SYSTEM FOR GENERATING AN ARCHITECTURE DIAGRAM

Abstract
A system for generating an architecture diagram includes an input processor, a machine learning processor, and an advice generator. The input processor is configured to receive, from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities. The machine learning processor utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data. The advice generator receives the assessment from the machine learning processor, prepares a recommendation based on the assessment, and communicates the recommendation to the terminal. User feedback is represented in the training data to improve the relevancy of the recommendation.
Description
BACKGROUND
Related Applications

This application claims priority under 35 U.S.C. § 119 to Indian Patent Application No. 201741025086, filed Jul. 14, 2017.


Field

This application generally relates to the implementation of large computer systems. In particular, this application describes a system for generating an architecture diagram that describes the computer system.


Description of Related Art

System architectures are usually represented in the form of schematic diagrams that illustrate various objects and the interconnections between the objects. The schematic diagrams are usually prepared by system architects of a development team and typically form the basis for the implementation of the system by developers and engineers of the development team in that the schematic will be referred to during implementation.


Unfortunately, during the implementation phase, problems in the selection and/or interconnection of objects may be determined. The problems may be remedied by the developers and engineers without any regard to updating the schematic. This all but guarantees that the same problems will be made if the same schematics were to be used in the implementation of a new system.


However, even when the developers and engineers revise the schematic to correct the erroneous portions, the lessons learned from implementation of the system may not be conveyed to future architects creating architects for entirely different systems. This will likely lead to the same problems being made in future system implementations.


BRIEF SUMMARY

In one aspect, a system for generating an architecture diagram includes an input processor, a machine learning processor, and an advice generator. The input processor is configured to receive, from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities. The machine learning processor utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data. The advice generator receives the assessment from the machine learning processor, prepares a recommendation based on the assessment, and communicates the recommendation to the terminal.


In a second aspect, a non-transitory computer readable medium includes instruction code that facilitates generating an architecture diagram. The instruction code is executable by a machine for causing the machine to perform acts that include receiving, from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities. The instruction code is further executable to cause the machine to control a machine learning processor that utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data. The instruction code is further executable to cause the machine to prepare a recommendation based on the assessment and to communicate the recommendation to the terminal.


In a third aspect, a method for generating an architecture diagram includes receiving, by an input processor and from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities. The method also includes controlling a machine learning processor that utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data. The method also includes preparing, by an advice generator, a recommendation based on the assessment, and communicating the recommendation to the terminal.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary environment that includes various entities that facilitate generation of an architecture;



FIG. 2 illustrates operations performed by various entities of the environment;



FIG. 3 illustrates an exemplary drawing canvas that facilitates drawing an architecture diagram;



FIG. 4A illustrates exemplary JSON formatted architecture data associated with an architecture diagram;



FIG. 4B illustrates exemplary training data that may reside in an exemplary training dataset;



FIGS. 5A and 5B illustrate the exemplary drawing after recommendation for correcting information has been provided;



FIG. 6 illustrates an exemplary computer system that may form part of or implement the systems described in the figures or in the following paragraphs.





DETAILED DESCRIPTION

The embodiments described below overcome the problems described in the background by providing a system that facilitates creation of an architecture diagram by a system architect and that provides feedback to the system architect to help the system architect conform the architecture diagram to best practices.


The system includes learning capabilities that improve the accuracy/relevance of feedback provided to the system architect. Therefore, over time, the system helps to minimize the number of interactions necessary to generate a final version of an architecture diagram. This improves, among other things, cost and time to market. It also lowers the overall hardware demands in that fewer versions of the architecture diagram are required, which allows for more efficient memory utilization of the system.



FIG. 1 illustrates an exemplary environment 100 that includes various entities that facilitate generation of an architecture diagram. Illustrated in the environment 100 are entities that include an architecture generation system (AGS) 102 and a terminal 104. The AGS 102 and terminal 104 may communicate with one another via a network 107, such as the Internet.


The AGS 102 includes various subsystems that facilitate generating an architecture diagram such as an input processor 110, a machine learning processor (MLP) 115, an advice generator 120. The AGS 102 includes a processor 125 that executes instruction code stored in a memory device 127 for coordinating activities performed between the various subsystems. The AGS 102 may include other subsystems.


