System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources

Abstract
A hydraulic fracturing system for fracturing a subterranean formation is disclosed. In an embodiment, the system can include a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure; at least one generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; a gas compression system fluidly coupled to the at least one generator so as to provide fuel for use by the at least one generator; and a combustible fuel vaporization system gaseously coupled to the gas compression system so as to provide at least one of vaporized fuel or gasified fuel, or a combination thereof, to the gas compression system.
Description
BACKGROUND
1. Technical Field

This disclosure relates generally to hydraulic fracturing and more particularly to systems and methods for fueling electric powered hydraulic fracturing equipment using turbine generators fueled by multiple fuel sources.


2.Background

With advancements in technology over the past few decades, the ability to reach unconventional sources of hydrocarbons has tremendously increased. Horizontal drilling and hydraulic fracturing are two such ways that new developments in technology have led to hydrocarbon production from previously unreachable shale formations. Hydraulic fracturing operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, hydraulic fracturing usually includes pumps that inject fracturing fluid down the wellbore, blenders that mix proppant into the fluid, cranes, wireline units, and many other components that all must perform different functions to carry out fracturing operations.


Usually in fracturing systems, the fracturing equipment is powered by large diesel motors or by other internal combustion engines. Such engines may be very powerful, but have certain disadvantages. Diesel is more expensive, is less environmentally friendly, less safe, and heavier to transport than natural gas. For example, diesel engines are very heavy, and so require the use of a large amount of heavy equipment, including trailers and trucks, to transport the engines to and from a well site. In addition, such engines are not clean, generating large amounts of exhaust and pollutants that may cause environmental hazards, and are extremely loud, among other problems. Onsite refueling, especially during operations, presents increased risks of fuel leaks, fires, and other accidents. The large amounts of diesel fuel needed to power traditional fracturing operations require constant transportation and delivery by diesel tankers onto the well site, resulting in significant carbon dioxide emissions.


Some systems have tried to eliminate partial reliance on diesel by creating bi-fuel systems. These systems blend natural gas and diesel, but have not been very successful. It is thus desirable that a natural gas powered fracturing system be used in order to improve safety, save costs, and provide benefits to the environment over diesel powered systems. Turbine use is well known as a power source, but is not typically employed for powering fracturing operations.


Though less expensive to operate, safer, and more environmentally friendly, turbine generators come with their own limitations and difficulties as well. Most turbines are configured only to be fueled by natural gas, and the associated gas compression systems are typically only capable of handling natural gas to feed the turbines.


Thus, it may be desirable to modify turbine operation in order to expand operability of the turbines.


SUMMARY

The present disclosure is directed to a system and method for fueling one or more turbines using a variety of fuel sources besides natural gas, including liquid fuels and gasified solid fuels. The fueled turbines are then used to power electric hydraulic fracturing equipment.


In accordance with an aspect of the disclosed subject matter, the method and system of the present disclosure provide a hydraulic fracturing system for fracturing a subterranean formation. In an embodiment, the system can include a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation; at least one generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; a gas compression system fluidly coupled to the at least one generator so as to provide fuel for use by the at least one generator; and a combustible fuel vaporization system gaseously coupled to the gas compression system so as to provide at least one of vaporized fuel or gasified fuel, or a combination thereof, to the gas compression system.


In an embodiment, the system can further include at least one of a liquid fuel source or a solid fuel source. In an embodiment, each of the liquid fuel source and the solid fuel source can be configured to supply fuel to the combustible fuel vaporization system.


In an embodiment, each of the liquid fuel source and the solid fuel source can include at least one of a hydrogen-based, hydrocarbon-based, or alcohol-based fuel source, or any combination thereof.


In an embodiment, the liquid fuel source can include any of a kerosene, methanol, No. 2 fuel oil, hydrogen, liquefied natural gas (LNG), substitute natural gas (SNG), liquid hydrocarbon, or ammonia fuel source, or any combination thereof.


In an embodiment, the solid fuel source can include any of a wood gas or coal gas fuel source, or a combination thereof.


In an embodiment, the system can further include an inert gas source, wherein an inert gas is provided to regulate the liquid fuel source or the solid fuel source prior to providing fuel for use by the at least one generator.


In an embodiment, the inert gas source can include at least one of an oxygen-lean or a nitrogen-rich inert gas source, or a combination thereof.


In an embodiment, the system can further include at least one filter configured to filter at least one of particulates, water, or condensate, or a combination thereof, from at least one of the liquid fuel source and the solid fuel source.


In an embodiment, the system can further include a vaporized gas heating system in gaseous communication with the combustible fuel vaporization system so as to prevent the vaporized gas from cooling to below a condensation point associated with the vaporized gas.


In an embodiment, the vaporized gas heating system can be powered by the at least one generator.


In an embodiment, the system can further include a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor, wherein the variable frequency drive can frequently perform electric motor diagnostics to prevent damage to the at least one electric motor.


In an embodiment, the at least one generator can include one of a turbine generator or a reciprocating engine generator, or a combination thereof.


In accordance with another aspect of the disclosed subject matter, the method and system of the present disclosure provide a hydraulic fracturing system for fracturing a subterranean formation. In an embodiment, the system can include a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation; at least one turbine generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps; a gas compression system fluidly coupled to the at least one turbine generator so as to provide fuel for use by the at least one turbine generator; a combustible fuel vaporization system gaseously coupled to the gas compression system so as to provide at least one of vaporized fuel or gasified fuel, or a combination thereof, to the gas compression system; and a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor, wherein the variable frequency drive frequently performs electric motor diagnostics to prevent damage to the at least one electric motor.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art after reading the detailed description herein and the accompanying figures.





BRIEF DESCRIPTION OF DRAWINGS

Some of the features and benefits of the present disclosure having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:



FIG. 1 is an overhead perspective view of an example of a power generation system for a hydraulic fracturing system having power generating turbines and gas compression according to an embodiment of the disclosure.



FIG. 2 is a schematic example of a gas compression system according to an embodiment of the disclosure.



FIG. 3 is a schematic block diagram of an example of a gas compression system having a liquid fuel vaporization system according to an embodiment of the disclosure.



FIG. 4 is a schematic block diagram of an alternate example of a gas compression system having a liquid fuel vaporization system according to an embodiment of the disclosure.



FIG. 5 is a schematic block diagram of another alternate example of a gas compression system with a liquid fuel vaporization system and that includes an oxygen separator according to an embodiment of the disclosure.



FIG. 6 is a schematic of an example of a gas compression system according to an embodiment of the disclosure.





While the disclosure will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the disclosure to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the disclosure as defined by the appended claims.


DETAILED DESCRIPTION OF DISCLOSURE

The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes +/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.


It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.


Described herein are example methods and systems for fueling electricity generating turbines with multiple fuel sources, where the turbines provide power to electric hydraulic fracturing equipment.



FIG. 1 shows in an overhead perspective view of an example 100 of a power generation system 105 for hydraulic fracturing having power generating turbines and gas compression functionality. In the illustrated embodiment, gas can enter through main gas line 133, and enter one or more compressors 125. In some examples, compressed gas can flow through one or more sand trap and separator 137, and through one or more filter 139, before being provided to power the one or more turbines 115. Switch gear units 110 can be disposed in elongated trailers located adjacent to the turbines 115, and 13.8 kV to 600 V transformers 120 are shown arranged on a side of the switch gear units 110 opposite the turbines 115. Fracturing pump units 131 can be positioned adjacent to, and electrically coupled with, the transformers 120. Additional components (not shown) of a hydraulic fracturing system can include flowback tanks, pressure relief tanks, well heads, control units, sand silos, a data van, and mixing equipment such as blenders and a hydration unit.


In a method or system according to an embodiment of the present disclosure, vaporized liquid fuels and/or gasified solid fuels that are hydrogen-, hydrocarbon-, or alcohol-based can be utilized to fuel one or more electricity generating turbines for a hydraulic fracturing system. A combustible liquid fuel vaporization system can be used along with an existing gas compression system to allow the turbines to utilize multiple types of combustible liquids. The ability to power the turbines with various different combustible liquids will provide the option to use the cheapest available fuels based on market price, or to use renewable biofuels to achieve a “greener” image for hydraulic fracturing. The capability to vaporize liquid fuels also allows for fuel storage on well sites in the liquid form as a reserve to use as needed. This will save money and help prevent downtime during operations.


In a non-limiting example of operation, gas can be fed into the inlets of the compressors at approximately 90 psi. However, if required, the system can work on a suction pressure range of 35 psi to 180 psi. Gas can be supplied to the system from a sales line, gas wellhead, storage tank, or mobile transport(s), or alternatively from a customer compressor station at approximately 100 psi to 200 psi. The system can also optionally include two or more three-phase separators and one or more sand traps to filter out large particulates and the majority of the water and condensate that is carried in pre-refined natural gas before delivering the fuel to the turbines.


Example pressures for fuel exiting the compressors can range from about 150 psi to 380 psi, and can have a normal case discharge pressure of about 300 psi. Downstream of the compressors, the high pressure gas can be routed through a final filtration process to be conditioned for the turbines. Several manifolds can be in place on both the high pressure and low pressure sides of the system, in order to correctly route the fuel. This configuration has the advantage of keeping all of the turbines on a single fuel rail, such that if a single compressor fails, the other compressor(s) can still supply gas to all of the turbines.


Examples of voltages of electricity generated by properly fueled turbines include 13.8 kV, 480 V, 600 V, and 4,160 V, which can be three-phase electricity with a +/−10% voltage adjustment range. Optionally, multiple 5.7 MW turbines are used to supply enough electrical power to the fracturing system. Other mobile turbine generator configurations are possible as well, including turbines that are rated to output power in a range of 1 MW per turbine to 50 MW per turbine. Another possible configuration includes a single 25 MW turbine to provide power, with a smaller secondary turbine rated for 5.7 MW for auxiliary power or starting power. In an embodiment, a variable frequency drive (VFD) can be utilized to control the speed of an electric motor associated with a pump powered by the turbine(s).


