B2
7481121 Cao Jan 2009 B1
7553157 Abolfathi et al. Jun 2009 B2
7559328 Eubank Jul 2009 B2
7578673 Wen et al. Aug 2009 B2
7590462 Rubbert et al. Sep 2009 B2
7637262 Bailey Dec 2009 B2
7641828 Desimone et al. Jan 2010 B2
7658610 Knopp Feb 2010 B2
7689398 Cheng et al. Mar 2010 B2
7717708 Sachdeva et al. May 2010 B2
7771195 Knopp et al. Aug 2010 B2
7802987 Phan et al. Sep 2010 B1
7824180 Abolfathi et al. Nov 2010 B2
7826646 Pavlovskaia et al. Nov 2010 B2
7840247 Liew et al. Nov 2010 B2
7841858 Knopp et al. Nov 2010 B2
7845938 Kim et al. Dec 2010 B2
7854609 Chen et al. Dec 2010 B2
7878801 Abolfathi et al. Feb 2011 B2
7878804 Korytov et al. Feb 2011 B2
7878805 Moss et al. Feb 2011 B2
7883334 Li et al. Feb 2011 B2
7901207 Knopp et al. Mar 2011 B2
7905724 Kuo et al. Mar 2011 B2
7914283 Kuo Mar 2011 B2
7942672 Kuo May 2011 B2
7943079 Desimone et al. May 2011 B2
7957824 Boronvinskih et al. Jun 2011 B2
7987099 Kuo et al. Jul 2011 B2
8001972 Eubank Aug 2011 B2
8002543 Kang et al. Aug 2011 B2
8021147 Sporbert et al. Sep 2011 B2
8033282 Eubank Oct 2011 B2
8038444 Kitching et al. Oct 2011 B2
8070487 Chishti et al. Dec 2011 B2
8075306 Kitching et al. Dec 2011 B2
8099268 Kitching et al. Jan 2012 B2
8099305 Kuo et al. Jan 2012 B2
8105080 Chishti et al. Jan 2012 B2
8123519 Schultz Feb 2012 B2
8152518 Kuo Apr 2012 B2
8152523 Sporbert et al. Apr 2012 B2
8177551 Sachdeva et al. May 2012 B2
8235713 Phan et al. Aug 2012 B2
8272866 Chun et al. Sep 2012 B2
8275180 Kuo et al. Sep 2012 B2
8292617 Brandt et al. Oct 2012 B2
8303302 Teasdale Nov 2012 B2
8348665 Kuo Jan 2013 B2
8356993 Marston Jan 2013 B1
8401686 Moss et al. Mar 2013 B2
8401826 Cheng et al. Mar 2013 B2
8439672 Matov et al. May 2013 B2
8439673 Korytov et al. May 2013 B2
8444412 Baughman et al. May 2013 B2
8465280 Sachdeva et al. Jun 2013 B2
8469705 Sachdeva et al. Jun 2013 B2
8469706 Kuo Jun 2013 B2
8496474 Chishti et al. Jul 2013 B2
8512037 Andreiko Aug 2013 B2
8517726 Kakavand et al. Aug 2013 B2
8535580 Puttler et al. Sep 2013 B2
8562337 Kuo et al. Oct 2013 B2
8562338 Kitching et al. Oct 2013 B2
8562340 Chishti et al. Oct 2013 B2
8636509 Miller Jan 2014 B2
8636510 Kitching et al. Jan 2014 B2
8690568 Chapoulaud et al. Apr 2014 B2
8708697 Li et al. Apr 2014 B2
8734149 Phan et al. May 2014 B2
8734150 Chishti et al. May 2014 B2
8738165 Cinader, Jr. et al. May 2014 B2
8765031 Li et al. Jul 2014 B2
8777611 Cios Jul 2014 B2
8780106 Chishti et al. Jul 2014 B2
8807999 Kuo et al. Aug 2014 B2
8858226 Phan et al. Oct 2014 B2
8864493 Leslie-Martin et al. Oct 2014 B2
8899976 Chen et al. Dec 2014 B2
8899978 Kitching et al. Dec 2014 B2
8930219 Trosien et al. Jan 2015 B2
8936464 Kopelman Jan 2015 B2
8998608 Trosien et al. Jan 2015 B2
8944812 Kuo et al. Feb 2015 B2
8961173 Miller Feb 2015 B2
8986003 Valoir Mar 2015 B2
8992215 Chapoulaud et al. Mar 2015 B2
9004915 Moss et al. Apr 2015 B2
9022781 Kuo et al. May 2015 B2
9026238 Kraemer et al. May 2015 B2