It is contemplated that each subsystem may correspond to a stand-alone computer system such as an Intel®, AMD®, or PowerPC® based computer system or a different computer system. The computer systems may include an operating system, such as a Microsoft Windows®, Linux, Unix® or other operating system. It is also contemplated that operations performed on the various subsystems may be combined into a fewer or greater number of subsystems to facilitate speed scaling of the AGS 102, cost reductions, etc.


Operations performed by one or more of the subsystems of the AGS 102 are illustrated in FIG. 2 and are best understood by referencing FIGS. 3-5B. In this regard, the operations may be implemented via instruction code stored in non-transitory computer readable media that resides within the subsystems configured to cause the respective subsystems to perform the operations in the figures.


At block 200, the AGS 102 may receive architecture data that defines an architecture diagram. In this regard, the input processor 110 of the AGS 102 may generate one or more user interfaces that facilitate drawing the architecture diagram (See FIG. 3) on, for example, the terminal 107. For example, the input processor 110 may implement a web server that communicates web pages to the terminal 104. As illustrated in FIG. 3, one of the web pages may include a drawing canvas 300 and various controls that facilitate dragging objects 305a-g on the canvas and drawing paths 310a-f between the objects. The paths represent interconnections (e.g., network connections) between the objects.


After drawing the architecture diagram, a system architect using the terminal 104 may submit the architecture diagram to the AGS 102. The input processor 110 may then convert the architecture diagram into architecture data that is in a format (e.g., SVG, jSON) that facilitates subsequent processing operations of the AGS 102. In alternative implementations, the architecture diagram is continuously submitted to the input processor 110 to facilitate so-called “live” interaction.


Referring to FIG. 4A, in one implementation, the input processor 110 converts the architecture diagram into a JSON format. The architecture data 400 may include an array of objects 405 and an array of paths 410. Each item in the objects array 405 corresponds to an object drawn in the architecture diagram (e.g., user, server, firewall). Each item in the paths array 410 corresponds to an interconnection between objects of the architecture diagram. Each item in the objects array 405 and the paths array 410 includes information in the form of key/value pairs.


In an exemplary implementation, each item in the objects array 405 includes keys named ObjectID, DefaultObjectID, DefaultObjectTitle, DefaultObjectCatagory, GroupID, and Content. The ObjectID key is paired to a dynamically generated ID number that is incremented for every object added to the architecture diagram. The DefaultObjectID key is paired to a static ID number that is predefined and associated with a given object. The DefaultObjectTitle key is paired to the title of a given object. The DefaultObjectCatagory key is paired to a category under which the object belongs. The Content key is paired to text that may be specified by the system architect using the terminal 104.


Each item in the paths array 410 includes keys named PathID, DefaultPathID, DefaultPathTitle, Source, Target, and Reverse. The PathID key is paired to a dynamically generated ID number that is incremented every time a path is added. The DefaultPathID key is paired to a static ID number that is predefined and associated with a given path. The DefaultPathTitle key is paired to a tittle for a given path. The Source key is paired to the ObjectID value for the object from which the path begins. The Target key is paired to the ObjectID value for the object at which the path ends. The Reverse key is paired to a value that corresponds to the type of arrow associated with the path.


After conversion of the architecture diagram into the architecture data 400, the input processor 110 may store the architecture data 400 into a database 112.


Returning to FIG. 2, at block 205, the correctness of the architecture data 400 in the database 112 associated with the architecture diagram may be assessed by the MLP 115. In this regard, the MLP 115 may implement a supervised learning algorithm such as LogisticRegression and classification that attempts to classify the ways in which objects in the architecture diagram are interconnected as correct or incorrect based on a training dataset 117. Along with this it also predicts the Next Most suitable Object, which could be Added in the while Drawing an architectural diagram.



FIG. 4B illustrates a portion of training data 420 that may reside in an exemplary training dataset 420. The training data 420 may be conceptualized as including two parts, namely features 425 and categories 430. The features 425 are key to creating a pattern that facilitates predicting the category to which an arrangement of objects in the architecture diagram belong.