Example fuels include liquid fuels such as kerosene, methanol, No. 2 fuel oil, hydrogen, liquefied natural gas (LNG), ammonia, and the like, and combinations thereof; and gasified solid fuels such as wood gas or coal gas.


Optionally included with the fuel supply system is a liquid vaporization skid, which in one example can accommodate liquid hydrocarbon fuel such as (but not limited to) kerosene, diesel, biodiesel, gasoline, low viscosity fuel oils, and liquid petroleum (LP) gas. Alcohol fuels (chemically or biologically produced) such as methanol, ethanol, butanol, and propanol (among others); or mixtures such as E5, E10 (gasohol), E15, E85, hE15 (uses hydrous ethanol with excess water), ED95 (has a lowered ignition point designed to be used with diesel motors), any other common or uncommon ratio of ethanol and gasoline, Ecalene (an alcohol fuel mixture composed of ethanol, methanol, propanol, butanol, and hexanol), and any other alcohol and/or hydrocarbon mixtures, can also be used. Embodiments exist where the fuel system uses liquid hydrogen as an alternative fuel. In an embodiment, synthetic natural gas or substitute natural gas (“SNG”) can be formed by vaporizing the hydrocarbon fuels. Further optionally, the SNG can be compressed to a designated pressure range for use by the turbines, and can be burned as a fuel source to power the generator for the production of electricity.


An inert gas can be used to regulate the new SNG fuel before it reaches the turbines to avoid the need to modify the turbines with new hardware (such as fuel injectors) and software to control a more or less combustible fuel source. Most vaporized fuels will contain more or less energy than natural gas. Hydrocarbons with more carbon in the molecule have a higher heating value, and propane (C3H8) has nearly three times the energy density of methane (CH4). This large difference in energy can be regulated without modifying the turbines by using air that has some oxygen content removed and has a larger percentage of nitrogen. For example, ambient air includes, by volume, approximately 78% nitrogen (N2), 21% oxygen (O2) and 1% argon (Ar), with other trace gases. An example of a low oxygen, high nitrogen content includes air having about 13% by volume of oxygen and about 86% by volume of nitrogen.


An air separator can be used to reduce the oxygen volumetric percentage and elevate the nitrogen volumetric percentage in an inert gas. Depending on the energy content of the vaporized fuel, either gas could be used to regulate the fuel for combustion in the turbine. The oxygen rich gas can even be used to reduce emissions after the fuel is burned in the turbine's combustion chamber.


Liquefied natural gas (“LNG”) can be vaporized into natural gas to be used as well, which may advantageously provide the ability to transport and store natural gas on well sites lacking a natural gas line to supply fuel. To prevent vaporized gas from cooling to below its condensation point and liquefying upstream of the turbines, oxygen-lean gas can be heated before the premixing process in the vaporizer unit to help carry the fuel to its destination. Heaters on the pipes can also be utilized to keep the gas route warm enough so the vapor does not condense. In an embodiment, electric heaters can be powered by the turbines when the turbines are running, and by a standby generator (black start generator) if the turbines have not yet been started.


In an embodiment, LNG can be used as a fuel for the turbines if a supply of natural gas is inadequate or unavailable at a well site by utilizing a refillable LNG skid with a built-in vaporizer. In this example, the vaporizer can convert the liquid LNG to vapor, which can then be supplied to the gas compression system to feed the turbines. With this option, one or more LNG vaporization skids can be used instead of the natural gas supply pipeline, resulting in nominal fuel gas conditioning and premixing. Moreover, gas energy content can be minimally regulated as a large oxygen separator may not be used to enrich or downgrade the fuel gas mixture.


Another embodiment allows for the use of any liquid fuel instead of LNG alone, and may not require use of the LNG vaporizer. In examples where a liquid fuel vaporization system is already in use for other non-hydraulic fracturing applications, the liquid fuel vaporization system can be integrated into the gas compression system. This configuration can allow the turbines powering the electric hydraulic fracturing equipment to be fueled by any of the sources discussed herein. In this example, the fuel gas can be regulated with lean premixing to produce a synthetic natural gas having an energy content similar to that of methane-based natural gas.



FIG. 2 shows a block diagram of a schematic example of a gas compression system 200 according to an embodiment. A main gas supply line 205, as illustrated in an embodiment shown in FIG. 2, extends along a lateral side of the system, allowing gas from the main gas supply line 205 to flow through shutoff valve 210, and through filtration vessels including a three-phase separator and sand trap 215, in order to filter at least one of particulate, water, or condensate from the gas. From there, the filtered gas can flow into a pressure regulation skid 220, where the gas can be prepared for the gas compression units 230-a, 230-b.


One example of a gas compression system 200 can rely on one or more fuel gas compression units 230-a, 230-b capable of supplying up to 5,000 MCF of fuel gas per day to a plurality of natural gas-fueled electric turbines 245-a, 245-b, 245-c, 245-d. In an embodiment, the system 200 can include multiple gas pressure regulators, including an entire skid dedicated to pressure regulation 220. In an embodiment, the pressure regulation skid 220 can regulate the pressure of incoming fuel at a low pressure in the range of 60-180 pounds per square inch (PSI). In an embodiment, the pressure regulation skid 220 can contain three regulator conduits, with the center regulator conduit being closed and held in reserve in the event of failure of a primary regulator, valve, fitting, or pipe. The system can be capable of being supplied from a single regulator if necessary. Several more individual valves and regulators 210, 225-a, 225-b can be placed upstream and downstream of the regulation skid 220, one on each inlet to the compressors 230-a, 230-b or in any other combination, to further reduce the suction gas pressure, if required.


Gas at a regulated pressure can exit pressure regulator skid 220 and enter a manifold for the compressor inlet before entering gas compression units 230-a, 230-b. After being boosted from the gas compression units 230-a, 230-b, the gas can flow through a manifold for the compressor outlet and through another three-phase separator 235, through a manifold for the filtration inlet into the final gas filtration skids 240-a, 240-b, 240-c, 240-d to filter any remaining impurities from the gas and to heat the gas to 50 degrees Fahrenheit above the condensation point for that gas, then into the turbines 245-a, 245-b, 245-c, 245-d at a high pressure in the range of 150-380 PSI, and at approximately 300 PSI in the illustrated embodiment, to power the turbines 245-a, 245-b, 245-c, 245-d. In some embodiments two or more gas filtration skids 240-a, 240-b, 240-c, 240-d may be grouped on one or more trailers at the well site.


Shown in schematic block diagram form in FIG. 3 is an example of a gas compression system 300 having a liquid fuel vaporization system 316. In the illustrated example, instead of a main gas supply (as is shown in FIG. 2), gas compression system 300 can include a manifold 305 for connecting and unloading liquid fuel delivery tankers 303. In fluid communication with the manifold 305 is an optional fuel storage vessel 312, which can receive fluid from the liquid fuel delivery tankers 303 via shutoff valve 310. The storage vessel 312 can prevent downtime if there is an interruption in fuel deliveries. Fuel can be received at and stored in the storage vessel 312 in a low pressure liquid form in the range of 20-200 PSI in some embodiments.


In some embodiments, liquid fuel can be purified prior to delivery, such that use of filtration vessels, such as a three-phase separator and sand trap 215 as illustrated in FIG. 2, is not necessary. In other embodiments, filtration vessels may be added to the gas compression system 300.


Downstream from the fuel storage vessel 312, as part of the fuel vaporizing and premixing system, can be a fuel vaporization skid 316, which can receive liquid fuel and vaporize the liquid fuel into a gaseous state. In the gaseous state, the fuel can remain at a low pressure, in the range of 60-180 PSI, according to an embodiment. Oxygen-lean air can be injected into the vaporization skid 316 from a line shown connecting to an oxygen separation skid 322. An air compressor 324 can be included with the oxygen separation skid 322 for urging the air into the vaporization skid 316, and an air separator 326 can be provided for separating the oxygen from the air. Adding oxygen-lean air to regulate the energy of the new SNG or other fuel forms a gas similar to methane-based natural gas. Optionally, the separated oxygen can be sent to the turbines 345-a, 345-b, 345-c, 345-d in the form of oxygen-rich air to help aid in combustion or to reduce the emissions of exhaust gases produced during operation of the turbines 345-a, 345-b, 345-c, 345-d.


If required, extra pressure regulation or fuel filtering can be applied to any embodiment. Fuel filtering can include three-phase separators and sand traps for liquid or gaseous fuels, as illustrated in the embodiment shown in FIG. 2.


Regulators can be in the form of a specialized unit containing multiple regulators and bypass or isolation valves, such as pressure regulator skid 320, or can be individual regulators 314, 325-a, 325-b spread throughout the compression system. Each piece of equipment can contain dedicated internal pressure regulators.


Valves 310 are optionally provided at the fuel inlets and outlets to each piece of equipment, and further optionally to parts of the internal plumbing to enable fuel to be shut off at any point in the vaporization and compression system. Some of these valves can be manual, while others can be actuated and controlled either digitally or by an automatic control system. Filtration units can also provide heating to the gaseous fuels. In an embodiment, these filtration units can heat the fuel mixture to 50 degrees Fahrenheit above the dew point of the fuel to allow further conditioning of the gas for the turbines and to allow the gas to remain mixed and uncondensed, and to combust properly in the combustion chamber.


Like the system 200 of FIG. 2, the gas compression system 300 of FIG. 3 includes gas compression units 330-a, 330-b, turbines 345-a, 345-b, 345-c, 345-d downstream of the gas compression units 330-a, 330-b, and filtration units 340-a, 340-b, 340-c, 340-d between the gas compression units 330-a, 330-b and turbines 345-a, 345-b, 345-c, 345-d. Unlike the system of FIG. 2, a three-phase separator is not provided downstream of the compressors in an embodiment illustrated in FIG. 3. However, the three-phase separators and sand trap(s) can be included in the embodiment illustrated in FIG. 3 if the fuel has a high amount of undesirable water or particulate matter.