9060829 Sterental et al. Jun 2015 B2
9107722 Matov et al. Aug 2015 B2
9119691 Namiranian et al. Sep 2015 B2
9119696 Giordano et al. Sep 2015 B2
9161823 Morton et al. Oct 2015 B2
9161824 Chishti et al. Oct 2015 B2
9204942 Phan et al. Dec 2015 B2
9211166 Kuo et al. Dec 2015 B2
9241774 Li et al. Jan 2016 B2
9301814 Kaza et al. Apr 2016 B2
9320575 Chishti et al. Apr 2016 B2
9326830 Kitching et al. May 2016 B2
9326831 Cheang May 2016 B2
9333052 Miller May 2016 B2
9345557 Anderson et al. May 2016 B2
9351809 Phan et al. May 2016 B2
9364297 Kitching et al. Jun 2016 B2
9375300 Matov et al. Jun 2016 B2
9414897 Wu et al. Aug 2016 B2
9433476 Khardekar et al. Sep 2016 B2
9492245 Sherwood et al. Nov 2016 B2
9820829 Kuo Nov 2017 B2
9844420 Cheang Dec 2017 B2
9917868 Ahmed Mar 2018 B2
9922170 Trosien et al. Mar 2018 B2
10011050 Kitching et al. Jul 2018 B2
10022204 Cheang Jul 2018 B2
10335250 Wen Jul 2019 B2
10357336 Wen Jul 2019 B2
10357342 Wen Jul 2019 B2
10548690 Wen Feb 2020 B2
10588723 Falkel Mar 2020 B2
10624717 Wen Apr 2020 B2
10631953 Wen Apr 2020 B2
10881486 Wen Jan 2021 B2
10925698 Falkel Feb 2021 B2
10952821 Falkel Mar 2021 B2
11051913 Wen Jul 2021 B2
11096763 Akopov et al. Aug 2021 B2
11207161 Brant Dec 2021 B2
11348257 Lang May 2022 B2
11364098 Falkel Jun 2022 B2
11553989 Wen et al. Jan 2023 B2
11583365 Wen Feb 2023 B2
11638628 Wen May 2023 B2
11663383 Cao May 2023 B2
11707180 Falkel Jul 2023 B2
11771524 Wen Oct 2023 B2
20010002310 Chishti et al. May 2001 A1
20020009686 Loc et al. Jan 2002 A1
20020010568 Rubbert et al. Jan 2002 A1
20020025503 Chapoulaud et al. Feb 2002 A1
20020042038 Miller et al. Apr 2002 A1
20020051951 Chishti et al. May 2002 A1
20020072027 Chisti Jun 2002 A1
20020094503 Chishti et al. Jul 2002 A1
20020110776 Abels et al. Aug 2002 A1
20020150859 Imgrund et al. Nov 2002 A1
20020177108 Pavlovskaia et al. Nov 2002 A1
20030003416 Chishti et al. Jan 2003 A1
20030008259 Kuo et al. Jan 2003 A1
20030039940 Miller Feb 2003 A1
20030190576 Phan et al. Oct 2003 A1
20030207224 Lotte Nov 2003 A1
20040023188 Pavlovskaia et al. Feb 2004 A1
20040029068 Sachdeva et al. Feb 2004 A1
20040038168 Choi et al. Feb 2004 A1
20040134599 Wang et al. Jul 2004 A1
20040142299 Miller Jul 2004 A1
20040152036 Abolfathi Aug 2004 A1
20040166456 Chishti et al. Aug 2004 A1
20040166462 Phan et al. Aug 2004 A1
20040166463 Wen et al. Aug 2004 A1
20040197728 Abolfathi et al. Oct 2004 A1
20040202983 Tricca et al. Oct 2004 A1
20040219471 Cleary et al. Nov 2004 A1
20040229183 Knopp et al. Nov 2004 A1
20040242987 Liew et al. Dec 2004 A1
20040253562 Knopp Dec 2004 A1
20050010450 Hultgren et al. Jan 2005 A1
20050019721 Chishti Jan 2005 A1
20050048432 Choi et al. Mar 2005 A1
20050095552 Sporbert et al. May 2005 A1
20050095562 Sporbert et al. May 2005 A1
20050118555 Sporbert et al. Jun 2005 A1
20050153255 Sporbert et al. Jul 2005 A1
20050192835 Kuo et al. Sep 2005 A1
20050238967 Rogers et al. Oct 2005 A1