The numbers in the cells generally correspond to previously defined object IDs associated with objects that may be placed in the architecture diagram. Table 1 illustrates exemplary object IDs that may have been previously associated with various objects.












TABLE 1







Object Name
Object ID









User
70



Computer
36



Tablet
38



Cloud
12



Firewall
54



Router
22



Server
55



Load balancer
75



. . .
. . .










The values associated with the DefaultObjectID key for the objects in the architecture data 400 may correspond to the previously defined object IDs.


The training data 420 is used to train the MLP 115 to classify the interconnected objects in the architecture as belonging to a pre-defined category. For example, the value in the category column 430 may indicate the object ID of an object that should be used as an alternative to an object that was placed in the architecture diagram. According to the first row in the training data 420, when a computer object (ID 35) is connected to cloud object (ID 12), which is connected to a firewall object (ID 54), which is connected to a server object (ID 55), the category indicates 75. This would indicate that the object with ID 75 (i.e., Load balancer) should be included in the arrangement.


According to the third row, when a computer object (ID 35) is connected to cloud object (ID 12), which is connected to a load balancer object (ID 75), the category indicates 54. This would indicate that the object with ID 54 (i.e., Firewall) should be included in the arrangement.


According to the fifth row, when a user object (ID 70) is connected to a router object (ID 22), the category indicates −1. This might be utilized to indicate that the path between the user object (ID 70) and the router object (ID 22) is incorrect.


According to the seventh row, a computer object (ID 36) is connected to a cloud object (ID 12), which is connected to a load balancer object (ID 75), and the category indicates 0. This might be utilized to indicate that this arrangement is acceptable.


As noted above, the training data 420 illustrated in FIG. 4B is merely exemplary. The visual representation of the training data 420 in FIG. 4B is just one of many ways that the training data 420 may be visualized.


The assessment determination made by the MLP 115 as to the correctness of the architecture data is communicated to the advice generator.


Returning to FIG. 2, at block 210, the advice generator 120 generates recommendations for correcting the architecture diagram based on the assessment determination generated by the MLP 115. The recommendations are communicated to the terminal 104 to facilitate review by the system architect using the terminal 104.


As illustrated in FIGS. 5A and 5B, in one implementation the recommendations are provided in widgets that facilitate both presentation of a textual representation of the recommendation and reception of an approval or rejection indication from the system architect. For example, a first recommendation 425a may indicate that the illustrated user object should not be connected directly to the illustrated router object. A second recommendation 505b may indicate that the illustrated user object should not be connected directly to the illustrated firewall object. These recommendations may have been generated at least in part based on the fifth and sixth rows in the training data 420.


A third recombination 505c may indicate that a load balancer object should be used instead of the illustrated server object 305gt. This recommendation may have been generated at least in part based on the first and second rows in the training data 420.


As noted, the system architect using the terminal may approve or reject the recommendations. Approval of the first and second recommendations 505a, b may result in deletion of the corresponding path segments 310a, b. Approval of the third recommendation 505c may result in replacement of the server object 305g with a load balancer object 305h, as illustrated in FIG. 4B.


Returning to FIG. 2, at block 215, the approval/rejection indication may be received by the AGS 102. If the recommendation is approved, then the training data may populated by an additional column. This in turn increases the likelihood that the same recommendation will be made in the future for the same circumstances. When the recommendation is not approved, the training dataset 117 may be updated with an entry to indicate the response. This in turn decreases the likelihood that the same recommendation will be made in the future for the same circumstances. For example, the category for the seventh row in the training data 420 illustrated in FIG. 4B is a zero to indicate that the combination of connections represented in by the row should not be recommended. This feedback results in better assessment by the MLP 115 and ultimately better/more relevant recommendations by the advice generator 120.



FIG. 6 illustrates a computer system 600 that may form part of or implement the systems described above. The computer system 600 may include a set of instructions 645 that the processor 605 may execute to cause the computer system 600 to perform any of the operations described above. The computer system 600 may operate as a stand-alone device or may be connected, e.g., using a network, to other computer systems or peripheral devices.