A possible problem could arise if the vaporized fuel source has a higher energy content than natural gas. To overcome this, the vaporized fuel can be mixed with reduced-oxygen gas to lower the energy of the newly vaporized fuel to a level equivalent to that of natural gas. The reduced oxygen gas can be derived from an oxygen separation skid 322, from exhaust gases produced by the turbines 345-a, 345-b, 345-c, 345-d, or from any other exhaust gas-producing equipment. Another option lies with the turbines 345-a, 345-b, 345-c, 345-d themselves, in that the fuel distribution system and premixing within the turbines can be modified to operate with the higher or lower energy content of the vaporized gas. This configuration may require a hardware and software change, however, which is not desirable and can be expensive, time consuming, and limiting.


The fuel can spontaneously ignite before reaching the combustion chamber of the turbines 345-a, 345-b, 345-c, 345-d in an event typically referred to as auto-ignition. This premature detonation can be damaging to the turbine and can increase emissions. By mixing the fuel with an inert gas or lower oxygen gas, auto-ignition can be delayed or prevented. While ambient air has approximately 21% oxygen content, reducing the oxygen level to below 13% can greatly reduce the chances of auto ignition.


Referring now to FIG. 4, shown in schematic block diagram form is another embodiment of a gas compression system 400 which provides oxygen-lean air to the fuel vaporization process. As illustrated in the embodiment shown in FIG. 4, gas compression system 400 can include a manifold 405 for connecting and unloading liquid fuel delivery tankers 403. In an alternate embodiment, a main gas supply line, for example as illustrated in an embodiment shown in FIG. 2, can extend along a lateral side of the system, allowing gas from the main gas supply line to flow through filtration vessels into the vaporization skid. In fluid communication with the manifold 405 is an optional fuel storage vessel 412, which can receive fluid from the liquid fuel delivery tankers 403 via shutoff valve 410. The storage vessel 412 can prevent downtime if there is an interruption in fuel deliveries. Fuel can be received at and stored in the storage vessel 412 in a low pressure liquid form in the range of 20-200 PSI in some embodiments.


Downstream from the fuel storage vessel 412, as part of the fuel vaporizing and premixing system, can be a fuel vaporization skid 416, which can receive liquid fuel and vaporize the liquid fuel into a gaseous state. In the gaseous state, the fuel can remain at a low pressure, in the range of 60-180 PSI, according to an embodiment.


Regulators can be in the form of a specialized unit containing multiple regulators and bypass or isolation valves, such as pressure regulator skid 420, or can be individual regulators 414, 425-a, 425-b spread throughout the compression system. Each piece of equipment can contain dedicated internal pressure regulators.


Valves 410 are optionally provided at the fuel inlets and outlets to each piece of equipment, and further optionally to parts of the internal plumbing to enable fuel to be shut off at any point in the vaporization and compression system. Some of these valves can be manual, while others can be actuated and controlled either digitally or by an automatic control system. Filtration units can also provide heating to the gaseous fuels. In an embodiment, these filtration units can heat the fuel mixture to 50 degrees Fahrenheit above the dew point of the fuel to allow further conditioning of the gas for the turbines and to allow the gas to remain mixed and uncondensed, and to combust properly in the combustion chamber.


Like the system 200 of FIG. 2, the gas compression system 400 of FIG. 4 can include gas compression units 430-a, 430-b, turbines 445-a, 445-b, 445-c, 445-d downstream of the gas compression units 430-a, 430-b, and filtration units 440-a, 440-b, 440-c, 440-d between the gas compression units 430-a, 430-b and turbines 445-a, 445-b, 445-c, 445-d. Unlike the system of FIG. 2, a three-phase separator is not provided downstream of the compressors in an embodiment illustrated in FIG. 4. However, the three-phase separators and sand trap(s) can be included in the embodiment illustrated in FIG. 4 if the fuel has a high amount of undesirable water or particulate matter.


In the embodiment illustrated in FIG. 4, oxygen-poor exhaust gas from the turbines 445-a, 445-b, 445-c, 445-d can be routed to the vaporization skid 416, where the exhaust gas can be mixed with the fuel. The exhaust gas regulates the energy content of the vaporized fuel by diluting the oxygen content of the air. In some embodiments, the oxygen poor exhaust gas can travel from the turbines 445-a, 445-b, 445-c, 445-d through an optional air compressor unit 428 before being mixed with the fuel at vaporization skid 416.


Another example of a gas compression system according to an embodiment is shown in block diagram schematic form in FIG. 5. In this example the gas compression system 500 includes a fuel vaporization system 532 with a dedicated liquid vaporization 534-a, 534-b and oxygen separation unit 536-a, 536-b for each compressor 530-a, 530-b. Further, in this embodiment, pressure regulation can be performed on vaporization trailers within the fuel vaporization system 532, such that external regulators can be optional. A high pressure gas manifold between the compressors 530-a, 530-b and the filtration units 540-a, 540-b, 540-c, 540-d is also optional, and can be present only if load sharing of the compressors 530-a, 530-b is desired.


As illustrated in the embodiment shown in FIG. 5, gas compression system 500 can include a manifold 505 for connecting and unloading liquid fuel delivery tankers 503. In an alternate embodiment, a main gas supply line, for example as illustrated in an embodiment shown in FIG. 2, can extend along a lateral side of the system, allowing gas from the main gas supply line to flow through filtration vessels. In fluid communication with the manifold 505 is an optional fuel storage vessel 512, which can receive fluid from the liquid fuel delivery tankers 503 via shutoff valve 510. The storage vessel 512 can prevent downtime if there is an interruption in fuel deliveries. Fuel can be received at and stored in the storage vessel 512 in a low pressure liquid form in the range of 20-200 PSI in some embodiments.


Regulators can be in the form of a specialized unit containing multiple regulators and bypass or isolation valves, such as the pressure regulator skid 320, 420 as illustrated in the embodiments shown in FIGS. 3 and 4, or can be individual regulators 514 spread throughout the compression system. Each piece of equipment can contain dedicated internal pressure regulators.


Valves 510 are optionally provided at the fuel inlets and outlets to each piece of equipment, and further optionally to parts of the internal plumbing to enable fuel to be shut off at any point in the vaporization and compression system. Some of these valves can be manual, while others can be actuated and controlled either digitally or by an automatic control system. Filtration units can also provide heating to the gaseous fuels. In an embodiment, these filtration units can heat the fuel mixture to 50 degrees Fahrenheit above the dew point of the fuel to allow further conditioning of the gas for the turbines and to allow the gas to remain mixed and uncondensed, and to combust properly in the combustion chamber.



FIG. 6 is another example of a gas compression system 600 according to an embodiment, shown in block diagram schematic form. Here, a gas vaporization and compression system 632 may include dedicated gas vaporization and compression units 642-a, 642-b, 642-c, 642-d provided for each turbine 645-a, 645-b, 645-c, 645-d. The dedicated gas vaporization and compression units 642-a, 642-b, 642-c, 642-d can each include an oxygen separator 634-a, 634-b, 634-c, 634-d, a vaporizer 636-a, 636-b, 636-c, 636-d, and a compressor 638-a, 638-b, 638-c, 638-d, respectively.


The modular approach depicted in FIG. 6 can have the flexibility of operating a different number of turbines, depending on a particular application. For example, the system can easily be modified to generate 5 MW (for a single turbine) or less power for a drilling rig, as well as being modified to operate five to six turbines, for example, that generate power for multiple locations or applications. The system of FIG. 6 can match the number of turbines with an anticipated power requirement, and thus can minimize unnecessary gas compression and vaporization capacity during operations requiring different numbers of turbine generators. Instead of a single turbine being supplied with compressed gas from a single compressor and vaporizer that are together capable of supplying multiple turbines, a single trailer can be employed to meet the demand of a single turbine. While not shown in FIG. 6, a compressor outlet manifold could be included to allow compressor load sharing between the turbines.


The vaporization system 632 can optionally handle liquid fuels, gaseous fuels, and any combination of liquids mixed with gaseous fuels. The vaporization system 632 can also separate the liquids from the gas, vaporize the liquid, then recombine the gaseous fuel with the vaporized fuel and lean-out the mixture with nitrogen rich air to create the correct lower heating value (LHV) and energy density of the new SNG mixture. As shown in FIG. 6, mobile fuel transports (liquid fuel delivery tankers) 603 can provide the liquid fuel supply through manifold 605, and the provided liquid fuel supply can be optionally stored in storage vessel 612. Optionally, liquid fuels can be supplied from a pipeline or alternatively from wet gas or mixed liquid/gaseous fuels.


If required, extra pressure regulation or fuel filtering can be applied to any embodiment. Fuel filtering can include three-phase separators and sand traps for liquid or gaseous fuels, as illustrated in the embodiment shown in FIG. 2. Regulators can be in the form of a specialized unit containing multiple regulators and bypass or isolation valves, such as the pressure regulator skid 220 of FIG. 2, or can be individual regulators 614 spread throughout the compression system. Each piece of equipment can contain dedicated internal pressure regulators.


Valves 610 are optionally provided at the fuel inlets and outlets to each piece of equipment, and further optionally to parts of the internal plumbing to enable fuel to be shut off at any point in the vaporization and compression system. Some of these valves can be manual, while others can be actuated and controlled either digitally or by an automatic control system. Filtration units can also provide heating to the gaseous fuels. In an embodiment, these filtration units can heat the fuel mixture to 50 degrees Fahrenheit above the dew point of the fuel to allow further conditioning of the gas for the turbines and to allow the gas to remain mixed and uncondensed, and to combust properly in the combustion chamber.