20050241646 Sotos et al. Nov 2005 A1
20050244781 Abels et al. Nov 2005 A1
20050244782 Chishti et al. Nov 2005 A1
20050271996 Sporbert et al. Dec 2005 A1
20060003283 Miller et al. Jan 2006 A1
20060035197 Hishimoto Feb 2006 A1
20060068353 Abolfathi et al. Mar 2006 A1
20060078840 Robson Apr 2006 A1
20060078841 Desimone et al. Apr 2006 A1
20060084030 Phan et al. Apr 2006 A1
20060093982 Wen May 2006 A1
20060099546 Bergersen May 2006 A1
20060115785 Li et al. Jun 2006 A1
20060147872 Andreiko Jul 2006 A1
20060177789 O'Bryan Aug 2006 A1
20060188834 Hilliard Aug 2006 A1
20060199142 Liu et al. Sep 2006 A1
20060223022 Solomon Oct 2006 A1
20060223023 Lai et al. Oct 2006 A1
20060275731 Wen et al. Dec 2006 A1
20060275736 Wen et al. Dec 2006 A1
20070003907 Chishti et al. Jan 2007 A1
20070238065 Sherwood et al. Oct 2007 A1
20070264606 Muha et al. Nov 2007 A1
20070283967 Bailey Dec 2007 A1
20080032248 Kuo Feb 2008 A1
20080044786 Kalili Feb 2008 A1
20080050692 Hilliard Feb 2008 A1
20080051650 Massie et al. Feb 2008 A1
20080057461 Cheng et al. Mar 2008 A1
20080057462 Kitching et al. Mar 2008 A1
20080076086 Kitching et al. Mar 2008 A1
20080085487 Kuo et al. Apr 2008 A1
20080115791 Heine May 2008 A1
20080118882 Su May 2008 A1
20080141534 Hilliard Jun 2008 A1
20080182220 Chishti et al. Jul 2008 A1
20080206702 Hedge et al. Aug 2008 A1
20080215176 Borovinskih et al. Sep 2008 A1
20080233528 Kim et al. Sep 2008 A1
20080233530 Cinader Sep 2008 A1
20080248438 Desimone et al. Oct 2008 A1
20080248443 Chisti et al. Oct 2008 A1
20080261165 Steingart et al. Oct 2008 A1
20080268400 Moss et al. Oct 2008 A1
20080280247 Sachdeva et al. Nov 2008 A1
20080305451 Kitching et al. Dec 2008 A1
20080305453 Kitching et al. Dec 2008 A1
20090081604 Fisher Mar 2009 A1
20090117510 Minium May 2009 A1
20090191502 Cao et al. Jul 2009 A1
20090269714 Knopp Oct 2009 A1
20090280450 Kuo Nov 2009 A1
20090291407 Kuo Nov 2009 A1
20090291408 Stone-Collonge et al. Nov 2009 A1
20100036682 Trosien et al. Feb 2010 A1
20100055635 Kakavand Mar 2010 A1
20100086890 Kuo Apr 2010 A1
20100138025 Morton et al. Jun 2010 A1
20100167225 Kuo Jul 2010 A1
20100173266 Lu et al. Jul 2010 A1
20100179789 Sachdeva et al. Jul 2010 A1
20100239992 Brandt et al. Sep 2010 A1
20100280798 Pattijn et al. Nov 2010 A1
20110005527 Andrew et al. Jan 2011 A1
20110015591 Hanson et al. Jan 2011 A1
20110020761 Kalil Jan 2011 A1
20110039223 Li Feb 2011 A1
20110091832 Kim et al. Apr 2011 A1
20110114100 Alvarez et al. May 2011 A1
20110123944 Knopp et al. May 2011 A1
20110129786 Chun et al. Jun 2011 A1
20110159451 Kuo et al. Jun 2011 A1
20110165533 Li et al. Jul 2011 A1
20110269092 Kuo et al. Nov 2011 A1
20110269097 Sporbert et al. Nov 2011 A1
20110270588 Kuo et al. Nov 2011 A1
20110281229 Abolfathi Nov 2011 A1
20120035901 Kitching et al. Feb 2012 A1
20120123577 Chapoulaud et al. May 2012 A1
20120150494 Anderson et al. Jun 2012 A1
20120186589 Singh Jul 2012 A1
20120199136 Urbano Aug 2012 A1