In a networked deployment, the computer system 600 may operate in the capacity of a server or as a client-user computer in a server-client user network environment, or as a peer computer system in a peer-to-peer (or distributed) network environment. The computer system 600 may also be implemented as or incorporated into various devices, such as a personal computer or a mobile device, capable of executing the instructions 645 (sequential or otherwise) that specify actions to be taken by that machine. Further, each of the systems described may include any collection of subsystems that individually or jointly execute a set, or multiple sets, of instructions to perform one or more computer functions.


The computer system 600 may include one or more memory devices 610 on a bus 620 for communicating information. In addition, code operable to cause the computer system to perform any of the operations described above may be stored in the memory 610. The memory 610 may be a random-access memory, read-only memory, programmable memory, hard disk drive or any other type of memory or storage device.


The computer system 600 may include a display 630, such as a liquid crystal display (LCD), a cathode ray tube (CRT), or any other display suitable for conveying information. The display 630 may act as an interface for the user to see the functioning of the processor 605, or specifically as an interface with the software stored in the memory 610 or in the drive unit 615.


Additionally, the computer system 600 may include an input device 625, such as a keyboard or mouse, configured to allow a user to interact with any of the components of system 600.


The computer system 600 may also include a disk or optical drive unit 615. The disk drive unit 615 may include a computer-readable medium 640 in which the instructions 645 may be stored. The instructions 645 may reside completely, or at least partially, within the memory 610 and/or within the processor 605 during execution by the computer system 600. The memory 610 and the processor 605 also may include computer-readable media as discussed above.


The computer system 600 may include a communication interface 635 to support communications via a network 650. The network 650 may include wired networks, wireless networks, or combinations thereof. The communication interface 635 network may enable communications via any number of communication standards, such as 802.11, 802.12, 802.20, WiMAX, cellular telephone standards, or other communication standards.


Accordingly, the method and system may be realized in hardware, software, or a combination of hardware and software. The method and system may be realized in a centralized fashion in at least one computer system or in a distributed fashion where different elements are spread across several interconnected computer systems. Any kind of computer system or other apparatus adapted for carrying out the methods described herein may be employed.


The method and system may also be embedded in a computer program product, which includes all the features enabling the implementation of the operations described herein and which, when loaded in a computer system, is able to carry out these operations. Computer program in the present context means any expression, in any language, code or notation, of a set of instructions intended to cause a system having an information processing capability to perform a particular function, either directly or after either or both of the following: a) conversion to another language, code or notation; b) reproduction in a different material form.


While methods and systems have been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the claims. Therefore, it is intended that the present methods and systems not be limited to the particular embodiment disclosed, but that the disclosed methods and systems include all embodiments falling within the scope of the appended claims.