In an embodiment, the types of hydrocarbon-, hydrogen-, and alcohol-based fuel gases can be divided into three main categories: (1) gaseous fuels; (2) liquid fuels; (3) and solid fuels. In a non-limiting example of operation, fuel types can be converted to a gaseous state prior to being delivered to the turbines. For liquid fuels the process can include vaporization as described previously. Solid fuels can be converted into a gaseous state by gasification, such as through pyrolysis. One example of pyrolysis can include converting material containing carbon (such as coal or biomass such as peat, wood, or other human waste products) into longer hydrocarbon chains by exposing solid fuel sources to high heat and an oxygen-rich environment, causing the solid fuel sources to partially react or combust. The resulting collected gas—generally referred to as syngas—can be combusted as a fuel source. Syngas, constituents of which include carbon monoxide (CO) or carbon dioxide (CO2) and hydrogen (H2), can be methanized to increase combustibility, which in turn increases the quality and energy of the syngas. Syngas can optionally be converted to methane (CH4) and water (H2O) with a methanation process. Syngas can be obtained from industrial sites and methanized on site using a methanation skid similar in placement to the vaporization equipment. The upgraded syngas can be referred to as SNG and can be supplied to the gas compression system to fuel the turbines.


Examples of hydrocarbon fuels that are naturally in a vaporized state include methane, ethane, propane, and butane. Some of these fuels can be easily converted to liquids at different temperatures or pressures. Natural gas is a fuel source that is commonly used to power the turbines. A normal composition of natural gas is approximately 75-95% methane, with the other portion being composed of ethane, nitrogen, propane, carbon dioxide, butane, oxygen, and traces of other hydrocarbons or impurities. The composition of natural gas varies widely based on region (i.e., where it was extracted), depth (i.e., the depth at which it was extracted), and geological maturity (i.e., how long the hydrocarbon had been exposed to heat and pressure underground).


Hydrogen gas can also be used as a fuel source, despite the lack of a carbon atom precluding hydrogen gas from being designated a hydrocarbon. As a fuel source, hydrogen in the form of H2—also called deuterium—is used. Deuterium can also be used in liquid form (LH2) in conjunction with the vaporization skid added to the gas compression and power generation system. Anhydrous ammonia (NH3) in liquid or gas form can also be used as a potential fuel source. Similarly to CNG conversions, NH3 can be used in most internal combustion engines with very little modification.


For the purposes of discussion herein, liquid hydrocarbon fuels can be fuels that are in a liquid state at standard temperature and pressure. Liquid hydrocarbon fuels can also include subcooled gaseous hydrocarbons (sometimes cooled cryogenically), and/or compressed into a liquid form (such as LNG). As described above, liquid hydrocarbon fuels can be vaporized upstream of the turbines. Alcohols such as methanol, ethanol, butanol, and propanol, as well as many others, can also be used as fuel. Alcohol fuels, such as methanol or ethanol alone, can be used in their pure form, or can be burned as a mixture, such as ecalene, which is several different alcohol molecules mixed together.


Alcohol and hydrocarbon mixes can also be utilized. Such mixes include the previously mentioned ethanol-gasoline mixes such as E10 gasohol, E85, and the other variations. Other options for liquid fuel sources can include TEL, known as Tetraethyl lead (CH3CH2)4Pb, or leaded gasoline. TEL is an octane booster used in racing fuel and could be vaporized and used to fuel the turbines or to enrich other vaporized or gaseous fuel sources. Some types of fuel gas that can be utilized with the proposed system or with future development can include gaseous fuels, which include: gaseous hydrocarbons, such as natural gas (mostly methane), compressed natural gas (CNG), methane (an example of an alkane hydrocarbon), butyne (an example of an alkyne hydrocarbon), acetylene (an example of an alkene hydrocarbon), ethylene, ethane, biogas (produced by the fermentation of biodegradable materials, such as anaerobic digestions by bacteria) such as landfill gas, digested gas, and renewable natural gas (upgraded biogas), SNG (substitute natural gas or synthetic natural gas) such as BioSNG (SNG made from biomethane produced through anaerobic digestion or gasification and methanation) and methanized or upgraded syngas, and hydrogen gas (H2, deuterium); vaporized liquid fuels such as alcohol or ethanol (an example of a grain derived alcohol), methanol (an example of a cellulose-derived alcohol), and pentanol (an example of a hydrocarbon-derived alcohol), liquid hydrocarbons such as liquefied natural gas (LNG) and liquid petroleum gas (LPG), both of which are alkane hydrocarbons, butane, propane, octane, pentane, hexane, kerosene, fuel oil, naphtha, gasoline, leaded gasoline, diesel, fuel oil, TEL, liquid hydrogen (known as LH2), ammonia (NH3), gasified solid hydrocarbon fuels, such as syngas (also called synthesis gas, producer gas, or town gas, and needs to undergo methanation before it is considered a true hydrocarbon fuel source), water gas (made by passing steam over superheated solid carbon rich fuel), coal gas (including mond gas and coal gas that is a byproduct of the coking process), wood gas (produced from biomass by using pyrolysis), oil shale gas (produced from solid shale by using pyrolysis), and blau gas (derived from waste naphtha).


Another alternative fuel can include dimethyl ether, which is an isomer of ethanol. Ether is a molecule similar to alcohol but with an alkyl group as part of the molecular formula. Ethers are currently being studied as possible future replacements of conventional fuels, and dimethyl ether specifically can be used as a replacement for propane.


An alternative to using an air separator to reduce the oxygen content in the inert gas for regulating and carrying the vaporized fuel can be provided by the turbines. The exhaust from the turbines themselves can be used, or the exhaust from the black start generator (diesel powered standby generator) can be used to lean-out the vaporized fuel mixture. The term “skid” is often used to describe the various pieces of equipment; these units can be skid-mounted, trailerized, or part of a bodyload tractor.


The present disclosure described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the disclosure has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present disclosure disclosed herein and the scope of the appended claims.

Claims
  • 1. A hydraulic fracturing system for fracturing a subterranean formation comprising: a plurality of electric pumps fluidly connected to a well associated with the subterranean formation and powered by at least one electric motor, and configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation;at least one turbine generator electrically coupled to the plurality of electric pumps so as to generate electricity for use by the plurality of electric pumps;a gas compression system fluidly coupled to the at least one turbine generator so as to provide fuel for use by the at least one turbine generator; andat least one of: a liquid fuel source; anda solid fuel source,wherein each of the liquid fuel source and the solid fuel source are configured to supply fuel to the gas compression system after conversion into the gaseous state.
  • 2. The system of claim 1, further comprising a variable frequency drive connected to the at least one electric motor to control the speed of the at least one electric motor.
  • 3. The system of claim 1, wherein each of the liquid fuel source and the solid fuel source comprise at least one of a hydrogen-based, hydrocarbon-based, or alcohol-based fuel source, or any combination thereof.
  • 4. The system of claim 3, wherein the liquid fuel source comprises any of a kerosene, methanol, No. 2 fuel oil, hydrogen, liquefied natural gas (LNG), substitute natural gas (SNG), liquid hydrocarbon, or ammonia fuel source, or any combination thereof.
  • 5. The system of claim 3, wherein the solid fuel source comprises any of a wood gas or coal gas fuel source, or a combination thereof.
  • 6. The system of claim 1, further comprising an inert gas source, wherein an inert gas is provided to regulate the liquid fuel source or the solid fuel source prior to providing fuel for use by the at least one turbine generator.
  • 7. The system of claim 6, wherein the inert gas source comprises at least one of an oxygen-lean or a nitrogen-rich inert gas source, or a combination thereof.
  • 8. The system of claim 1, further comprising: at least one filter configured to filter at least one of particulates, water, or condensate, or a combination thereof, from at least one of the liquid fuel source and the solid fuel source.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/487,656, filed Apr. 14, 2017, and claims priority to and the benefit of U.S. Provisional Patent Application No. 62/323,303, filed Apr. 15, 2016, and is a continuation-in-part of, and claims priority to and the benefit of, co-pending U.S. patent application Ser. No. 15/235,788, filed Aug. 12, 2016, which is in turn a continuation-in-part of, and claims priority to and the benefit of, co-pending U.S. patent application Ser. No. 15/202,085, filed Jul. 5, 2016, which is a continuation of, and claims priority to and the benefit of, U.S. patent application Ser. No. 13/679,689, filed Nov. 16, 2012, now U.S. Pat. No. 9,410,410, issued Aug. 9, 2016, the full disclosures of which are hereby incorporated by reference herein for all purposes.