20120214121 Greenberg Aug 2012 A1
20120225399 Teasdale Sep 2012 A1
20120225400 Chishti et al. Sep 2012 A1
20120225401 Kitching et al. Sep 2012 A1
20120227750 Tucker Sep 2012 A1
20120244488 Chishti et al. Sep 2012 A1
20120270173 Pumphrey et al. Oct 2012 A1
20120288818 Vendittelli Nov 2012 A1
20130004634 McCaskey et al. Jan 2013 A1
20130022255 Chen et al. Jan 2013 A1
20130052625 Wagner Feb 2013 A1
20130078593 Andreiko Mar 2013 A1
20130081271 Farzin-Nia et al. Apr 2013 A1
20130085018 Jensen et al. Apr 2013 A1
20130095446 Andreiko et al. Apr 2013 A1
20130122445 Marston May 2013 A1
20130122448 Kitching May 2013 A1
20130157213 Arruda Jun 2013 A1
20130201450 Bailey et al. Aug 2013 A1
20130204583 Matov et al. Aug 2013 A1
20130230819 Arruda Sep 2013 A1
20130231899 Khardekar et al. Sep 2013 A1
20130236848 Arruda Sep 2013 A1
20130266906 Soo Oct 2013 A1
20130302742 Li et al. Nov 2013 A1
20130308846 Chen et al. Nov 2013 A1
20130317800 Wu et al. Nov 2013 A1
20130323665 Dinh et al. Dec 2013 A1
20130325431 See et al. Dec 2013 A1
20140023980 Kitching et al. Jan 2014 A1
20140072926 Valoir Mar 2014 A1
20140073212 Lee Mar 2014 A1
20140076332 Luco Mar 2014 A1
20140122027 Andreiko et al. May 2014 A1
20140124968 Kim May 2014 A1
20140167300 Lee Jun 2014 A1
20140172375 Grove Jun 2014 A1
20140178830 Widu Jun 2014 A1
20140193765 Kitching et al. Jul 2014 A1
20140193767 Li et al. Jul 2014 A1
20140229878 Wen et al. Aug 2014 A1
20140242532 Arruda Aug 2014 A1
20140255864 Machata et al. Sep 2014 A1
20140272757 Chishti Sep 2014 A1
20140287376 Hultgren et al. Sep 2014 A1
20140288894 Chishti et al. Sep 2014 A1
20140315153 Kitching Oct 2014 A1
20140315154 Jung et al. Oct 2014 A1
20140067335 Andreiko et al. Nov 2014 A1
20140329194 Sachdeva et al. Nov 2014 A1
20140349242 Phan et al. Nov 2014 A1
20140358497 Kuo et al. Dec 2014 A1
20140363779 Kopelman Dec 2014 A1
20140370452 Tseng Dec 2014 A1
20150004553 Li et al. Jan 2015 A1
20150004554 Cao et al. Jan 2015 A1
20150018956 Steinmann et al. Jan 2015 A1
20150025907 Trosien et al. Jan 2015 A1
20150044623 Rundlett Feb 2015 A1
20150044627 German Feb 2015 A1
20150057983 See et al. Feb 2015 A1
20150064641 Gardner Mar 2015 A1
20150093713 Chen et al. Apr 2015 A1
20150093714 Kopelman Apr 2015 A1
20150125802 Tal May 2015 A1
20150128421 Mason et al. May 2015 A1
20150157421 Martz et al. Jun 2015 A1
20150182303 Abraham et al. Jul 2015 A1
20150182321 Karazivan et al. Jul 2015 A1
20150216626 Ranjbar Aug 2015 A1
20150216627 Kopelman Aug 2015 A1
20150238280 Wu et al. Aug 2015 A1
20150238282 Kuo et al. Aug 2015 A1
20150238283 Tanugula et al. Aug 2015 A1
20150238284 Wu et al. Aug 2015 A1
20150245887 Izugami et al. Sep 2015 A1
20150254410 Sterental et al. Sep 2015 A1
20150265376 Kopelman Sep 2015 A1
20150289949 Moss et al. Oct 2015 A1
20150289950 Khan Oct 2015 A1
20150305830 Howard et al. Oct 2015 A1
20150305831 Cosse Oct 2015 A1
20150305919 Stubbs et al. Oct 2015 A1
20150313687 Blees et al. Nov 2015 A1