Claims
  • 1. A system for generating an architecture diagram, the system comprising: an input processor configured to receive, from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities;a machine learning processor that utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data;an advice generator that receives an assessment from the machine learning processor, prepares a recommendation based on the assessment, and communicates the recommendation to the terminal.
  • 2. The system according to claim 1, wherein the assessment received from the machine learning processor indicates a proposed change to either insert a new entity between entities of the architecture or to replace an existing entity of the architecture with the new entity, wherein the recommendation includes the proposed change and the advice generator is further configured to: receive an indication of acceptance or rejection of the recommendation from the terminal; andwhen the recommendation is rejected, the advice generator is configured to communicate an indication to the machine learning processor that the proposed change in the recommendation was rejected,wherein in response to the indication that the proposed change was rejected, the machine learning processor is further configured to update information in training the dataset to reflect that the proposed change was rejected.
  • 3. The system according to claim 2, wherein in addition to the proposed change to either insert a new entity between entities of the architecture or to replace an existing entity of the architecture with the new entity, the assessment indicates a proposed change to delete a path between entities of the architecture.
  • 4. The system according to claim 1, wherein the input processor is further configured to generate a graphical user interface (GUI) viewable on the terminal that facilitates drawing the architecture on the terminal.
  • 5. The system according to claim 4, wherein the GUI is configured to graphically indicate the recommendation and to provide fields that facilitate acceptance or rejection of the recommendation.
  • 6. The system according to claim 1, wherein the entity data and path data are in a JavaScript Object Notation (JSON) format.
  • 7. The system according to claim 1, wherein the machine learning processor utilizes statistical classification algorithms to classify the entity data and path data as belonging to a class of interconnected entities defined in the training dataset.
  • 8. A non-transitory computer readable medium that includes instruction code that facilitates generating an architecture diagram, the instruction code being executable by a machine for causing the machine to perform acts comprising: receiving, from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities;controlling a machine learning processor that utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data; andpreparing a recommendation based on the assessment, and communicating the recommendation to the terminal.
  • 9. The non-transitory computer readable medium according to claim 8, wherein the assessment received from the machine learning processor indicates a proposed change to either insert a new entity between entities of the architecture or to replace an existing entity of the architecture with the new entity, wherein the recommendation includes the proposed change, and wherein the instruction code is executable to cause the machine to perform further acts comprising: receiving an indication of acceptance or rejection of the recommendation from the terminal; andwhen the recommendation is rejected, communicate an indication to the machine learning processor that the proposed change in the recommendation was rejected,wherein in response to the indication that the proposed change was rejected, the machine learning processor updates information in the training dataset to reflect that the proposed change was rejected.
  • 10. The non-transitory computer readable medium according to claim 9, wherein in addition to the proposed change to either insert a new entity between entities of the architecture or to replace an existing entity of the architecture with the new entity, the assessment indicates a proposed change to delete a path between entities of the architecture.
  • 11. The non-transitory computer readable medium according to claim 8, wherein the instruction code is executable to cause the machine to perform further acts comprising: generating a graphical user interface (GUI) viewable on the terminal that facilitates drawing the architecture on the terminal.
  • 12. The non-transitory computer readable medium according to claim 11, wherein the GUI is configured to graphically indicate the recommendation and to provide fields that facilitate acceptance or rejection of the recommendation.
  • 13. The non-transitory computer readable medium according to claim 8, wherein the entity data and path data are in a JavaScript Object Notation (JSON) format.
  • 14. The non-transitory computer readable medium according to claim 8, wherein the machine learning processor utilizes statistical classification algorithms to classify the entity data and path data as belonging to a class of interconnected entities defined in the training dataset.
  • 15. A method for generating an architecture diagram, the method comprising: receiving, by an input processor and from a terminal, entity data associated with a plurality of entities of an architecture and path data associated with a plurality of paths that correspond to interconnections between the plurality of entities;controlling a machine learning processor that utilizes a training dataset to assess whether the entities defined by the entity data are correctly interconnected as defined by the path data;preparing, by an advice generator, a recommendation based on the assessment, and communicating the recommendation to the terminal.
  • 16. The method according to claim 15, wherein the assessment received from the machine learning processor indicates a proposed change to either insert a new entity between entities of the architecture or to replace an existing entity of the architecture with the new entity, wherein the recommendation includes the proposed change, and wherein the method further comprises: receiving an indication of acceptance or rejection of the recommendation from the terminal; andwhen the recommendation is rejected, communicating, by the advice generator, an indication to the machine learning processor that the proposed change in the recommendation was rejected,wherein in response to the indication that the proposed change was rejected, the machine learning processor updates information in the training dataset to reflect that the proposed change was rejected.
  • 17. The method according to claim 16, wherein in addition to the proposed change to either insert a new entity between entities of the architecture or to replace an existing entity of the architecture with the new entity, the assessment indicates a proposed change to delete a path between entities of the architecture.
  • 18. The method according to claim 15, wherein the method further comprises generating, the input processor, a graphical user interface (GUI) viewable on the terminal that facilitates drawing the architecture on the terminal.
  • 19. The method according to claim 18, wherein the GUI is configured to graphically indicate the recommendation and to provide fields that facilitate acceptance or rejection of the recommendation.
  • 20. The method according to claim 15, wherein the entity data and path data are in a JavaScript Object Notation (JSON) format.
Priority Claims (1)
Number Date Country Kind
201741025086 Jul 2017 IN national