US Referenced Citations (514)
Number Name Date Kind
1656861 Leonard Jan 1928 A
1671436 Melott May 1928 A
2004077 McCartney Jun 1935 A
2183364 Bailey Dec 1939 A
2220622 Aitken Nov 1940 A
2248051 Armstrong Jul 1941 A
2389328 Stilwell Nov 1945 A
2407796 Page Sep 1946 A
2416848 Rothery Mar 1947 A
2610741 Schmid Sep 1952 A
2753940 Bonner Jul 1956 A
3055682 Bacher Sep 1962 A
3061039 Peters Oct 1962 A
3066503 Fleming Dec 1962 A
3302069 Webster Jan 1967 A
3334495 Jensen Aug 1967 A
3601198 Ahearn Aug 1971 A
3722595 Kiel Mar 1973 A
3764233 Strickland Oct 1973 A
3773140 Mahajan Nov 1973 A
3837179 Barth Sep 1974 A
3849662 Blaskowski Nov 1974 A
3881551 Terry May 1975 A
3978877 Cox Sep 1976 A
4037431 Sugimoto Jul 1977 A
4066869 Apaloo Jan 1978 A
4100822 Rosman Jul 1978 A
4151575 Hogue Apr 1979 A
4226299 Hansen Oct 1980 A
4265266 Kierbow et al. May 1981 A
4421975 Stein Dec 1983 A
4432064 Barker Feb 1984 A
4442665 Fick et al. Apr 1984 A
4456092 Kubozuka Jun 1984 A
4506982 Smithers et al. Mar 1985 A
4512387 Rodriguez Apr 1985 A
4529887 Johnson Jul 1985 A
4538916 Zimmerman Sep 1985 A
4676063 Goebel et al. Jun 1987 A
4759674 Schroder Jul 1988 A
4793386 Sloan Dec 1988 A
4845981 Pearson Jul 1989 A
4877956 Priest Oct 1989 A
4922463 Del Zotto et al. May 1990 A
5004400 Handke Apr 1991 A
5006044 Walker, Sr. Apr 1991 A
5025861 Huber Jun 1991 A
5050673 Baldridge Sep 1991 A
5130628 Owen Jul 1992 A
5131472 Dees et al. Jul 1992 A
5134328 Johnatakis Jul 1992 A
5172009 Mohan Dec 1992 A
5189388 Mosley Feb 1993 A
5230366 Marandi Jul 1993 A
5334898 Skybyk Aug 1994 A
5366324 Arlt Nov 1994 A
5422550 McClanahan Jun 1995 A
5433243 Griswold Jul 1995 A
5517593 Nenniger May 1996 A
5517822 Haws et al. May 1996 A
5548093 Sato Aug 1996 A
5590976 Kilheffer et al. Jan 1997 A
5655361 Kishi Aug 1997 A
5712802 Kumar Jan 1998 A
5736838 Dove et al. Apr 1998 A
5755096 Holleyman May 1998 A
5790972 Kohlenberger Aug 1998 A
5865247 Paterson Feb 1999 A
5879137 Yie Mar 1999 A
5894888 Wiemers Apr 1999 A
5907970 Havlovick et al. Jun 1999 A
6007227 Carlson Dec 1999 A
6059539 Nyilas May 2000 A
6116040 Stark Sep 2000 A
6138764 Scarsdale et al. Oct 2000 A
6142878 Barin Nov 2000 A
6164910 Mayleben Dec 2000 A
6167965 Bearden Jan 2001 B1
6202702 Ohira Mar 2001 B1
6208098 Kume Mar 2001 B1
6254462 Kelton Jul 2001 B1
6271637 Kushion Aug 2001 B1
6273193 Hermann Aug 2001 B1
6315523 Mills Nov 2001 B1
6321860 Reddoch Nov 2001 B1
6477852 Dodo Nov 2002 B2
6484490 Olsen Nov 2002 B1
6491098 Dallas Dec 2002 B1
6529135 Bowers et al. Mar 2003 B1
6626646 Rajewski Sep 2003 B2
6719900 Hawkins Apr 2004 B2
6765304 Baten et al. Jul 2004 B2
6776227 Beida Aug 2004 B2
6786051 Kristich Sep 2004 B2
6802690 Han Oct 2004 B2
6808303 Fisher Oct 2004 B2
6857486 Chitwood Feb 2005 B2
6931310 Shimizu et al. Aug 2005 B2
6936947 Leijon Aug 2005 B1
6985750 Vicknair Jan 2006 B1
7006792 Wilson Feb 2006 B2
7011152 Soelvik Mar 2006 B2
7082993 Ayoub Aug 2006 B2
7104233 Ryczek et al. Sep 2006 B2
7170262 Pettigrew Jan 2007 B2
7173399 Sihler Feb 2007 B2
7308933 Mayfield Dec 2007 B1
7312593 Streicher et al. Dec 2007 B1
7336514 Amarillas Feb 2008 B2
7445041 O'Brien Nov 2008 B2
7494263 Dykstra et al. Feb 2009 B2
7500642 Cunningham Mar 2009 B2
7525264 Dodge Apr 2009 B2
7563076 Brunet Jul 2009 B2
7581379 Yoshida Sep 2009 B2
7660648 Dykstra Feb 2010 B2
7675189 Grenier Mar 2010 B2
7683499 Saucier Mar 2010 B2
7717193 Egilsson et al. May 2010 B2
7755310 West et al. Jul 2010 B2
7807048 Collette Oct 2010 B2
7835140 Mori Nov 2010 B2
7845413 Shampine et al. Dec 2010 B2
7901314 Salvaire Mar 2011 B2
7926562 Poitzsch Apr 2011 B2
7949483 Discenzo May 2011 B2
7894757 Keast Jul 2011 B2
7971650 Yuratich Jul 2011 B2
7977824 Halen et al. Jul 2011 B2
8037936 Neuroth Oct 2011 B2
8054084 Schulz et al. Nov 2011 B2
8069710 Dodd Dec 2011 B2
8083504 Williams Dec 2011 B2
8091928 Carrier Jan 2012 B2
8096354 Poitzsch Jan 2012 B2
8096891 Lochtefeld Jan 2012 B2
8139383 Efraimsson Mar 2012 B2
8146665 Neal Apr 2012 B2
8154419 Daussin et al. Apr 2012 B2
8174853 Kane May 2012 B2
8232892 Overholt et al. Jul 2012 B2
8261528 Chillar Sep 2012 B2
8272439 Strickland Sep 2012 B2
8310272 Quarto Nov 2012 B2
8354817 Yeh et al. Jan 2013 B2
8379424 Grbovic Feb 2013 B2
8469097 Gray Jun 2013 B2
8474521 Kajaria Jul 2013 B2
8503180 Nojima Aug 2013 B2
8506267 Gambier et al. Aug 2013 B2
8534235 Chandler Sep 2013 B2
8534366 Fielder Sep 2013 B2
8573303 Kerfoot Nov 2013 B2
8596056 Woodmansee Dec 2013 B2
8616005 Cousino Dec 2013 B1
8616274 Belcher et al. Dec 2013 B2
8622128 Hegeman Jan 2014 B2
8628627 Sales Jan 2014 B2
8646521 Bowen Feb 2014 B2
8692408 Zhang et al. Apr 2014 B2
8727068 Bruin May 2014 B2
8727737 Seitter May 2014 B2
8727783 Chen May 2014 B2
8760657 Pope Jun 2014 B2
8763387 Schmidt Jul 2014 B2
8774972 Rusnak Jul 2014 B2
8789601 Broussard Jul 2014 B2
8789609 Smith Jul 2014 B2
8795525 McGinnis et al. Aug 2014 B2
8800652 Bartko Aug 2014 B2
8807960 Stephenson Aug 2014 B2
8838341 Kumano Sep 2014 B2
8851860 Mail Oct 2014 B1
8857506 Stone, Jr. Oct 2014 B2
8874383 Gambier Oct 2014 B2
8899940 Laugemors Dec 2014 B2
8905056 Kendrick Dec 2014 B2
8905138 Lundstedt et al. Dec 2014 B2
8997904 Cryer Apr 2015 B2
9018881 Mao et al. Apr 2015 B2
9051822 Ayan Jun 2015 B2
9051923 Kuo Jun 2015 B2
9061223 Winborn Jun 2015 B2
9067182 Nichols Jun 2015 B2
9080412 Wetzel Jul 2015 B2
9103193 Coll Aug 2015 B2
9119326 McDonnell Aug 2015 B2
9121257 Coli Sep 2015 B2
9140110 Coli et al. Sep 2015 B2
9160168 Chapel Oct 2015 B2
9175554 Watson Nov 2015 B1
9206684 Parra Dec 2015 B2
9260253 Naizer Feb 2016 B2
9322239 Angeles Boza et al. Apr 2016 B2
9324049 Thomeer Apr 2016 B2
9340353 Oren May 2016 B2
9366114 Coli et al. Jun 2016 B2
9410410 Broussard et al. Aug 2016 B2
9450385 Kristensen Sep 2016 B2
9458687 Hallundbaek Oct 2016 B2
9475020 Coli et al. Oct 2016 B2
9475021 Coli et al. Oct 2016 B2
9482086 Richardson et al. Nov 2016 B2
9499335 McIver Nov 2016 B2
9513055 Seal Dec 2016 B1
9534473 Morris et al. Jan 2017 B2
9562420 Morris et al. Feb 2017 B2
9587649 Oehring Mar 2017 B2
9611728 Oehring Apr 2017 B2
9650871 Oehring et al. May 2017 B2
9650879 Broussard et al. May 2017 B2
9706185 Ellis Jul 2017 B2
9728354 Skolozdra Aug 2017 B2
9738461 DeGaray Aug 2017 B2
9739546 Bertilsson et al. Aug 2017 B2
9745840 Oehring et al. Aug 2017 B2
9822631 Ravi Nov 2017 B2
9840897 Larson Dec 2017 B2
9840901 Oehring et al. Dec 2017 B2
9841026 Stinessen Dec 2017 B2
9863228 Shampine et al. Jan 2018 B2
RE46725 Case Feb 2018 E
9909398 Pham Mar 2018 B2
9915128 Hunter Mar 2018 B2
9932799 Symehuk Apr 2018 B2
9963961 Hardin May 2018 B2
9976351 Randall May 2018 B2
10008880 Vicknair Jun 2018 B2
10020711 Oehring Jul 2018 B2
10167863 Cook Jan 2019 B1
10184465 Enis et al. Jan 2019 B2
10196878 Hunter Feb 2019 B2
10227854 Glass Mar 2019 B2
10232332 Oehring Mar 2019 B2
10246984 Payne Apr 2019 B2
10254732 Oehring Apr 2019 B2
10260327 Kajaria Apr 2019 B2
10280724 Hinderliter May 2019 B2
10287873 Filas May 2019 B2
10302079 Kendrick May 2019 B2
10309205 Randall Jun 2019 B2
10337308 Broussard Jul 2019 B2
10371012 Davis Aug 2019 B2
10378326 Morris Aug 2019 B2
10393108 Chong Aug 2019 B2
10407990 Oehring Sep 2019 B2
10415332 Morris Sep 2019 B2
10436026 Ounadjela Oct 2019 B2
10443660 Harris Oct 2019 B2
10627003 Dale et al. Apr 2020 B2
10669471 Schmidt et al. Jun 2020 B2
10669804 Kotrla Jun 2020 B2
10695950 Igo et al. Jun 2020 B2
10711576 Bishop Jul 2020 B2
20020169523 Ross et al. Nov 2002 A1
20030056514 Lohn Mar 2003 A1
20030079875 Weng May 2003 A1
20030138327 Jones et al. Jul 2003 A1
20040040746 Niedermayr Mar 2004 A1
20040102109 Crafty et al. May 2004 A1
20040167738 Miller Aug 2004 A1
20050061548 Hooper Mar 2005 A1
20050116541 Seiver Jun 2005 A1
20050274508 Folk Dec 2005 A1
20060052903 Bassett Mar 2006 A1
20060065319 Csitari Mar 2006 A1
20060260331 Andreychuk Nov 2006 A1
20070125544 Robinson Jun 2007 A1
20070131410 Hill Jun 2007 A1
20070151731 Butler Jul 2007 A1
20070187163 Cone Aug 2007 A1
20070201305 Heilman et al. Aug 2007 A1
20070204991 Loree Sep 2007 A1
20070226089 DeGaray et al. Sep 2007 A1
20070277982 Shampine Dec 2007 A1
20070278140 Mallet et al. Dec 2007 A1