20150320518 Namiranian et al. Nov 2015 A1
20150320532 Matty et al. Nov 2015 A1
20150335399 Caraballo Nov 2015 A1
20150335404 Webber et al. Nov 2015 A1
20150336299 Tanugula et al. Nov 2015 A1
20150342464 Wundrak et al. Dec 2015 A1
20150351870 Mah Dec 2015 A1
20150351871 Chishti et al. Dec 2015 A1
20150359609 Khan Dec 2015 A1
20150366637 Kopelman et al. Dec 2015 A1
20150366638 Kopelman et al. Dec 2015 A1
20160000527 Arruda Jan 2016 A1
20160008095 Matov et al. Jan 2016 A1
20160008097 Chen et al. Jan 2016 A1
20160051341 Webber Feb 2016 A1
20160051342 Phan et al. Feb 2016 A1
20160051348 Boerjes et al. Feb 2016 A1
20160067013 Morton et al. Mar 2016 A1
20160067014 Kottemann et al. Mar 2016 A1
20160074137 Kuo et al. Mar 2016 A1
20160074138 Kitching et al. Mar 2016 A1
20160095668 Kuo et al. Apr 2016 A1
20160095670 Witte et al. Apr 2016 A1
20160106521 Tanugulaet Apr 2016 A1
20160120617 Lee May 2016 A1
20160120621 Li et al. May 2016 A1
20160128803 Webber et al. May 2016 A1
20160135924 Choi et al. May 2016 A1
20160135925 Mason et al. May 2016 A1
20160135926 Djamchidi May 2016 A1
20160135927 Boltunov et al. May 2016 A1
20160157961 Lee Jun 2016 A1
20160166363 Varsano Jun 2016 A1
20160175068 Cai et al. Jun 2016 A1
20160175069 Korytov et al. Jun 2016 A1
20160184129 Liptak et al. Jun 2016 A1
20160193014 Morton et al. Jul 2016 A1
20160199216 Cam et al. Jul 2016 A1
20160203604 Gupta et al. Jul 2016 A1
20160206402 Kitching et al. Jul 2016 A1
20160220200 Sanholm et al. Aug 2016 A1
20160228213 Tod et al. Aug 2016 A1
20160256240 Shivapuja et al. Sep 2016 A1
20160310235 Derakhshan et al. Oct 2016 A1
20160338799 Wu et al. Nov 2016 A1
20160367339 Khardekar et al. Dec 2016 A1
20170007359 Kopelman et al. Jan 2017 A1
20170079748 Andreiko Mar 2017 A1
20170100207 Wen Apr 2017 A1
20170100208 Wen Apr 2017 A1
20170100209 Wen Apr 2017 A1
20170100210 Wen Apr 2017 A1
20170100211 Wen Apr 2017 A1
20170100214 Wen Apr 2017 A1
20170231721 Akeel et al. Aug 2017 A1
20170325911 Marshall Nov 2017 A1
20180014912 Radmand Jan 2018 A1
20180028065 Elbaz et al. Feb 2018 A1
20180042708 Caron et al. Feb 2018 A1
20180055611 Sun et al. Mar 2018 A1
20180078335 Falkel Mar 2018 A1
20180078343 Falkel Mar 2018 A1
20180078344 Falkel Mar 2018 A1
20180078347 Falkel Mar 2018 A1
20180092714 Kitching et al. Apr 2018 A1
20180092715 Kitching et al. Apr 2018 A1
20180125610 Carrier, Jr. et al. May 2018 A1
20180158544 Trosien et al. Jun 2018 A1
20180161126 Marshall et al. Jun 2018 A1
20180168781 Kopelman et al. Jun 2018 A1
20180333226 Tsai Nov 2018 A1
20180344431 Kuo et al. Dec 2018 A1
20190008612 Kitching et al. Jan 2019 A1
20190046297 Kopelman et al. Feb 2019 A1
20190090987 Hung Mar 2019 A1
20190231478 Kopelman Aug 2019 A1
20190321135 Wen Oct 2019 A1
20190343602 Wen Nov 2019 A1
20190350680 Chekh et al. Nov 2019 A1
20190358002 Falke Nov 2019 A1
20190388189 Shivapuja et al. Dec 2019 A1
20200000552 Mednikov et al. Jan 2020 A1