20080017369 Sarada Jan 2008 A1
20080041596 Blount Feb 2008 A1
20080066911 Luharuka Mar 2008 A1
20080095644 Mantei et al. Apr 2008 A1
20080112802 Orlando May 2008 A1
20080137266 Jensen Jun 2008 A1
20080187444 Molotkov Aug 2008 A1
20080208478 Ella et al. Aug 2008 A1
20080217024 Moore Sep 2008 A1
20080236818 Dykstra Oct 2008 A1
20080264625 Ochoa Oct 2008 A1
20080264640 Eslinger Oct 2008 A1
20080264649 Crawford Oct 2008 A1
20080303469 Nojima Dec 2008 A1
20090045782 Datta Feb 2009 A1
20090065299 Vito Mar 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090090504 Weightman Apr 2009 A1
20090093317 Kajiwara et al. Apr 2009 A1
20090095482 Surjaatmadja Apr 2009 A1
20090101410 Egilsson Apr 2009 A1
20090145611 Pallini, Jr. Jun 2009 A1
20090153354 Daussin et al. Jun 2009 A1
20090188181 Forbis Jul 2009 A1
20090194273 Surjaatmadja Aug 2009 A1
20090200035 Bjerkreim et al. Aug 2009 A1
20090260826 Sherwood Oct 2009 A1
20090308602 Bruins et al. Dec 2009 A1
20100000508 Chandler Jan 2010 A1
20100019574 Baldassarre et al. Jan 2010 A1
20100038077 Heilman Feb 2010 A1
20100038907 Hunt Feb 2010 A1
20100045109 Arnold Feb 2010 A1
20100051272 Loree et al. Mar 2010 A1
20100101785 Khvoshchev Apr 2010 A1
20100132949 DeFosse et al. Jun 2010 A1
20100146981 Motakef Jun 2010 A1
20100172202 Borgstadt Jul 2010 A1
20100200224 Nguete Aug 2010 A1
20100250139 Hobbs et al. Sep 2010 A1
20100293973 Erickson Nov 2010 A1
20100300683 Looper Dec 2010 A1
20100303655 Scekic Dec 2010 A1
20100310384 Stephenson Dec 2010 A1
20100322802 Kugelev Dec 2010 A1
20110005757 Hebert Jan 2011 A1
20110017468 Birch et al. Jan 2011 A1
20110052423 Gambier Mar 2011 A1
20110061855 Case et al. Mar 2011 A1
20110079302 Hawes Apr 2011 A1
20110085924 Shampine Apr 2011 A1
20110166046 Weaver Jul 2011 A1
20110194256 De Rijck Aug 2011 A1
20110247831 Smith Oct 2011 A1
20110247878 Rasheed Oct 2011 A1
20110272158 Neal Nov 2011 A1
20120018016 Gibson Jan 2012 A1
20120049625 Hopwood Mar 2012 A1
20120067582 Fincher Mar 2012 A1
20120085541 Love et al. Apr 2012 A1
20120127635 Grindeland May 2012 A1
20120152549 Koroteev Jun 2012 A1
20120152716 Kikukawa et al. Jun 2012 A1
20120205112 Pettigrew Aug 2012 A1
20120205119 Wentworth Aug 2012 A1
20120205301 McGuire et al. Aug 2012 A1
20120205400 DeGaray et al. Aug 2012 A1
20120222865 Larson Sep 2012 A1
20120232728 Karimi et al. Sep 2012 A1
20120247783 Berner, Jr. Oct 2012 A1
20120255734 Coli Oct 2012 A1
20130009469 Gillett Jan 2013 A1
20130025706 DeGaray et al. Jan 2013 A1
20130064528 Bigex Mar 2013 A1
20130175038 Conrad Jul 2013 A1
20130175039 Guidry Jul 2013 A1
20130180722 Caro Jul 2013 A1
20130189629 Chandler Jul 2013 A1
20130199617 DeGaray et al. Aug 2013 A1
20130233542 Shampine Sep 2013 A1
20130242688 Kageler Sep 2013 A1
20130255271 Yu et al. Oct 2013 A1
20130278183 Liang Oct 2013 A1
20130284278 Winborn Oct 2013 A1
20130299167 Fordyce Nov 2013 A1
20130306322 Sanborn Nov 2013 A1
20130317750 Hunter Nov 2013 A1
20130341029 Roberts et al. Dec 2013 A1
20130343858 Flusche Dec 2013 A1
20140000899 Nevison Jan 2014 A1
20140010671 Cryer et al. Jan 2014 A1
20140041730 Naizer Feb 2014 A1
20140054965 Jain Feb 2014 A1
20140060658 Hains Mar 2014 A1
20140095114 Thomeer Apr 2014 A1
20140096974 Coli Apr 2014 A1
20140124162 Leavitt May 2014 A1
20140127036 Buckley May 2014 A1
20140138079 Broussard May 2014 A1
20140147310 Hunt May 2014 A1
20140174717 Broussard et al. Jun 2014 A1
20140205475 Dale Jul 2014 A1
20140219824 Burnette Aug 2014 A1
20140238683 Korach Aug 2014 A1
20140246211 Guidry et al. Sep 2014 A1
20140251623 Lestz et al. Sep 2014 A1
20140255214 Burnette Sep 2014 A1
20140277772 Lopez Sep 2014 A1
20140290768 Randle Oct 2014 A1
20140332199 Gilstad Nov 2014 A1
20140379300 Devine et al. Dec 2014 A1
20150027712 Vicknair Jan 2015 A1
20150053426 Smith Feb 2015 A1
20150068724 Coli et al. Mar 2015 A1
20150068754 Coli et al. Mar 2015 A1
20150075778 Walters Mar 2015 A1
20150078924 Zhang Mar 2015 A1
20150083426 Lesko Mar 2015 A1
20150097504 Lamascus Apr 2015 A1
20150114652 Lestz Apr 2015 A1
20150136043 Shaaban May 2015 A1
20150144336 Hardin et al. May 2015 A1
20150159911 Holt Jun 2015 A1
20150175013 Cryer et al. Jun 2015 A1
20150176386 Castillo et al. Jun 2015 A1
20150211512 Wiegman Jul 2015 A1
20150211524 Broussard Jul 2015 A1
20150217672 Shampine Aug 2015 A1
20150225113 Lungu Aug 2015 A1
20150252661 Glass Sep 2015 A1
20150300145 Coli et al. Oct 2015 A1
20150300336 Hernandez et al. Oct 2015 A1
20150314225 Coli et al. Nov 2015 A1
20150330172 Allmaras Nov 2015 A1
20150354322 Vicknair Dec 2015 A1
20160032703 Broussard et al. Feb 2016 A1
20160102537 Lopez Apr 2016 A1
20160105022 Oehring Apr 2016 A1
20160208592 Oehring Apr 2016 A1
20160160889 Hoffman et al. Jun 2016 A1
20160177675 Morris Jun 2016 A1
20160177678 Morris Jun 2016 A1
20160186531 Harkless et al. Jun 2016 A1
20160208593 Coli et al. Jul 2016 A1
20160208594 Coli et al. Jul 2016 A1
20160208595 Tang Jul 2016 A1
20160221220 Paige Aug 2016 A1
20160230524 Dumoit Aug 2016 A1
20160230525 Lestz et al. Aug 2016 A1
20160258267 Payne Sep 2016 A1
20160265457 Stephenson Sep 2016 A1
20160273328 Oehring Sep 2016 A1
20160273456 Zhang et al. Sep 2016 A1
20160281484 Lestz Sep 2016 A1
20160290114 Oehring Oct 2016 A1
20160290563 Diggins Oct 2016 A1
20160312108 Lestz et al. Oct 2016 A1
20160319650 Oehring Nov 2016 A1
20160326854 Broussard Nov 2016 A1
20160326855 Coli et al. Nov 2016 A1
20160341281 Brunvold et al. Nov 2016 A1
20160348479 Oehring Dec 2016 A1
20160349728 Oehring Dec 2016 A1
20160369609 Morris et al. Dec 2016 A1
20170016433 Chong Jan 2017 A1
20170021318 McIver et al. Jan 2017 A1
20170022788 Oehring et al. Jan 2017 A1
20170022807 Dursun Jan 2017 A1
20170028368 Oehring et al. Feb 2017 A1
20170030177 Oehring Feb 2017 A1
20170030178 Oehring et al. Feb 2017 A1
20170036178 Coli et al. Feb 2017 A1
20170036872 Wallace Feb 2017 A1
20170037717 Oehring Feb 2017 A1
20170037718 Coli et al. Feb 2017 A1
20170043280 Vankouwenberg Feb 2017 A1
20170051732 Hemandez et al. Feb 2017 A1
20170074076 Joseph et al. Mar 2017 A1
20170096885 Oehring Apr 2017 A1
20170104389 Morris et al. Apr 2017 A1
20170114625 Norris Apr 2017 A1
20170130743 Anderson May 2017 A1
20170138171 Richards et al. May 2017 A1
20170146189 Herman May 2017 A1
20170159570 Bickert Jun 2017 A1
20170159654 Kendrick Jun 2017 A1
20170175516 Eslinger Jun 2017 A1
20170218727 Oehring Aug 2017 A1
20170218843 Oehring et al. Aug 2017 A1
20170222409 Oehring et al. Aug 2017 A1
20170226838 Ciezobka Aug 2017 A1
20170226842 Omont et al. Aug 2017 A1
20170234250 Janik Aug 2017 A1
20170241221 Seshadri Aug 2017 A1
20170259227 Morris et al. Sep 2017 A1
20170292513 Haddad Oct 2017 A1
20170313499 Hughes et al. Nov 2017 A1
20170314380 Oehring Nov 2017 A1
20170314979 Ye et al. Nov 2017 A1
20170328179 Dykstra Nov 2017 A1
20170369258 DeGaray Dec 2017 A1
20180028992 Stegemoeller Feb 2018 A1
20180038216 Zhang Feb 2018 A1
20180045331 Lopez Feb 2018 A1
20180216455 Andreychuk Aug 2018 A1
20180238147 Shahri Aug 2018 A1
20180245428 Richards Aug 2018 A1
20180258746 Broussard Sep 2018 A1
20180266412 Stokkevag Sep 2018 A1
20180291713 Jeanson Oct 2018 A1
20180320483 Zhang Nov 2018 A1
20180343125 Clish Nov 2018 A1
20180363437 Coli Dec 2018 A1
20190003329 Morris Jan 2019 A1
20190010793 Hinderliter Jan 2019 A1
20190055827 Coli Feb 2019 A1
20190063309 Davis Feb 2019 A1
20190100989 Stewart Apr 2019 A1
20190112910 Oehring Apr 2019 A1
20190119096 Haile Apr 2019 A1
20190120024 Oehring Apr 2019 A1
20190128080 Ross May 2019 A1
20190162061 Stephenson May 2019 A1
20190169971 Oehring Jun 2019 A1
20190178057 Hunter Jun 2019 A1
20190178235 Coskrey Jun 2019 A1
20190203567 Ross Jul 2019 A1
20190203572 Morris Jul 2019 A1
20190211661 Reckels Jul 2019 A1
20190226317 Payne Jul 2019 A1
20190245348 Hinderliter Aug 2019 A1
20190292866 Ross Sep 2019 A1
20190292891 Kajaria Sep 2019 A1
20190316447 Oehring Oct 2019 A1
20200047141 Oehring et al. Feb 2020 A1
20200088152 Allion et al. Mar 2020 A1
20200194976 Benussi Jun 2020 A1
20200232454 Chretien Jul 2020 A1
Foreign Referenced Citations (62)
Number Date Country
2007340913 Jul 2008 AU
2011203353 Jul 2011 AU
2158637 Sep 1994 CA
2406801 Nov 2001 CA
2653069 Dec 2007 CA
2707269 Dec 2010 CA
2482943 May 2011 CA
3050131 Nov 2011 CA
2773843 Oct 2012 CA
2845347 Oct 2012 CA
2955706 Oct 2012 CA
2966672 Oct 2012 CA
3000322 Apr 2013 CA
2787814 Feb 2014 CA
2833711 May 2014 CA
2978706 Sep 2016 CA
2944980 Feb 2017 CA
3006422 Jun 2017 CA
3018485 Aug 2017 CA
2964593 Oct 2017 CA
2849825 Jul 2018 CA
3067854 Jan 2019 CA
2919649 Feb 2019 CA
2919666 Jul 2019 CA
2797081 Sep 2019 CA
2945579 Oct 2019 CA
101639059 Feb 2010 CN
201687513 Dec 2010 CN
101977016 Feb 2011 CN
201730812 Feb 2011 CN
201819992 May 2011 CN
201925157 Aug 2011 CN
202023547 Nov 2011 CN
202157824 Mar 2012 CN
102602322 Jul 2012 CN
202406331 Aug 2012 CN
202463670 Oct 2012 CN
202500735 Oct 2012 CN
202545207 Nov 2012 CN
103095209 May 2013 CN
102758604 Dec 2014 CN
205986303 Feb 2017 CN
108049999 May 2018 CN
3453827 Mar 2019 EP
3456915 Mar 2019 EP
2004264589 Sep 2004 JP
3626363 Mar 2005 JP
2008263774 Oct 2008 JP
2012-117371 Jun 2012 JP
20100028462 Mar 2010 KR
48205 Sep 2005 RU
98493 Oct 2010 RU
2421605 Jun 2011 RU
9320328 Oct 1993 WO
9853182 Nov 1998 WO
2008136883 Nov 2008 WO
2009023042 Feb 2009 WO
2011127305 Oct 2011 WO
2012122636 Sep 2012 WO
2012137068 Oct 2012 WO
2016144939 Sep 2016 WO
2016160458 Oct 2016 WO
Non-Patent Literature Citations (168)
Entry
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711.
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349.
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387.
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716.
Canadian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711.
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017.
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016.
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017.
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695.
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Application No. PCT/US18/63977.
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749.
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Application No. PCT/US18/63970.
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387.
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275.
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997.
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542.
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548.
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913.
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539.
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697.
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487.
Non-Final Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081.
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683.
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281.
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635.
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028.
Schlumberger, “Jet Manual 23, Fracturing Pump Units, SPF/SPS-343, Version 1.0,” Jan. 31, 2007, 68 pages.
Stewart & Stevenson, “Stimulation Systems,” 2007, 20 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Dec. 17, 2011, 5 pages.
“Griswold Model 811 Pumps: Installation, Operation and Maintenance Manual, ANSI Process Pump,” 2010, 60 pages.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017.
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017.
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017.
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325.
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331.
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008.
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014.
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186.
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018.
International Search Report and Written Opinion dated Feb. 11, 2020 in related PCT Application No. PCT/US2019/055323.
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584.
Office Action dated Jun. 11, 2019 in corresponding U.S. Appl. No. 16/210,749.
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030.
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711.
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597.
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030.
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493.
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436.
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732.
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030.
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070.
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997.
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273.
Final Office Action dated Mar. 31, 2020 corresponding to U.S. Appl. No. 15/356,436.
Non-Final Office Action dated Mar. 3, 2020 corresponding to U.S. Appl. No. 16/ 152,695.
Non-Final Office Action issued in U.S. Appl. No. 14/881,535 dated May 20, 2020.
Non-Final Office Action issued in U.S. Appl. No. 15/145,443 dated May 8, 2020.
Non-Final Office Action issued in U.S. Appl. No. 16/458,696 dated May 22, 2020.
International Search Report and Written Opinion issued in PCT/US2020/023809 dated Jun. 2, 2020.
Karin, “Duel Fuel Diesel Engines,” (2015), Taylor & Francis, pp. 62-63, Retrieved from https://app.knovel.com/hotlink/toc/id:kpDFDE0001/dual-fuel-diesel-engines/duel-fuel-diesel-engines (Year 2015).
Goodwin, “High-voltage auxilliary switchgear for power stations,” Power Engineering Journal, 1989, 10 pg. (Year 1989).
Office Action dated Jul. 23, 2020 in related U.S. Appl. No. 16/597,014.
International Search Report and Written Opinion dated Jun. 23, 2020 in corresponding PCT Application No. PCT/US20/23912.
International Search Report and Written Opinion dated Jul. 22, 2020 in corresponding PCT Application No. PCT/US20/00017.
Office Action dated Aug. 4, 2020 in related U.S. Appl. No. 16/385,070.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/404,283.
Office Action dated Jun. 29, 2020 in related U.S. Appl. No. 16/728,359.
Office Action dated Jun. 22, 2020 in related U.S. Appl. No. 16/377,861.
Canadian Office Action dated Aug. 18, 2020 in related CA Patent Application No. 2,933,444.
Canadian Office Action dated Aug. 17, 2020 in related CA Patent Application No. 2,944,968.
Borets, “Berets Oil Equipment,” accessed Sep. 4, 2020, 158 pages.
Andrew Howard Nunn, “The feasibility of natural gas as a fuel source for modern land-based drilling,” Dec. 2011, 94 pages.
R. Saidur, “Applications of variable speed drive (VSD) in electrical motors energy savings,” 2012, vol. 16, pp. 543-550.
Discenzo, “Next Generation Pump Systems Enable New Opportunities for Asset Management and Economic Optimization,” accessed Sep. 4, 2020, 8 pages.
Nikolich, “Compressors, pumps, refrigeration equipment: improvement and specialization of piston pumps for oil and gas well-drilling and production operations,” 1996, Chemical and Petroleum Engineering, vol. 32, pp. 157-162.
Finger, “Sandia National Handbook Laboratories Report: Slimhole handbook: procedures and recommendations for slimhole drilling and testing in geothermal exploration,” Oct. 1999, 164 pages.
Steve Besore, MTU Detroit Diesel Inc., “How to select generator sets for today's oil and gas drill rigs: careful comparison and selection can improve performance and reduce costs,” May 5, 2010, 4 pages, https://www.mtu-online.com/fileadmin/fm-dam/mtu-usa/mtuinnorthamerica/white-papers/WhitePaper_EDP.pdf.
Pemberton, “Strategies for Optimizing pump efficiency and LCC performance: process pumps are the largest consumers of energy in a typical pulp and paper mill—boosting their efficiency is a new avenue to reduced plant operating costs,” Jun. 2003, Paper Age, pp. 28-32.
Robert B. Thompson, “Optimizing the production system using real-time measurements: a piece of the digital oilfield puzzle,” Nov. 11-14, 2007, SPE Annual Technical Conference and Exhibition, Anaheim, CA, pp. 1-10.
Guffey, “Field testing of variable-speed beam-pump computer control,” May 1991, SPE Production Engineering, pp. 155-160.