20200047868 Young et al. Feb 2020 A1
20200081413 Georg et al. Mar 2020 A1
20200105028 Gao et al. Apr 2020 A1
20200146775 Wen May 2020 A1
20200170762 Falkel Jun 2020 A1
20200205936 Wen Jul 2020 A1
20200214801 Wang et al. Jul 2020 A1
20200253693 Wen Aug 2020 A1
20200316856 Mojdeh et al. Oct 2020 A1
20200345459 Schueller et al. Nov 2020 A1
20200357186 Pokotilov et al. Nov 2020 A1
20200360120 Inoue et al. Nov 2020 A1
20210106404 Wen Apr 2021 A1
20210153981 Falkel May 2021 A1
20210186668 Falkel Jun 2021 A1
20210244518 Ryu et al. Aug 2021 A1
20210282899 Wen Sep 2021 A1
20210369417 Wen et al. Dec 2021 A1
20210393376 Wu et al. Dec 2021 A1
20220054232 Wen et al. Feb 2022 A1
20220265395 Falkel Aug 2022 A1
20220266577 Sharma et al. Aug 2022 A1
20220409338 Cao Dec 2022 A1
20230053766 Cao et al. Feb 2023 A1
20230058890 Kenworthy Feb 2023 A1
20230233288 Wen Jul 2023 A1
20230240808 Schueller et al. Aug 2023 A1
20230320565 Falkel Oct 2023 A1
Foreign Referenced Citations (68)
Number Date Country
2557573 Jul 2012 CA
1575782 Feb 2005 CN
1997324 Jul 2007 CN
101427256 May 2009 CN
101636122 Jan 2010 CN
1973291 Sep 2010 CN
102438545 May 2012 CN
101528152 Dec 2012 CN
103932807 Jul 2014 CN
105748163 Jul 2016 CN
106580509 Apr 2017 CN
1474062 Apr 2011 EP
2056734 Sep 2015 EP
2957252 Dec 2015 EP
40004866 Aug 2022 HK
2005-515826 Jun 2005 JP
2006-500999 Jan 2006 JP
2008-532563 Aug 2008 JP
2009-202031 Sep 2009 JP
4323322 Sep 2009 JP
2010-502246 Jan 2010 JP
2010-528748 Aug 2010 JP
4566746 Oct 2010 JP
2012-139540 Jul 2012 JP
5015197 Aug 2012 JP
5015765 Aug 2012 JP
5149898 Feb 2013 JP
2013-081785 May 2013 JP
5291218 Sep 2013 JP
2007-525289 Sep 2017 JP
2019013463 Jan 2019 JP
2019-529042 Oct 2019 JP
2019-537033 Dec 2019 JP
2004-46323 Oct 2009 KR
10-1450866 Oct 2014 KR
2018-0090481 Aug 2018 KR
WO 2001082192 Nov 2001 WO
WO 2002047571 Jun 2002 WO
WO 2003063721 Aug 2003 WO
WO 2004028391 Apr 2004 WO
WO 2005086058 Sep 2005 WO
WO 2004098379 Nov 2005 WO
WO 2006050452 May 2006 WO
WO 2006096558 Sep 2006 WO
WO 2008026064 Mar 2008 WO
WO 2008102132 Aug 2008 WO
WO 2008118546 Oct 2008 WO
WO 2008149222 Dec 2008 WO
WO 2009057937 May 2009 WO
WO 2009068892 Jun 2009 WO
WO 2016004415 Jan 2016 WO
WO 2016100577 Jun 2016 WO
WO 2017062207 Apr 2017 WO
WO 2017062208 Apr 2017 WO
WO 2017062209 Apr 2017 WO
WO 2017062210 Apr 2017 WO
WO 2018057622 Mar 2018 WO
WO 2018112273 Jun 2018 WO
WO 2018118200 Jun 2018 WO
WO 2020222905 Nov 2020 WO
WO 2020223384 Nov 2020 WO
WO 2021105878 Jun 2021 WO
WO 2021247145 Dec 2021 WO
WO-2021247950 Dec 2021 WO
WO 2022040671 Feb 2022 WO
WO 2022178514 Aug 2022 WO
WO 2023023417 Feb 2023 WO
WO 2023023418 Feb 2023 WO
Non-Patent Literature Citations (1)
Entry
Kovach, I. V. et al., “Clinic, diagnosis, treatment, prevention, prosthetics various dentofacial anomalies and deformities,” DMA, 2018.
Related Publications (1)
Number Date Country
20220409338 A1 Dec 2022 US
Provisional Applications (1)
Number Date Country
63214187 Jun 2021 US