Irvine, “The use of variable frequency drives as a final control in the petroleum industry,” 2000, IEEE, pp. 2749-2758.
R. Ikeda et al., “Hydraulic fracturing technique: pore pressure effect and stress heterogeneity,” 1989, Int. J. Rock Mech. Min. Sci. & Geomech., vol. 26, No. 6, pp. 471-475.
Coli Patent Application, “Mobile, modular, electrically powered system for use in fracturing underground formations,” filed Apr. 7, 2011, 28 pages.
Gardner Denver—Well Servicing Pump Model GD-2500Q, GD-25000-HD, Quintuplex Pumps, GWS Fluid End Parts List, Jul. 2011, 39 pages.
Gardner Denver GD-2500Q Well Service Pump, 2 pages.
Gardner Denver C-2500 Quintuplex Well Service Pump, 2013, 2 pages.
Toshiba 2011 Industrial Catalog, Drives, PAC, PLCs, 2011, 272 pages.
Gardner Denver GD-2500 Quintuplex Well Service Pump, 2003, 2 pages.
Gardner Denver GD-2500Q Quintuplex Well Service Pump Operating and Service Manual, Aug. 2005, 46 pages.
Gardner Denver GD-2500Q Quintuplex Well Service Pump Power End Parts List, Apr. 2007, 15 pages.
Toshiba H9 ASD Installation and Operation Manual, Mar. 2011, 287 pages.
Offshore Technology Conference, Houston, TX, Apr. 30-May 3, 2012, Honghua Group Brochure and Pictures, 6 pages.
Honghua Group Customer Spreadsheet, 2 pages.
Charlotte Owen, “Chinese company launches new tracking rigs,” May 2, 2012, Oil & Gas Technology Magazine, 2 pages.
Honghua Group Limited, Complete Equipment and System Integrating by Using of Gas Power-gen and Power Grid and VFD System, 30 pages.
Honghua Group Limited, Is gas and electricity driven equipment the future trend for develop lithologic reservoirs, 2 pages.
ABB Group, MV Drive benefits for shale gas applications, Powerpoint, Apr. 2012, 16 pages.
U.S. Well Services, Game-changing hydraulic fracturing technology, reduces emissions by 99%: U.S. Well Services's patented clean fleet technology proven to cut emission, save fuel and allow for quieter operations on site, Oct. 1, 2014, 3 pages.
ASME, Hydraulic Fracturing's Greener Tint, Jan. 11, 2018, 2 pages.
Fluid Power, Clean Fleet Reduces Emissions by 99% at Hydraulic Fracturing Sites, Jan. 11, 2005, 3 pages.
Louisiana State University, Petroleum alumnus and team develop mobile fracturing unit that alleviates environmental Impact, LSU School of EE & CS, Nov. 2012, 2 pages.
Linda Kane, Energy pipeline: US Well Services brings clean fleet to Weld County, Nov. 4, 2015, Greeley Tribute, 7 pages.
Business Wire, Hunghua Group showcases shale gas, offshore and land drilling solutions at the 2013 Offshore Technology Conference, May 6, 2013, 2 pages.
Joanne Liou, Hunghua Group introduces 6,000-hp integrated shale gas system, Drilling Matters, May 21, 2012, 2 pages.
Tess Record—Trademark for Clean Fleet registered Sep. 5, 2013, accessed Jan. 14, 2020, 2 pages.
U.S. Well Services, About U.S. Well Services, accessed Jan. 14, 2020, 14 pages.
Unknown, “Improving the Drilling Cycle,” Oilfield Technology, Dec. 2009, vol. 2, Issue 9, 5 pages.
Unknown, “Andon (manufacturing),” last edited Sep. 8, 2019, https://en.wikipedia.org/w/index.php?title=Andon_(manufacturing)&oldid=914575778, 2 pages.
S.K. Subramaniam, “Production monitoring system for monitoring the industrial shop floor performance,” 2009, International Journal of Systems Applications, Engineering & Development, vol. 3, Issue 1, pp. 28-35.
Unknown, Evolution Well Services advances fracturing operations with an electrically powered system,Calgary PR Newswire, Jun. 4, 2012, 2 pages.
Honghua Group, Honghua America, LLC, HHF—1600 Mud Pump, 2 pages.
Honghua Group, Honghua Shale Gas Solutions Power Point Slides, Feb. 2012, 41 pages.
Mactel, Frac Test with VFDs Final Report Hydraulic Fracturing Pilot Test Results and Preliminary Full Scale Design United Nuclear Church Rock Facility, Dec. 23, 2003, 73 pages.
Jon Gates, ASME Hydraulic Fracturing Conference, Mar. 24, 2015, http://www.otrglobal.com/newsroom/cnotes/128720, 6 pages.
Gardner Denver Well Servicing Pump Model C2500Q Quintuplex Operating and Service Manual, Apr. 2011, 46 pages.
Coli, Mobile, modular, electrically powered system for use in fracturing underground formations using liquid petroleum gas, Oct. 5, 2012, U.S. Appl. No. 61/710,393, 59 pages.
Toshiba, G9 Brochure—G9 Series Adjustable Speed Drives, Jun. 2007, 6 pages.
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Pumps & Systems, Dec. 17, 2011, https://www.pumpsandsystems.com/variable-frequency-drives-oil-and-gas-pumping-systems, 5 pages.
Unknown, “U.S. Well Services for Antero Fracking,” Oct. 3, 2014, HHP Insight, http://hhpinsight.com/epoperations/2014/10/u-s-well-services-for-antero-fracking/, 3 pages.
Stuart H. Loewenthal, Design of Power-Transmitting Shafts, Nasa Reference Publication 1123, Jul. 1984, 30 pages.
Response to Non-Final Office Action dated Aug. 3, 2015 in related U.S. Appl. No. 13/679,689, 62 pages.
George E. King, “Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells,” Feb. 6-8, 2012, Society of Petroleum Engineers, 80 pages.
Gardner Denver Pumps, GD2500Q Quintuplex Pump, Oct. 14, 2019, http://www.gardnerdenver.com/en-us/pumps/quintuplex-pump-gd-2500q#menu, 7 pages.
TMEIC, TMEIC Industrial Motors Manual, 2012, 12 pages.
Toshiba, Toshiba Q9 ASD Installation and Operation Manual, Apr. 2010, 233 pages.
ABB, ABB drives in power generation: medium voltage drives for more efficient and reliable plant operation, 2006, 12 pages.
ABB, Industry Brochure—ABB drives in chemical, oil and gas medium voltage drives for greater profitability and performance, 2009, 16 pages.
ABB, ABB drives in chemical, oil and gas Medium voltage drives for greater profitability and performance, 2011, 16 pages.
ABB, Drive PC Tools: Startup and maintenance, DriveWindow Light, 2014, 2 pages.
ABB, Global Center of Excellence DC Drives: DriveWindow light upgrade for DC drives Used for DWL 2.95 and DC DriveAP, Dec. 4, 2018, 1 page.
ABB, ABB Drive Ware User's Manual, DriveWindow 2, Dec. 31, 2012, 604 pages.
ABB, ABB Drive Ware Users Guide, DriveWindow Light 2, Oct. 15, 2013, 45 pages.
Warren Electric Corp., Hydraulic heaters maintain fluid quality and consistency, Hydraulics & Pneumatics, Dec. 30, 2010, 12 pages.
Onyx Industries Inc., Stack Light Engineering Reference Guide, Sep. 23, 2012, 4 pages.
Non-Final Office dated Oct. 26, 2020 in U.S. Appl. No. 15/356,436.
Non-Final Office dated Oct. 5, 2020 in U.S. Appl. No. 16/443,273.
Non-Final Office Action dated Sep. 29, 2020 in U.S. Appl. No. 16/943,727.
Non-Final Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/356,263.
Non-Final Office Action dated Aug. 31, 2020 in U.S. Appl. No. 16/167,083.
Albone, “Mobile Compressor Stations for Natural Gas Transmission Service,” ASME 67-GT-33, Turbo Expo, Power for Land, Sea and Air, vol. 79887, pp. 1-10, 1967.
Canadian Office Action dated Sep. 22, 2020 in Canadian Application No. 2,982,974.
International Search Report and Written Opinion dated Sep. 3, 2020 in PCT/US2020/36932.
“Process Burner” (https://www.cebasrt.com/productsloii-gaslprocess-burner) 06 Sep. 6, 2018 (Sep. 6, 2018), entire document, especially para (Burners for refinery Heaters].
Water and Glycol Heating Systems⋅ (https://www.heat-inc.com/wg-series-water-glycol-systems/) Jun. 18, 2018 (Jun. 18, 2018), entire document, especially WG Series Water Glycol Systems.
“Heat Exchanger” (https://en.wikipedia.org/w/index.php?title=Heat_exchanger&oldid=89300146) Dec. 18, 2019 Apr. 2019 (Apr. 18, 2019), entire document, especially para (0001].
Canadian Office Action dated Sep. 8, 2020 in Canadian Patent Application No. 2,928,707.
Canadian Office Action dated Aug. 31, 2020 in Canadian Patent Application No. 2,944,980.
International Search Report and Written Opinion dated Aug. 28, 2020 in PCT/US20/23821.
Related Publications (1)
Number Date Country
20180278124 A1 Sep 2018 US
Provisional Applications (1)
Number Date Country
62323303 Apr 2016 US
Continuations (2)
Number Date Country
Parent 15487656 Apr 2017 US
Child 15994772 US
Parent 13679689 Nov 2012 US
Child 15202085 US
Continuation in Parts (2)
Number Date Country
Parent 15235788 Aug 2016 US
Child 15487656 US
Parent 15202085 Jul 2016 US
Child 15235788 US